Ï¢À±ÃæÀŁ»ÒÀ±¤ª¤è¤Ó¥Ö¥é¥Ã¥¯¥Û¡¼¥ë¡ÝÃæÀŁ»ÒÀ±Ï¢À±¤Î¹çÂÎ ¡Á ½àÊ¿¹Õ²ò¤Î¸¦µæ¤Î¸½¾õ¤Èº£¸å¤ÎŸ˾ ¡Á

Size: px
Start display at page:

Download "Ï¢À±ÃæÀŁ»ÒÀ±¤ª¤è¤Ó¥Ö¥é¥Ã¥¯¥Û¡¼¥ë¡ÝÃæÀŁ»ÒÀ±Ï¢À±¤Î¹çÂÎ ¡Á ½àÊ¿¹Õ²ò¤Î¸¦µæ¤Î¸½¾õ¤Èº£¸å¤ÎŸ˾ ¡Á"

Transcription

1 (UWM) / 35

2 1 2 Corotation Irrotation 3 4 (UWM) / 35

3 10 100/yr (D = 300 Mpc) 1 40/yr (D = 300 Mpc) GWs 1 700/yr (D = 300 Mpc) X BH NS LIGO (UWM) / 35

4 (UWM) / 35

5 r GM Ω d h rad s f GW Ω π 1160[Hz] C 0.2 C GMNS M = m c m 2 R NS i C 1/2 3RNS 3/2 10 km 0.2 d R NS 1/2 3RNS d 3/2 10 km R NS Observer m 2 r Ω Z d Y m 1 X (UWM) / 35

6 r GM Ω d h rad s f GW Ω π 1160[Hz] C 0.2 h 2Gm1m2 c 2 rm C 0.2 C GMNS M = m c m 2 R NS i C 1/2 3RNS 3/2 10 km 0.2 d R NS GMΩ 2/3 c 3 2 RNS 10 km 1/2 3RNS d 3RNS d 3/2 10 km R NS 100 Mpc r Observer m 2 r Ω Z d Y m 1 X (UWM) / 35

7 r GM Ω d h rad s f GW Ω π 1160[Hz] C 0.2 h 2Gm1m2 c 2 rm C 0.2 C GMNS M = m c m 2 R NS i C 1/2 3RNS 3/2 10 km 0.2 d R NS GMΩ 2/3 c 3 2 RNS 10 km 1/2 3RNS d 3RNS L = de X dt = c Q 5G ij Q ij h erg s i,j i C 0.2 d 5 3RNS 5 d 3/2 10 km R NS 100 Mpc r Q 2 32c5 5G Observer m 2 r Ω Z d Y Q ij = R ρx ix jd 3 x m1m 2 2 GMΩ 10/3 M 2 c 3 (UWM) / 35 m 1 X

8 BH NS ν BH γ ray _ ν NS NS Disk Swift (UWM) / 35

9 (UWM) / 35

10 GRB b Bloom et al., ApJ., 638, 354 (2006) GRB Berger et al., Nature 438, 988 (2005) (UWM) / 35

11 GRB b Bloom et al., ApJ., 638, 354 (2006) GRB Galaxy Coalescence Berger et al., Nature 438, 988 (2005) NSNS formation v 1000 km/s = 100 kpc (UWM) / 35

12 (UWM) / 35

13 Inspiraling NS NS 1 ( ) 1 ( ) (UWM) / 35

14 Inspiraling NS NS 1 ( ) 1 ( ) Intermediate NS NS 1 ( ) 3 ( ) (UWM) / 35

15 Inspiraling NS NS 1 ( ) 1 ( ) Intermediate NS NS 1 ( ) 3 ( ) Merging 1 ( ) 1 ( ) (UWM) / 35

16 (UWM) / 35

17 Inspiraling BH NS ( MBH ) 2/3( MNS ) 2.5 6M BH M NS R NS 1 ( ) 1 ( ) (UWM) / 35

18 Inspiraling BH NS ( MBH ) 2/3( MNS ) 2.5 6M BH M NS R NS 1 ( ) 1 ( ) Intermediate BH NS 1 ( ) 1 ( ) d > 6M BH M BH /M NS > 3 d < 6M BH M BH /M NS 3 d 6M BH (UWM) / 35

19 Inspiraling BH NS ( MBH ) 2/3( MNS ) 2.5 6M BH M NS R NS 1 ( ) 1 ( ) Intermediate BH NS 1 ( ) 1 ( ) d > 6M BH M BH /M NS > 3 d < 6M BH M BH /M NS 3 d 6M BH Merging BH NS 1 ( ) < 1 ( ) (UWM) / 35

20 (UWM) / 35

21 ds 2 = α 2 dt 2 + γ ij (dx i + β i dt)(dx j + β j dt) γ ij = ψ 4 γ ij Conformally flat: Non-conformally flat: γ ij = η ij γ ij η ij α n µ δ t t µ Σ t+δt n µ µ β β µ δ t Σ t (UWM) / 35

22 ds 2 = α 2 dt 2 + γ ij (dx i + β i dt)(dx j + β j dt) γ ij = ψ 4 γ ij Conformally flat: Non-conformally flat: γ ij = η ij γ ij η ij α n µ δ t t µ Σ t+δt Hamiltonian constraint Momentum constraint Evolution equation for the extrinsic curvature Evolution equation for the spatial metric n µ µ β β µ δ t Σ t (UWM) / 35

23 ds 2 = α 2 dt 2 + γ ij (dx i + β i dt)(dx j + β j dt) γ ij = ψ 4 γ ij Conformally flat: Non-conformally flat: γ ij = η ij γ ij η ij α n µ δ t t µ Σ t+δt Hamiltonian constraint Momentum constraint Evolution equation for the extrinsic curvature Evolution equation for the spatial metric (UWM) / 35 n µ µ β β µ δ t Σ t

24 ds 2 = α 2 dt 2 + γ ij (dx i + β i dt)(dx j + β j dt) γ ij = ψ 4 γ ij Conformally flat: Non-conformally flat: γ ij = η ij γ ij η ij α n µ δ t t µ Σ t+δt Hamiltonian constraint Momentum constraint Evolution equation for the extrinsic curvature Evolution equation for the spatial metric n µ µ β P = P(ρ, ǫ, T) (UWM) / 35 β µ δ t Σ t

25 Corotation Irrotation Corotation Irrotation (UWM) / 35

26 Corotation Irrotation Corotation Irrotation t v i + v j j v i = 1 ρ ip i φ t ρ + i (ρv i ) = 0 (UWM) / 35

27 Corotation Irrotation Corotation Irrotation t v i + v j j v i = 1 ρ ip i φ t ρ + i (ρv i ) = 0 v i = V i + k i t v i + L k v i = 0 k i = (Ω R) i = Ω( Y, X, 0) (UWM) / 35

28 Corotation Irrotation Corotation Irrotation t v i + v j j v i = 1 ρ ip i φ t ρ + i (ρv i ) = 0 v i = V i + k i t v i + L k v i = 0 k i = (Ω R) i = Ω( Y, X, 0) i (h 1 ) 2 v2 + v j V j + φ + V j ( j v i i v j ) = 0 i (ρv i ) = 0 h (UWM) / 35

29 Corotation Irrotation Corotation Irrotation t v i + v j j v i = 1 ρ ip i φ t ρ + i (ρv i ) = 0 v i = V i + k i t v i + L k v i = 0 k i = (Ω R) i = Ω( Y, X, 0) i (h 1 ) 2 v2 + v j V j + φ + V j ( j v i i v j ) = 0 i (ρv i ) = 0 h Corotation: V i = 0 Irrotation: v i = i Ψ (UWM) / 35

30 Corotation Irrotation Corotation Irrotation Corotation Kochanek, ApJ. 398, 234 (1992) Bildsten & Cutler, ApJ. 400, 175 (1992) v i = (Ω R) i (UWM) / 35

31 Corotation Irrotation Corotation Irrotation (UWM) / 35

32 Corotation Irrotation Corotation Irrotation circulation (UWM) / 35

33 Corotation Irrotation Corotation Irrotation circulation C = v dl = ( v) ds = l S (UWM) / 35

34 Corotation Irrotation Corotation Irrotation circulation C = v dl = ( v) ds = l S v i = (Ω R) i + (ω r) i Ω ω C 2πRNS 2 (Ω + ω) (UWM) / 35

35 Corotation Irrotation Corotation Irrotation circulation C = v dl = ( v) ds = l S v i = (Ω R) i + (ω r) i Ω ω C 2πRNS 2 (Ω + ω) Ω initial + ω initial = C = Ω final + ω final Ω final 4000 rad/s (UWM) / 35

36 Corotation Irrotation Corotation Irrotation circulation C = v dl = ( v) ds = l S v i = (Ω R) i + (ω r) i Ω ω C 2πRNS 2 (Ω + ω) Ω initial + ω initial = C = Ω final + ω final Ω initial Ω final ω initial Ω final Ω final 4000 rad/s ω final Ω final (UWM) / 35

37 Corotation Irrotation Corotation Irrotation circulation C = v dl = ( v) ds = l S v i = (Ω R) i + (ω r) i Ω ω C 2πRNS 2 (Ω + ω) Ω initial + ω initial = C = Ω final + ω final Ω initial Ω final ω initial Ω final C = 0 Irrotation Ω final 4000 rad/s ω final Ω final (UWM) / 35

38 Corotation Irrotation Corotation Irrotation Irrotation v i i [(Ω d) j X j ] (Ω d) i (Ω R) i (Ω [R d]) i (UWM) / 35

39 Corotation Irrotation Corotation Irrotation Irrotation v i i [(Ω d) j X j ] (Ω d) i (Ω R) i (Ω [R d]) i V i (Ω [R d]) i (Ω r) i (UWM) / 35

40 (UWM) / 35

41 P = κρ Γ κ Γ Γ = n, n (UWM) / 35

42 P = κρ Γ κ Γ Γ = n, n Piecewise Polytropic EOS P = κ 0 ρ Γ 0 (0 ρ < ρ 0 ) P = κ 1 ρ Γ 1 (ρ 0 ρ) P [dyn / cm 2 ] Akmal, Pandharipande, and Ravenhall (1998) Piecewise Polytrope (Γ 1 = 3.0, log 10 P 1 = 13.45) n B [1 / fm 3 ] (UWM) / 35

43 Gravitational Mass [M sol ] APR BBB2 BPAL12 FPS Glend SLy4 pw. poly Circumferential Radius [km] (UWM) / 35

44 (UWM) / 35

45 Excision BH Apparent horizon (apparent horizon) Cook & Pfeiffer, PRD 70, (2004) (UWM) / 35

46 Excision BH Apparent horizon (apparent horizon) Cook & Pfeiffer, PRD 70, (2004) Puncture puncture Apparent horizon ψ = 1 + M P 2r BH + φ φ Brandt & Brügmann, PRL 78, 3606 (1997) BH (UWM) / 35

47 γ ij Conformally flat: γ ij = η ij Non-conformally flat: Irrotation Corotation Excision Puncture Piecewise Polytrope (UWM) / 35

48 (UWM) / 35

49 1997 Baumgarte, Cook, Scheel, Shapiro, & Teukolsky, PRL 79, 1182 (1997) 1998 Baumgarte, Cook, Scheel, Shapiro, & Teukolsky, PRD 57, 7299 (1998) Marronetti, Mathews, & Wilson, PRD 58, (1998) 1999 Bonazzola, Gourgoulhon, & Marck, PRL 82, 892 (1999) Marronetti, Mathews, & Wilson, PRD 60, (1999) 2000 Usui, Uryū, & Eriguchi, PRD 61, (2000) Uryū & Eriguchi, PRD 61, (2000) Uryū, Shibata, & Eriguchi, PRD 62, (2000) 2001 Gourgoulhon,Grandclément,K.T.,Marck,&Bonazzola, PRD63,064029(2001) 2002 Usui & Eriguchi, PRD 65, (2002) K.T. & Gourgoulhon, PRD 66, (2002) 2003 Marronetti & Shapiro, PRD 68, (2003) K.T. & Gourgoulhon, PRD 68, (2003) 2005 Bejger, Gondek-Rosińska, Gourgoulhon, Haensel, K.T., & Zdunik, A&A 431, 297 (2005) 2006 Uryū, Limousin, Friedman, Gourgoulhon, & Shibata, PRL 97, (2006) 2009 Uryū, Limousin, Friedman, Gourgoulhon, & Shibata, arxiv: Tichy, arxiv: K.T. & Shibata, in preparation (UWM) / 35

50 1999 Shibata, PRD 60, (1999) 2000 Shibata & Uryū, PRD 61, (2000) 2002 Shibata & Uryū, PTP 107, 265 (2002) 2003 Duez, Marronetti, Shapiro, & Baumgarte, PRD 67, (2003) Shibata, K.T., and Uryū, PRD 68, (2003) 2004 Miller, Gressman, & Suen, PRD 69, (2004) 2005 Shibata, K.T., & Uryū, PRD 71, (2005) 2006 Shibata & K.T., PRD 73, (2006) 2008 Anderson, Hirschmann, Lehner, Liebling, Motl, Neilsen, Palenzuela, & Tohline, PRD 77, (2008); PRL 100, (2008) Liu, Shapiro, Etienne, & K.T., PRD 78, (2008) Yamamoto, Shibata, & K.T., PRD 78, (2008) Baiotti, Giacomazzo, & Rezzolla, PRD 78, (2008) 2009 Kiuchi, Sekiguchi, Shibata, & K.T., PRD 80, (2009) Giacomazzo, Rezzolla, & Baiotti, arxiv: (UWM) / 35

51 Conformally flat, Irrotation (UWM) / 35

52 Conformally flat, Irrotation Bonazzola, Gourgoulhon, & Marck (1999) Marronetti, Mathews, & Wilson (1999) Uryū & Eriguchi (2000) Uryū, Shibata, & Eriguchi (2000) Gourgoulhon, Grandclément, K.T., Marck, & Bonazzola (2001) K.T. & Gourgoulhon (2002, 2003) Bejger, Gondek-Rosińska, Gourgoulhon, Haensel, K.T., & Zdunik (2005) K.T. & Shibata, in preparation (2009) (UWM) / 35

53 Conformally flat, Irrotation Bonazzola, Gourgoulhon, & Marck (1999) Marronetti, Mathews, & Wilson (1999) Uryū & Eriguchi (2000) Uryū, Shibata, & Eriguchi (2000) Gourgoulhon, Grandclément, K.T., Marck, & Bonazzola (2001) K.T. & Gourgoulhon (2002, 2003) Bejger, Gondek-Rosińska, Gourgoulhon, Haensel, K.T., & Zdunik (2005) K.T. & Shibata, in preparation (2009) K.T. & Gourgoulhon (2002, 2003) K.T. & Shibata, in preparation (2009) (UWM) / 35

54 Non-conformally flat, Irrotation (UWM) / 35

55 Non-conformally flat, Irrotation Uryū, Limousin, Friedman, Gourgoulhon, & Shibata, (2006) Uryū, Limousin, Friedman, Gourgoulhon, & Shibata, (2009) (UWM) / 35

56 Non-conformally flat, Irrotation Uryū, Limousin, Friedman, Gourgoulhon, & Shibata, (2006) Uryū, Limousin, Friedman, Gourgoulhon, & Shibata, (2009) (UWM) / 35

57 1.15M vs 1.55M Piecewise Polytrope Γ = 3.0, log P 1 = C MNS ADM R NS = C MNS ADM R NS = (UWM) / 35

58 1.35M vs 1.35M E b / M Piecewise Polytrope Equal-mass : 1.35 M sol M sol Γ 1 = 3.0, log 10 P 1 = Γ 1 = 3.0, log 10 P 1 = Γ 1 = 3.0, log 10 P 1 = Γ 1 = 3.0, log 10 P 1 = Γ 1 = 3.0, log 10 P 1 = PN approximation M 0 Ω E b M ADM M 0 ADM M ADM = 1 2π i ψds i (UWM) / 35

59 1.35M vs 1.35M J / M Piecewise Polytrope Equal-mass : 1.35 M sol M sol Γ 1 = 3.0, log 10 P 1 = Γ 1 = 3.0, log 10 P 1 = Γ 1 = 3.0, log 10 P 1 = Γ 1 = 3.0, log 10 P 1 = Γ 1 = 3.0, log 10 P 1 = PN approximation M 0 Ω J i = 1 16π ǫ ijk (X j K kl X k K jl )ds l (UWM) / 35

60 (UWM) / 35

61 2001 Miller, arxiv:gr-qc/ Baumgarte, Skoge, and Shapiro, PRD 70, (2004) 2005 K.T., Baumgarte, Faber, and Shapiro, PRD 72, (2005) 2006 K.T., Baumgarte, Faber, and Shapiro, PRD 74, (R) (2006) Grandclément, PRD 74, (2006); Erratum 75, (E) (2007) [Shibata and Uryū, PRD 74, (R) (2006)] 2007 [Shibata and Uryū, CQG 24, S125 (2007)] K.T., Baumgarte, Faber, and Shapiro, PRD 75, (2007) 2008 K.T., Baumgarte, Faber, and Shapiro, PRD 77, (2008) Foucart, Kidder, Pfeiffer, and Teukolsky, PRD 77, (2008) 2009 Kyutoku, Shibata, and K.T., PRD 79, (2009) (UWM) / 35

62 2006 Faber, Baumgarte, Shapiro, K.T., and Rasio, PRD 73, (2006) Faber, Baumgarte, Shapiro, and K.T., Astrophys. J. 641, L93 (2006) Sopuerta, Sperhake, and Laguna, CQG 23, S579 (2006) Shibata and Uryū, PRD 74, (R) (2006) 2007 Shibata and Uryū, CQG 24, S125 (2007) 2008 Etienne, Faber, Liu, Shapiro, K.T., and Baumgarte, PRD 77, (2008) Shibata and K.T., PRD 77, (2008) Yamamoto, Shibata, and K.T., PRD 78, (2008) Duez, Foucart, Kidder, Pfeiffer, Scheel, and Teukolsky, PRD 78, (2008) 2009 Etienne, Liu, Shapiro, and Baumgarte, PRD 79, (2009) Shibata, Kyutoku, Yamamoto, and K.T., PRD 79, (2009) (UWM) / 35

63 Conformally flat, Irrotation Excision (UWM) / 35

64 Conformally flat, Irrotation Excision Grandclément, (2006, 2007) K.T., Baumgarte, Faber, & Shapiro (2007, 2008) Foucart, Kidder, Pfeiffer, & Teukolsky (2008) (UWM) / 35

65 Conformally flat, Irrotation Excision Grandclément, (2006, 2007) K.T., Baumgarte, Faber, & Shapiro (2007, 2008) Foucart, Kidder, Pfeiffer, & Teukolsky (2008) [Etienne,Liu,Shapiro,&Baumgarte(2009) ] (UWM) / 35

66 Conformally flat, Irrotation Puncture Kyutoku, Shibata, & K.T. (2009) (UWM) / 35

67 Non-conformally flat, Irrotation (UWM) / 35

68 Non-conformally flat, Irrotation Excision [K.T., Baumgarte, Faber, & Shapiro (2006)] [Foucart, Kidder, Pfeiffer, & Teukolsky (2008)] (UWM) / 35

69 Non-conformally flat, Irrotation Excision [K.T., Baumgarte, Faber, & Shapiro (2006)] [Foucart, Kidder, Pfeiffer, & Teukolsky (2008)] [Foucart, Kidder, Pfeiffer, & Teukolsky (2008)] (UWM) / 35

70 Non-conformally flat, Irrotation Excision [K.T., Baumgarte, Faber, & Shapiro (2006)] [Foucart, Kidder, Pfeiffer, & Teukolsky (2008)] [Foucart, Kidder, Pfeiffer, & Teukolsky (2008)] Puncture (UWM) / 35

71 Conformal factor 3 : 1 J BH /(MADM BH )2 = 0.5 Γ = 2.0 Excision M irr BH = M ADM BH = M B NS = M ADM NS = C MNS ADM R NS = ADM M 0 MADM BH + MNS ADM (UWM) / 35

72 M B NS 5 : 1 = 0.15 E b / M J BH / M BH = J BH / M BH = J BH / M BH = J BH / M BH = J BH / M BH = Ω M 0 E b M ADM M 0 ADM M ADM = 1 i ψds i 2π (UWM) / 35

73 Critical mass ratio Γ = ISCO Mass-shedding Compaction ( C ) 0.270C 3/2 (1 + ˆq) 1 + 1ˆq 1/2 h = `1 3.54C 1/3 i ˆq 0.25 Mass-shedding ISCO Mass ratio ( M ADM BH / MADM NS ) (UWM) / 35

74 1990 (UWM) / 35

75 1990 Piecewise Polytrope irrotation corotation (UWM) / 35

76 1990 Piecewise Polytrope irrotation corotation γ ij = η ij γ ij η ij (UWM) / 35

77 1990 Piecewise Polytrope irrotation corotation γ ij = η ij γ ij η ij Marronetti & Shapiro (2003) Baumgarte & Shapiro (2009) (UWM) / 35

78 2006 (UWM) / 35

79 2006 Γ = 2 M B NS = irrotation (UWM) / 35

80 2006 Γ = 2 M B NS = irrotation Excision K.T.,, Puncture,K.T. S/(M BH ) 2 = (UWM) / 35

81 2006 Γ = 2 M B NS = irrotation Excision K.T.,, Puncture,K.T. S/(M BH ) 2 = M BH ADM /MNS ADM = 1 10 γ ij = η ij (UWM) / 35

82 2006 Γ = 2 M B NS = irrotation Excision K.T.,, Puncture,K.T. S/(M BH ) 2 = M BH ADM /MNS ADM = 1 10 γ ij = η ij (UWM) / 35

2009 2 26 1 3 1.1.................................................. 3 1.2..................................................... 3 1.3...................................................... 3 1.4.....................................................

More information

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t,

1.1 foliation M foliation M 0 t Σ t M M = t R Σ t (12) Σ t t Σ t x i Σ t A(t, x i ) Σ t n µ Σ t+ t B(t + t, x i ) AB () tα tαn µ Σ t+ t C(t + t, 1 Gourgoulhon BSSN BSSN ϕ = 1 6 ( D i β i αk) (1) γ ij = 2αĀij 2 3 D k β k γ ij (2) K = e 4ϕ ( Di Di α + 2 D i ϕ D i α ) + α ] [4π(E + S) + ĀijĀij + K2 3 (3) Ā ij = 2 3Āij D k β k 2αĀikĀk j + αāijk +e

More information

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 2 版 1 刷発行時のものです. 医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K 2 2.1? [ ] L 1 ε(p) = 1 ( p 2 2m x + p 2 y + pz) 2 = h2 ( k 2 2m x + ky 2 + kz) 2 n x, n y, n z (2.1) (2.2) p = hk = h 2π L (n x, n y, n z ) (2.3) n k p 1 i (ε i ε i+1 )1 1 g = 2S + 1 2 1/2 g = 2 ( p F

More information

中央大学セミナー.ppt

中央大学セミナー.ppt String Gas Cosmology References Brandenberger & Vafa, Superstrings in the early universe, Nucl.Phys.B316(1988) 391. Tseytlin & Vafa, Elements of string cosmology, Nucl.Phys.B372 (1992) 443. Brandenberger,

More information

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [ 3 3. 3.. H H = H + V (t), V (t) = gµ B α B e e iωt i t Ψ(t) = [H + V (t)]ψ(t) Φ(t) Ψ(t) = e iht Φ(t) H e iht Φ(t) + ie iht t Φ(t) = [H + V (t)]e iht Φ(t) Φ(t) i t Φ(t) = V H(t)Φ(t), V H (t) = e iht V (t)e

More information

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence Hanbury-Brown Twiss (ver. 2.) 25 4 4 1 2 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 4 3 Hanbury-Brown Twiss ( ) 5 3.1............................................

More information

第10章 アイソパラメトリック要素

第10章 アイソパラメトリック要素 June 5, 2019 1 / 26 10.1 ( ) 2 / 26 10.2 8 2 3 4 3 4 6 10.1 4 2 3 4 3 (a) 4 (b) 2 3 (c) 2 4 10.1: 3 / 26 8.3 3 5.1 4 10.4 Gauss 10.1 Ω i 2 3 4 Ξ 3 4 6 Ξ ( ) Ξ 5.1 Gauss ˆx : Ξ Ω i ˆx h u 4 / 26 10.2.1

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2 Hanbury-Brown Twiss (ver. 1.) 24 2 1 1 1 2 2 2.1 van Cittert - Zernike..................................... 2 2.2 mutual coherence................................. 3 3 Hanbury-Brown Twiss ( ) 4 3.1............................................

More information

総研大恒星進化概要.dvi

総研大恒星進化概要.dvi The Structure and Evolution of Stars I. Basic Equations. M r r =4πr2 ρ () P r = GM rρ. r 2 (2) r: M r : P and ρ: G: M r Lagrange r = M r 4πr 2 rho ( ) P = GM r M r 4πr. 4 (2 ) s(ρ, P ) s(ρ, P ) r L r T

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc2.com/ 1 30 3 30.1.............. 3 30.2........................... 4 30.3...................... 5 30.4........................ 6 30.5.................................. 8 30.6...............................

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

A

A A04-164 2008 2 13 1 4 1.1.......................................... 4 1.2..................................... 4 1.3..................................... 4 1.4..................................... 5 2

More information

: , 2.0, 3.0, 2.0, (%) ( 2.

: , 2.0, 3.0, 2.0, (%) ( 2. 2017 1 2 1.1...................................... 2 1.2......................................... 4 1.3........................................... 10 1.4................................. 14 1.5..........................................

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5

vol5-honma (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 2.2 1 2.2 2.2.1 (LSR: Local Standard of Rest) 2.1 LSR R 0 LSR Θ 0 (Galactic Constant) 1985 (IAU: International Astronomical Union) R 0 =8.5 kpc, Θ 0 = 220 km s 1. (2.1) R 0 7kpc 8kpc Θ 0 180 km s 1 270

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

BayesfiI‡É“ÅfiK‡È−w‘K‡Ì‡½‡ß‡ÌChow-Liu…A…‰…S…−…Y…•

BayesfiI‡É“ÅfiK‡È−w‘K‡Ì‡½‡ß‡ÌChow-Liu…A…‰…S…−…Y…• 1 / 21 Kruscal V : w i,j R: w i,j = w j,i i j Kruscal (w i,j 0 ) 1 E {{i, j} i, j V, i i} 2 E {} 3 while(e = ϕ) for w i,j {i, j} E 1 E E\{i, j} 2 G = (V, E {i, j}) = E E {i, j} G {i,j} E w i,j 2 / 21 w

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >

More information

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie Formation process of regular satellites on the circumplanetary disk Hidetaka Okada 22060172 Department of Earth Sciences, Undergraduate school of Science, Hokkaido University Planetary and Space Group

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 p µ γ µ + mp ν γ ν + m 5.1 γ p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 1 2 p µp ν {γ µ, γ ν } + m 2 5.2 p m p p µ γ µ {, } 10 γ {γ µ, γ ν } 2η µν 5.3 p µ γ µ + mp

More information

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

chap9.dvi

chap9.dvi 9 AR (i) (ii) MA (iii) (iv) (v) 9.1 2 1 AR 1 9.1.1 S S y j = (α i + β i j) D ij + η j, η j = ρ S η j S + ε j (j =1,,T) (1) i=1 {ε j } i.i.d(,σ 2 ) η j (j ) D ij j i S 1 S =1 D ij =1 S>1 S =4 (1) y j =

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

第86回日本感染症学会総会学術集会後抄録(I)

第86回日本感染症学会総会学術集会後抄録(I) κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

untitled

untitled - k k k = y. k = ky. y du dx = ε ux ( ) ux ( ) = ax+ b x u() = ; u( ) = AE u() = b= u () = a= ; a= d x du ε x = = = dx dx N = σ da = E ε da = EA ε A x A x x - σ x σ x = Eε x N = EAε x = EA = N = EA k =

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

1 r 8, , 238 N, Z 28, 50, 82, 126 r cm cm 3 1,000 1 s s slow s 8 s 2 2 s s * 1 * 2 * 3 1 N 50, 82, s * r

1 r 8, , 238 N, Z 28, 50, 82, 126 r cm cm 3 1,000 1 s s slow s 8 s 2 2 s s * 1 * 2 * 3 1 N 50, 82, s * r r 181 8588 2 21 1 e-mail: shinya.wanajo@nao.ac.jp r r r r r 1. r r r r r 1.1 r 1 10 107 1 7 1 r 8,000 300 232 235, 238 N, Z 28, 50, 82, 126 r 10 7 10 11 cm 3 10 25 cm 3 1,000 1 s s slow s 8 s 2 2 s s *

More information

untitled

untitled ( ) c a sin b c b c a cos a c b c a tan b a b cos sin a c b c a ccos b csin (4) Ma k Mg a (Gal) g(98gal) (Gal) a max (K-E) kh Zck.85.6. 4 Ma g a k a g k D τ f c + σ tanφ σ 3 3 /A τ f3 S S τ A σ /A σ /A

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

untitled

untitled 20 11 1 KEK 2 (cosmological perturbation theory) CMB R. Durrer, The theory of CMB Anisotropies, astro-ph/0109522; A. Liddle and D. Lyth, Cosmological Inflation and Large-Scale Structure (Cambridge University

More information

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ SO(3) 71 5.7 5.7.1 1 ħ L k l k l k = iϵ kij x i j (5.117) l k SO(3) l z l ± = l 1 ± il = i(y z z y ) ± (z x x z ) = ( x iy) z ± z( x ± i y ) = X ± z ± z (5.118) l z = i(x y y x ) = 1 [(x + iy)( x i y )

More information

爆発的星形成? AGN関係を 生み出す物理機構の観測的示唆

爆発的星形成? AGN関係を 生み出す物理機構の観測的示唆 Umemura, Fukue & Mineshige 1997, 1998 Ohsuga et al. 1998 R ring ~100pc dv r = v 2 ϕ dt r 1 dp ρ dr dφ 1 r d(rv ϕ ) dt = 3χE 2c typical timescale dr + χ c F r 3 2 Myr r R ring V ring 3χE 2c v ϕ Umemura,

More information

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b 23 2 2.1 n n r x, y, z ˆx ŷ ẑ 1 a a x ˆx + a y ŷ + a z ẑ 2.1.1 3 a iˆx i. 2.1.2 i1 i j k e x e y e z 3 a b a i b i i 1, 2, 3 x y z ˆx i ˆx j δ ij, 2.1.3 n a b a i b i a i b i a x b x + a y b y + a z b

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

chap10.dvi

chap10.dvi . q {y j } I( ( L y j =Δy j = u j = C l ε j l = C(L ε j, {ε j } i.i.d.(,i q ( l= y O p ( {u j } q {C l } A l C l

More information

H.Haken Synergetics 2nd (1978)

H.Haken Synergetics 2nd (1978) 27 3 27 ) Ising Landau Synergetics Fokker-Planck F-P Landau F-P Gizburg-Landau G-L G-L Bénard/ Hopfield H.Haken Synergetics 2nd (1978) (1) Ising m T T C 1: m h Hamiltonian H = J ij S i S j h i S

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i July 8, 4. H H H int H H H int H int (x)d 3 x Schrödinger Picture Ψ(t) S e iht Ψ H O S Heisenberg Picture Ψ H O H (t) e iht O S e iht Interaction Picture Ψ(t) D e iht Ψ(t) S O D (t) e iht O S e ih t (Dirac

More information

sec13.dvi

sec13.dvi 13 13.1 O r F R = m d 2 r dt 2 m r m = F = m r M M d2 R dt 2 = m d 2 r dt 2 = F = F (13.1) F O L = r p = m r ṙ dl dt = m ṙ ṙ + m r r = r (m r ) = r F N. (13.2) N N = R F 13.2 O ˆn ω L O r u u = ω r 1 1:

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

1 2 2 (Dielecrics) Maxwell ( ) D H

1 2 2 (Dielecrics) Maxwell ( ) D H 2003.02.13 1 2 2 (Dielecrics) 4 2.1... 4 2.2... 5 2.3... 6 2.4... 6 3 Maxwell ( ) 9 3.1... 9 3.2 D H... 11 3.3... 13 4 14 4.1... 14 4.2... 14 4.3... 17 4.4... 19 5 22 6 THz 24 6.1... 24 6.2... 25 7 26

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................

More information

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint ( 9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) 2. 2.1 Ĥ ψ n (r) ω n Schrödinger Ĥ ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ + Ĥint (t)] ψ (r, t), (2) Ĥ int (t) = eˆxe cos ωt ˆdE cos ωt, (3)

More information

LLG-R8.Nisus.pdf

LLG-R8.Nisus.pdf d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =

More information

nsg02-13/ky045059301600033210

nsg02-13/ky045059301600033210 φ φ φ φ κ κ α α μ μ α α μ χ et al Neurosci. Res. Trpv J Physiol μ μ α α α β in vivo β β β β β β β β in vitro β γ μ δ μδ δ δ α θ α θ α In Biomechanics at Micro- and Nanoscale Levels, Volume I W W v W

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý  (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ) (2016 ) Dept. of Phys., Kyushu Univ. 2017 8 10 1 / 59 2016 Figure: D.J.Thouless F D.M.Haldane J.M.Kosterlitz TOPOLOGICAL PHASE TRANSITIONS AND TOPOLOGICAL PHASES OF MATTER 2 / 59 ( ) ( ) (Dirac, t Hooft-Polyakov)

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

QMII_10.dvi

QMII_10.dvi 65 1 1.1 1.1.1 1.1 H H () = E (), (1.1) H ν () = E ν () ν (). (1.) () () = δ, (1.3) μ () ν () = δ(μ ν). (1.4) E E ν () E () H 1.1: H α(t) = c (t) () + dνc ν (t) ν (), (1.5) H () () + dν ν () ν () = 1 (1.6)

More information

arxiv: v1(astro-ph.co)

arxiv: v1(astro-ph.co) arxiv:1311.0281v1(astro-ph.co) R µν 1 2 Rg µν + Λg µν = 8πG c 4 T µν Λ f(r) R f(r) Galileon φ(t) Massive Gravity etc... Action S = d 4 x g (L GG + L m ) L GG = K(φ,X) G 3 (φ,x)φ + G 4 (φ,x)r + G 4X (φ)

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. tomocci 18 7 5...,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p. M F (M), X(F (M)).. T M p e i = e µ i µ. a a = a i

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz 1 2 (a 1, a 2, a n ) (b 1, b 2, b n ) A (1.1) A = a 1 b 1 + a 2 b 2 + + a n b n (1.1) n A = a i b i (1.2) i=1 n i 1 n i=1 a i b i n i=1 A = a i b i (1.3) (1.3) (1.3) (1.1) (ummation convention) a 11 x

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i 解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ

More information

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' = y x = α + β + ε =,, ε V( ε) = E( ε ) = σ α $ $ β w ( 0) σ = w σ σ y α x ε = + β + w w w w ε / w ( w y x α β ) = α$ $ W = yw βwxw $β = W ( W) ( W)( W) w x x w x x y y = = x W y W x y x y xw = y W = w w

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

4 19

4 19 I / 19 8 1 4 19 : : f(e, J), f(e) Phase mixing Landau Damping, violent relaxation : 2 2 : ( ) http://antwrp.gsfc.nasa.gov/apod/ap950917.html ( ) http://www-astro.physics.ox.ac.uk/~wjs/apm_grey.gif

More information

4‐E ) キュリー温度を利用した消磁:熱消磁

4‐E ) キュリー温度を利用した消磁:熱消磁 ( ) () x C x = T T c T T c 4D ) ) Fe Ni Fe Fe Ni (Fe Fe Fe Fe Fe 462 Fe76 Ni36 4E ) ) (Fe) 463 4F ) ) ( ) Fe HeNe 17 Fe Fe Fe HeNe 464 Ni Ni Ni HeNe 465 466 (2) Al PtO 2 (liq) 467 4G ) Al 468 Al ( 468

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

Report10.dvi

Report10.dvi [76 ] Yuji Chinone - t t t = t t t = fl B = ce () - Δθ u u ΔS /γ /γ observer = fl t t t t = = =fl B = ce - Eq.() t ο t v ο fl ce () c v fl fl - S = r = r fl = v ce S =c t t t ο t S c = ce ce v c = ce v

More information

τ τ

τ τ 1 1 1.1 1.1.1 τ τ 2 1 1.1.2 1.1 1.1 µ ν M φ ν end ξ µ ν end ψ ψ = µ + ν end φ ν = 1 2 (µφ + ν end) ξ = ν (µ + ν end ) + 1 1.1 3 6.18 a b 1.2 a b 1.1.3 1.1.3.1 f R{A f } A f 1 B R{AB f 1 } COOH A OH B 1.3

More information

Microsoft Word - 章末問題

Microsoft Word - 章末問題 1906 R n m 1 = =1 1 R R= 8h ICP s p s HeNeArXe 1 ns 1 1 1 1 1 17 NaCl 1.3 nm 10nm 3s CuAuAg NaCl CaF - - HeNeAr 1.7(b) 2 2 2d = a + a = 2a d = 2a 2 1 1 N = 8 + 6 = 4 8 2 4 4 2a 3 4 π N πr 3 3 4 ρ = = =

More information

eto-vol1.dvi

eto-vol1.dvi ( 1) 1 ( [1] ) [] ( ) (AC) [3] [4, 5, 6] 3 (i) AC (ii) (iii) 3 AC [3, 7] [4, 5, 6] 1.1 ( e; e>0) Ze r v [ 1(a)] v [ 1(a )] B = μ 0 4π Zer v r 3 = μ 0 4π 1 Ze l m r 3, μ 0 l = mr v ( l s ) s μ s = μ B s

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1) φ 4 Minimal subtraction scheme 2-loop ε 28 University of Tokyo Atsuo Kuniba version 2/Apr/28 Formulas Γ n + ɛ = n n! ɛ + ψn + + Oɛ n =,, 2, ψn + = + 2 + + γ, 2 n ψ = γ =.5772... Euler const, log + ax x

More information