Thick-GEM 06S2026A 22 3
|
|
|
- がんま こうい
- 6 years ago
- Views:
Transcription
1 Thick-GEM 06S2026A 22 3
2 (MWPC-Multi Wire Proportional Chamber) MPGD(Micro Pattern Gas Detector) MPGD MPGD MPGD MPGD GEM(Gas Electron Multiplier) GEM GEM GEM Thick-GEM GEM Thick-GEM 10 4 Thick-GEM
3 1 Introduction MWPC MPGD GEM MSGC µ-pic MicroMEGAS MPGD GEM(Gas Electron Multiplier) GEM GEM Thick-GEM X Thick-GEM ADC(Analog to Digital Converter) P P Ar-CO i
4 ii Thick-GEM Maxwell SV Garfield step size step size Thick-GEM P P Ar-CO
5 1 Introduction (MWPC-Multi Wire Proportional Chamber) (MPGD-Micro Pattern Gas Detector) MWPC MPGD MPGD 1.1 MWPC MWPC MWPC * MPGD MWPC MWPC (MPGD-Micro Pattern Gas Detector) MPGD MWPC *1 1
6 1 Introduction 2 MPGD MPGD GEM(Gas Electron Muliplier) MSGC(Micro Strip Gas Chamber) µ-pic(micro Pixel Chamber) MicroMEGAS(Micromesh Gaseous Detector) GEM 1.1 GEM GEM GEM GEM GEM GEM 1.1 GEM
7 1 Introduction MSGC 1.2 MSGC MSGC 10µm 100µm MSGC 1.2 MSGC µ-pic 1.3 µ-pic µ-pic MSGC MSGC µ-pic µ-pic 10 4 GEM 1.3 µ-pic
8 1 Introduction MicroMEGAS 1.4 MicroMEGAS MicroMEGAS ( ) MicroMesh( ) MicroMesh MicroMEGAS MicroMesh MicroMEGAS 1.4 MicroMEGAS 1.3 MPGD MPGD ILC(International Linear Collider) TPC(Time Projection Chamber) TPC 2 3 TPC MPGD TPC MPGD MeV γ γ X
9 1 Introduction 5 X 1.4 MPGD GEM GEM 50µm µm GEM(Thick-GEM) 50µm GEM Thick-GEM Thick-GEM 10 4
10 2 GEM(Gas Electron Multiplier) GEM 2.1 GEM GEM MPGD 1996 CERN F.Sauli GEM GEM 50µm 5µm 70µm 140µm GEM 300V GEM µm GEM GEM GEM * Thick-GEM 2.1 CERN GEM 2.2 CERN GEM 2.1 CERN GEM 2.2 CERN GEM *2 GEM 6
11 2 GEM(Gas Electron Multiplier) GEM MPGD GEM (1) 2.3 GEM GEM 2.3 (2) GEM 2.4 GEM 2.4
12 2 GEM(Gas Electron Multiplier) 8 (3) 2.5 GEM CERN GEM 2.7 GEM 2.7 GEM 50µm 70µm 100µm 150µm 30µm 50µm
13 2 GEM(Gas Electron Multiplier) 9 GEM 400µm Thick-GEM 10mm 0.5mm Thick-GEM 0.3mm 0.2mm 0.2mm 0.1mm 2.3 (X γ ) X X X X
14 2 GEM(Gas Electron Multiplier) keV 50keV E E θ 0.51MeV E = 0.51 [MeV ] (2.1) 1 cos θ /E[MeV ] (θ=0) θ = π/2 0.51MeV 0.6 5MeV MeV 2.9
15 2 GEM(Gas Electron Multiplier) hν 0 2mc 2 =1.02MeV 1.02MeV 1.02MeV 5MeV 15MeV ( ) ( ) 10kV/cm
16 2 GEM(Gas Electron Multiplier) 12 (2.2) dn N = αdx (2.2) α (first Townsend coefficient) (2.2) N(x) = N 0 e αx (2.3) N 0 N(x) x ( ) (2.3) x N(x) 2.11 GEM GEM GEM 2.11 GEM
17 2 GEM(Gas Electron Multiplier) GM α β 2.12 α β GM ( )
18 2 GEM(Gas Electron Multiplier) GM 6. GEM
19 3 Thick-GEM Thick-GEM Thick-GEM GEM Drift 3.1 GEM Induction Drift GEM GEM Induction 15
20 第 3 章 Thick-GEM の基礎特性の測定 図 3.2 カソードメッシュ 16 図 3.3 読み出しパッド カソードに図 3.2 のようなメッシュを用いることにより X 線が Drift 領域へ透過でき るようになっている また 読み出しパッドは図 3.3 のように5本のストリップによって できているが 本研究で用いる Thick-GEM のパターンの面積は小さく 一本のストリッ プのみで十分読み出し可能である したがって Thick-GEM のパターン真下のストリッ プ一本 (中央のストリップ) のみから読み出しを行う 図 3.4 チェンバーの全体図 図 3.5 ASD アンプ 図 3.4 は測定に用いたチェンバーである チェンバーは厚さ 5.0 mm のアルミ板で囲ま れており 容積は 21 cm 19 cm 4 cm となっている 強い強度の放射線を入射する 際は チェンバー上部の 10 cm 10 cm の薄いアルミ製の入射窓より放射線を入射する また 今回用いたチェンバーの底は二重になっており アンプを内蔵することによってノ イズを最小限に抑えることができる また 本研究では図 3.5 の ASD アンプを使用した ASD アンプは ATLAS 測定器の 検出器のひとつである TGC に取り付けられるアンプとして採用されている ASD アン プの増幅率は 0.8 V/pC である 信号の立ち上がりは 16 nsec と一定であり 入った電荷 量に比例した波高を出力する
21 3 Thick-GEM Thick-GEM 3.7 Thick-GEM 3.6 Thick-GEM GEM 0.3mm 0.1mm 3.7 Thick-GEM 3.2 P10 (Ar CH ) P5 (Ar CH ) Ar-CO 2 (Ar CO ) P10 P5 Ar-CO 2 50µm GEM P10 78 cc/min P5 94 cc/min Ar-CO 2 49 cc/min
22 3 Thick-GEM X 55 Fe 55 Fe K 55 Mn K X L K α X M K β X X Fe 55 Fe 5.9 kev X Ar K K (3.2keV) 2.7keV K Ar + (1) (2) X X 85:15 (1) Ar K 3.2keV 5.9keV
23 3 Thick-GEM 19 (2) X Ar (1) 3.2keV X X Ar + 2.7keV X X 3.4 GEM Induction GEM 3.5 Thick-GEM 3.11 Thick-GEM Thick-GEM Thick- GEM GEM
24 3 Thick-GEM 20 GEM GEM 3.11 Thick-GEM Thick-GEM Thick-GEM 3.12 Thick-GEM Inverter Discriminator Gate Generator Gate Discriminator Thick-GEM ADC 3.6 Gate Delay 3.12
25 3 Thick-GEM ADC(Analog to Digital Converter) ADC(Analog to Digital Converter) I R V V = IR I = dq dt V (3.1) V = R dq dt (3.2) ADC Gate Gate t V dt = RQ (3.3) Q = 1 R V dt (3.4) ADC Q Thick-GEM Gate 3.13 Gate 3.13 Thick-GEM
26 3 Thick-GEM 22 ADC ADC 3.14 P10 Thick-GEM V GEM =1520 [V] ADC X (mean ) 3.14 ADC ADC mean pedestal pedestal Clock Generator ADC mean pedestal mean
27 3 Thick-GEM (3.5) ( ) ( ) ( G) = ( ) (3.5) Ar W 26eV W 55 Fe X 5.9keV ( ) [ ] 55 Fe [pc] ASD ASD (3.5) G = ADC(mean pedestal ) (1ADC ) e ( ) ( ) (3.6) ASD 400 1ADC 0.25 pc µm Thick-GEM GEM 10 4 Thick-GEM (P10 P5 Ar-CO 2 ) Thick-GEM
28 3 Thick-GEM Drift Induction 0.5kV/cm 4.5kV/cm Thick-GEM Thick-GEM V GEM Thick-GEM ( ) V GEM 10V ADC P10 P5 Ar-CO P10 P10 V GEM =1460 V 1620 V 1630 V V GEM V GEM P10 V GEM 3.15 V GEM =1560 V 10 4
29 3 Thick-GEM P5 P5 V GEM =1350 V 1450 V 1460 V V GEM V GEM P5 V GEM 3.16 V GEM =1320 V 10 4 P5
30 3 Thick-GEM Ar-CO 2 Ar-CO 2 V GEM =1880 V 1930 V 1940 V V GEM V GEM Ar-CO 2 V GEM 3.17 Ar-CO
31 3 Thick-GEM P5 Drift Induction 0.5 kv/cm 4.5 kv/cm V GEM 1400 V 3.18 ( ) (300 ) Thick-GEM
32 4 Thick-GEM 400µm GEM( Thick-GEM) Maxwell SV Garfield 4.1 Maxwell SV GEM Maxwell SV Maxwell Ansoft *3 Maxwell 3D Maxwell SV 4.1 Thick-GEM 0.4mm Thick-GEM 0.3mm 35µm Drift Induction 1.0mm Drift 0.5 kv/cm Induction 4.5 kv/cm 0.1mm *3 ( ) ( ) 28
33 4 Thick-GEM Thick-GEM 4.2 Garfield Garfield CERN ( ) Garfield Heed Magboltz Garfield Maxwell Garfield step
34 4 Thick-GEM step size Garfield step( 4.2) (step size) step size step size 4.2 step 1step 1. 1step step 3. step step step size step size 1step step size
35 4 Thick-GEM 31 step size step Garfield step 1000 Thick- GEM 400µm 1000 step step step size step size P5 ( V GEM ) 1500 V 4.3 step size step step size step
36 4 Thick-GEM step size step step size 3µm step step size 5µm 4.3 Thick-GEM 4.1 Thick-GEM Thick-GEM Thick-GEM 0.1mm mm 0.05mm Thick-GEM cube etching 0.1mm 4.5 Thick-GEM cube 0.1mm 4.6 cube etching 0.07mm 4.6 Thick-GEM cube 0.07mm cube etching 0.1mm 0.03mm
37 4 Thick-GEM cube etching 0.05mm 4.7 Thick-GEM cube 0.05mm cube etching 0.1mm 0.05mm 4.8 slash etching Thick-GEM 0.1mm 4.9 slash etching Thick-GEM 0.1mm 0.07mm 0.07mm
38 4 Thick-GEM Maxwell SV Thick-GEM Thick-GEM µm Thick-GEM V GEM =1600 V 4.10 cube etching 0.1mm 30 kv/cm 10 kv/cm 40 kv/cm
39 4 Thick-GEM cube etching 0.07mm 4.12 cube etching 0.05mm kv/cm cube etching 0.1mm kv/cm cube etching
40 4 Thick-GEM slash etching slash etching kv/cm kv/cm cube etching 0.07mm
41 4 Thick-GEM Garfield (P5 P10 Ar-CO 2 ) cube etching slash etching Thick-GEM ( V GEM ) P P10 cube etching V GEM 4.15 cube etching V GEM 0.07mm cube etching Thick-GEM 0.05mm cube etching Thick-GEM 0.1mm cube etching Thick-GEM
42 4 Thick-GEM P10 slash etching V GEM 4.16 slash etching V GEM slash etching 1 Thick-GEM 10 slash etching 2 Thick-GEM
43 4 Thick-GEM P P5 cube etching V GEM 4.17 P5 0.05mm cube etching Thick-GEM 4.18 P5 slash etching V GEM 4.18 slash etching 1 P5 slash etching 2 1/2
44 4 Thick-GEM Ar-CO Ar-CO 2 cube etching V GEM 4.19 Ar-CO mm cube etching Thick-GEM 4.20 Ar-CO 2 slash etching V GEM 4.20 slash etching 2 Thick-GEM
45 5 5.1 ( ) V GEM 5.1 V GEM P10 V GEM =1630 V P5 V GEM =1460 V Ar-CO 2 V GEM =1940 V P10 P Ar-CO P10 P5 Thick-GEM 50µm GEM Ar-CO 2 Thick-GEM P10 P Thick-GEM Ar-CO
46 5 42 V GEM =1940 V Thick-GEM P10 P5 Thick-GEM P10 P Thick-GEM 300 Thick-GEM 400µm slash etching 1 Thick-GEM P10 Ar-CO 2 slash etching 2 cube etching 0.07mm Thick-GEM slash etching 2 cube etching 0.07mm P5 cube etching 0.05mm 0.1mm 3.7 Thick-GEM Thick-GEM
47 µm Thick-GEM Thick-GEM V GEM P10 P Ar-CO Thick-GEM Maxwell SV Garfield Thick-GEM Thick-GEM 6.2 Thick-GEM Thick-GEM Thick-GEM Thick-GEM 43
48 44 [1] GEM (2008) [2] TGEM (2009) [3] GEM (2006) [4] GEM (2008) [5] GEM (2008) [6] SLHC MicroMEGAS (2008) [7] F.Sauli PRINCEPLES OF OPERATION OF MULTIWIRE PROPORTIONAL AND DRIFT CHAMBERS (1977) [8] Ansoft Maxwell SV Getting Started:A 2D Electrostatic Problem (2002) [9] Garfield - simulation of gaseous detectors [10] Garfield isobe/tips/garfield/ [11] The Gas Detectors Development Group in CERN [12] Express [13] F.Sauli DEVELOPMENTS AND APPLICATIONS OF THE GAS ELEC- TRON MULTIPLIER GEM [14] (2002)
49
1 5 1.1................................ 5 1.2 MPGD.......................................... 6 1.2.1 GEM...................................... 6 1.2.2
19 GEM 2 2008/3/13 1 5 1.1................................ 5 1.2 MPGD.......................................... 6 1.2.1 GEM...................................... 6 1.2.2 MICROMEGAS................................
25 3 4
25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W
Ws shojia 2016x mini
16 -Feb 2017 ILC 飛跡測定器における GEM 型ゲート装置の特性評価 Characteristic evaluation of Gating GEM in ILC track measuring instrument 平成 28 年度修士論文審査会 Master's thesis presentation 岩手大学大学院工学研究科電気電子 情報システム工学専攻 博士前期課程 2 年
W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge
22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................
Mott散乱によるParity対称性の破れを検証
Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ
SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT
3 SPECT SJ SPECT(Single Photon Emission Computer Tomography ) SPECT FWHM 3 4mm [] MPPC SPECT MPPC LSO 6mm 67.5 photo electron 78% kev γ 4.6 photo electron SPECT 9ch MPPC array 3 3 9 3 3 9.mm(sigma) . SPECT..................................................................3............
Muon Muon Muon lif
2005 2005 3 23 1 2 2 2 2.1 Muon.......................................... 2 2.2 Muon........................... 2 2.3................................. 3 2.4 Muon life time.........................................
positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100
positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc
LEPS
LEPS2 2016 2 17 LEPS2 SPring-8 γ 3 GeV γ 10 Mcps LEPS2 7 120 LEPS Λ(1405) LEPS2 LEPS2 Silicon Strip Detector (SSD) SSD 100 µm 512 ch 6 cm 3 x y 2 SSD 6 3072 ch APV25-s1 APVDAQ VME APV25-s1 SSD 128 ch
研修コーナー
l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l
GEMを使った 中性子画像検出器の開発
GEM を用いた検出器の開発 千葉研究室修士 2 年 杉山史憲 発表の流れ 研究目的 GEMを用いた中性子画像検出器の原理 基本特性 ビームテスト 今後の実験 研究目的 1. 中性子検出の必要性 2. 中性子捕獲 3. 現在の中性子検出器 中性子検出の必要性 中性子の特徴 - スピンが 1/2 - 電荷がゼロ X 線で見た構造 中性子で見た構造 構造解析 窒素 炭素 酸素 水素たんぱく質 ( ミオグロビン
1 3 1.1 PET..................................... 3 1.1.1......................................... 3 1.1.2 PET................................. 4 1.2..
21 PET 06S2037G 2010 3 1 3 1.1 PET..................................... 3 1.1.1......................................... 3 1.1.2 PET................................. 4 1.2........................................
6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P
6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P
V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H
199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)
() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (
3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc
Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e
7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z
.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T
NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977
LLG-R8.Nisus.pdf
d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =
B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................
1 1 1 1-1 1 1-9 1-3 1-1 13-17 -3 6-4 6 3 3-1 35 3-37 3-3 38 4 4-1 39 4- Fe C TEM 41 4-3 C TEM 44 4-4 Fe TEM 46 4-5 5 4-6 5 5 51 6 5 1 1-1 1991 1,1 multiwall nanotube 1993 singlewall nanotube ( 1,) sp 7.4eV
1 3 1.1.......................... 3 1............................... 3 1.3....................... 5 1.4.......................... 6 1.5........................ 7 8.1......................... 8..............................
N cos s s cos ψ e e e e 3 3 e e 3 e 3 e
3 3 5 5 5 3 3 7 5 33 5 33 9 5 8 > e > f U f U u u > u ue u e u ue u ue u e u e u u e u u e u N cos s s cos ψ e e e e 3 3 e e 3 e 3 e 3 > A A > A E A f A A f A [ ] f A A e > > A e[ ] > f A E A < < f ; >
- γ 1929 γ - SI γ 137 Cs 662 kev γ NaI active target NaI γ NaI 2 NaI γ NaI(Tl) γ 2 NaI γ γ γ
- 28 2 15 - γ 1929 γ - SI γ 137 Cs 662 kev γ NaI active target NaI γ NaI 2 NaI γ NaI(Tl) γ 2 NaI γ γ 10 3 4 γ 1 3 2 γ 5 2.1..................................... 5 2.1.1.................... 5 2.1.2..............................
1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2
2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6
第86回日本感染症学会総会学術集会後抄録(I)
κ κ κ κ κ κ μ μ β β β γ α α β β γ α β α α α γ α β β γ μ β β μ μ α ββ β β β β β β β β β β β β β β β β β β γ β μ μ μ μμ μ μ μ μ β β μ μ μ μ μ μ μ μ μ μ μ μ μ μ β
cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq
2007 2007 7 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 2007 2 4 5 6 6 2 2.1 1: KEK Web page 1 1 1 10 16 cm λ λ = h/p p ( ) λ = 10 16 cm E pc [ev] 2.2 quark lepton 2 2.2.1 u d c s t b + 2 3 e 1 3e electric charge
熊本県数学問題正解
00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (
O1-1 O1-2 O1-3 O1-4 O1-5 O1-6
O1-1 O1-2 O1-3 O1-4 O1-5 O1-6 O1-7 O1-8 O1-9 O1-10 O1-11 O1-12 O1-13 O1-14 O1-15 O1-16 O1-17 O1-18 O1-19 O1-20 O1-21 O1-22 O1-23 O1-24 O1-25 O1-26 O1-27 O1-28 O1-29 O1-30 O1-31 O1-32 O1-33 O1-34 O1-35
Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE
21 2 27 Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE ) Bethe-Bloch 1 0.1..............................
1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915
ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d
A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9
( )
18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................
. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n
003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........
The Physics of Atmospheres CAPTER :
The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(
From Evans Application Notes
3 From Evans Application Notes http://www.eaglabs.com From Evans Application Notes http://www.eaglabs.com XPS AES ISS SSIMS ATR-IR 1-10keV µ 1 V() r = kx 2 = 2π µν x mm 1 2 µ= m + m 1 2 1 k ν = OSC 2
64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k
63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5
85 4
85 4 86 Copright c 005 Kumanekosha 4.1 ( ) ( t ) t, t 4.1.1 t Step! (Step 1) (, 0) (Step ) ±V t (, t) I Check! P P V t π 54 t = 0 + V (, t) π θ : = θ : π ) θ = π ± sin ± cos t = 0 (, 0) = sin π V + t +V
LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ
8 + J/ψ ALICE B597 : : : 9 LHC ALICE (QGP) QGP QGP QGP QGP ω ϕ J/ψ ALICE s = ev + J/ψ 6..................................... 6. (QGP)..................... 6.................................... 6.4..............................
1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =
1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................
I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co
16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>
スピントロニクスの基礎 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/077461 このサンプルページの内容は, 初版 1 刷発行時のものです. i 1 2 ii 3 5 4 AMR (anisotropic magnetoresistance effect) GMR (giant magnetoresistance
Note.tex 2008/09/19( )
1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................
3/4/8:9 { } { } β β β α β α β β
α β : α β β α β α, [ ] [ ] V, [ ] α α β [ ] β 3/4/8:9 3/4/8:9 { } { } β β β α β α β β [] β [] β β β β α ( ( ( ( ( ( [ ] [ ] [ β ] [ α β β ] [ α ( β β ] [ α] [ ( β β ] [] α [ β β ] ( / α α [ β β ] [ ] 3
II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2
II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh
(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a
1 2 2.1 (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a) L ( ) ) * 2) W Z 1/2 ( - ) d u + e + ν e 1 1 0 0
素粒子物理学2 素粒子物理学序論B 2010年度講義第2回
素粒子物理学2 素粒子物理学序論B 2010年度講義第2回 =1.055 10 34 J sec =6.582 10 22 MeV sec c = 197.33 10 15 MeV m = c = c =1 1 m p = c(mev m) 938M ev = 197 10 15 (m) 938 =0.2 10 13 (cm) 1 m p = (MeV sec) 938M ev = 6.58
10 117 5 1 121841 4 15 12 7 27 12 6 31856 8 21 1983-2 - 321899 12 21656 2 45 9 2 131816 4 91812 11 20 1887 461971 11 3 2 161703 11 13 98 3 16201700-3 - 2 35 6 7 8 9 12 13 12 481973 12 2 571982 161703 11
0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2
24 11 10 24 12 10 30 1 0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2 23% 29% 71% 67% 6% 4% n=1525 n=1137 6% +6% -4% -2% 21% 30% 5% 35% 6% 6% 11% 40% 37% 36 172 166 371 213 226 177 54 382 704 216
