MPGD GEM
|
|
|
- いおり えんの
- 9 years ago
- Views:
Transcription
1 19 GEM /3/13
2 MPGD GEM MICROMEGAS MSGC X keV X X GEM(Gas Electron Multiplier) GEM GEM GEM GEM V GEM
3 4.2.2 E D E I E T G T G I E T GEM µm GEM V GEM E D E I µm µm GEM GEM Radiation GEM GEM E D E I V GEM ASIC FPGA GEM ASIC FPGA ASIC FPGA V TH V chip TH VTH ch GEM B-GEM B-GEM
4 V GEM B B-GEM γ mm mm MUSASI NOP MINE MINE B-GEM GEM X GEM X GEM GEM X
5 108 4
6 1 ( ) MPGD(Micro Pattern Gas Detector) MPGD X MPGD GEM X (J-PARC) X 1.1 (10 5 ) 5
7 1.2 MPGD MPGD MPGD 3 1. GEM(Gas Electron Multiplier) 2. MICROMEGAS(Micromesh Gaseous Detector) 3. MSGC(Micro Strip Gas Chamber) GEM GEM 10 5 Hz/mm 2 ( ) GEM 1.1: GEM( 70µm 140µm) 6
8 1.2.2 MICROMEGAS MICROMEGAS 50µm 1.2: MICROMEGAS MSGC MSGC µ-pic GEM 1.3: µ-pic 7
9 MPGD GEM 1.3 X X GEM GEM X 3 He GEM 20cm 20cm 50 1mm X CCD X 1 1 X GEM X 1 1 X X 200keV 10 FWHM 0.3mm 500keV 1.7 FWHM 1mm 20cm 20cm 8
10 2 GEM [1] (γ ) ( ) E B E B K 500keV 50keV 9
11 2.1: ( ) E E 2.1 E = 0.51 [MeV ] (2.1) 1 cosθ /E 0.51MeV (θ=0) θ = π/2 0.51MeV 0.6 5MeV MeV 2.2: 10
12 MeV 2.3: ( 100m/s) ( ) 11
13 keV X Ar Ar K 3.2keV X 55 Fe X 5.9keV 5.9keV X ( ) 3.2keV 2.7keV Ar M Ar 100 Ar M L K X X X X Ar M X K M Ar L X X K X L M K 3.2keV Ar
14 2.4: E auger X E through Ar E auger E through E auger : E through = 85 : de/dx 55 Fe X 55 Fe X 5.9keV 2.2 n = 5900 w[ev ] (2.2) w 1 Ar Ar w 26eV
15 3 GEM(Gas Electron Multiplier) GEM 3.1 GEM GEM ( ) 5µm GEM 50µm GEM [2] 10cm 10cm 50µm 70µm 140µm V GEM ( ) 10 5 Hz/mm 2 GEM GEM MICROMEGAS GEM [3] 3.2 GEM GEM CERN F.Sauli CERN [4] GEM CERN GEM
16 : 3.3 GEM GEM GEM GEM GEM v 1 2 mv2 3.2: 15
17 3.4 GEM GEM GEM1 GEM1 GEM R D ( ) R T ( ) R I ( ) GEM1 R D GEM1 GEM2 GEM2 GEM3 GEM R T1 R T2 GEM3 R I R D GEM GEM (collection efficiency) R T GEM GEM GEM R I GEM GEM (extraction efficiency) GEM collection efficiency GEM extraction efficiency 3 3 GEM 3.3: GEM 3 50µm GEM 100µm GEM 16
18 4 GEM GEM mm 20cm 20cm 5cm GEM 4.1: cm 10cm 1.6cm 1.6cm 6 6 ( 4.2) 17
19 4.2: Belle CDC(Central Drift Chamber) 300mV/pC NIM CAMAC 2 NIM CAMAC ADC 2249W 300nsec ADC 2390pC/ch NIM CAMAC ADC Mean Pedestal (ADC ) (Mean Pedestal) ( ) ( ) ( ) (GEM3 ) 18
20 4.3: : 4.2 GEM GEM V GEM E D E T E I G T G I 19
21 4.1 P10 Ar-CO 2 P10 Ar-CH 4 (90-10) Ar-CO 2 Ar-CO 2 (70-30) 4.1: V GEM (V) E D (kv/cm) E T1 (kv/cm) E T2 (kv/cm) E I (kv/cm) V GEM P Ar-CO E D P Ar-CO E I P Ar-CO E T P Ar-CO E T1 Ar-CO E T2 Ar-CO G T E T P Ar-CO G I E I P Ar-CO ADC GEM GEM GEM GEM V GEM GEM V GEM V GEM V GEM GEM GEM GEM1 ( V GEM ) GEM2 3 V GEM V GEM 55 Fe 5.9keV X P10 Ar-CO
22 4.5: 4.6 GEM P10 55 Fe X 225 V GEM =290V V GEM 1V 9 Ar-CO 2 55 Fe X 213 V GEM =320V V GEM 1V 7 4.6: V GEM V GEM P V Ar-CO V 21
23 4.2.2 E D R D GEM collection efficiency 4.7 R D E D 4.7: Maxwell Garfield ( 4.9) GEM GEM Ar-CO 2 P10 R D GEM R D GEM E D GEM 22
24 4.8: E D 4.9: Maxwell Garfield E D 23
25 4.2.3 E I R I GEM extraction efficiency 4.10 R I E I 4.10: GEM 24
26 4.11: E I 4.12: Maxwell Garfield E I E T R T GEM GEM ( ) GEM 4.13 E T1 E T GEM E I E T1 E T E T1 E T
27 4.13: 4.14: 2 26
28 4.15: E T1 E T2 4.16: E T1 E T2 2 27
29 R T 4.13 GEM1 GEM2 R I GEM2 GEM3 R D E T : 4.17 GEM GEM G T G T E T 4.18 G T 1 2 4mm P E T P10 G T G T Ar-CO Ar-CO 2 28
30 4.18: 4.19: G T (P10) 29
31 4.20: G T (Ar-CO 2 ) G I G I E I 4.21 G I mm P Ar-CO G I 30
32 4.21: 4.22: G I (P10) 31
33 4.23: G I (Ar-CO 2 ) 4.3 GEM mm 0.2mm : 32
34 4.25: CAMAC ADC pulse transfomer 30m ( 0.5m) GEM G D =4mm G T1 =2mm G T2 =2mm G I =1mm Fe X 4.27 GEM ADC X 33
35 4.26: 4.27: 34
36 ch ( ) 4.28 (0) ( ) : strip 4.29: Strip X (Center Of Gravity: ) 35
37 4.30: Strip 4.31: Strip 36
38 1. ADC X 5 ADC ADC Y C.O.G P10 Ar-CO 2 V GEM 4.32(P10) 4.33(Ar-CO 2 ) 4.32: (P10) 4.32(P10) 4.33(Ar-CO 2 ) GEM X GEM 2 GEM G D G T G I G Total (Total Gap) G Total 37
39 4.33: (Ar-CO 2 ) G D G Total = G D 2 + (G T1 + G T2 ) + G I GEM G D =4mm G T1 =2mm G T2 =2mm G I =1mm G D G T1 G T2 G I = G Total 7mm 2 GEM G D G T1 G I = G Total 3.75mm 2 GEM 1 G T1 4.2: GEM GEM structure G Total P10 Ar-CO 2 3 GEM G D G T1 G T2 G I = G D G T1 G T2 G I = G D G T1 G T2 G I = G D G T1 G T2 G I = GEM G D G T1 G I = G D G T1 G I = G Total 38
40 GEM G Total GEM G Total 4.34 Magboltz ( ) GEM 4.34: 4.34 GEM Ar-CO 2 X E T R T : E T V GEM (V) E D (kv/cm) E T1 (kv/cm) E T2 (kv/cm) E I (kv/cm) E T P Ar-CO
41 4.35: 4.36: E T 40
42 P10 Ar-CO 2 P10 Ar-CO 2 GEM 100µm 41
43 5 GEM µm GEM 50µm GEM 3 50µm GEM 3 1 GEM 100µm GEM Ar-CO 2 [5] 100µm GEM 10cm 10cm LCP( ) 100µm 70µm 90µm 140µm 70µm 90µm 50µm GEM 70µm 90µm LCP(Liquid Crystal Polymer) 50µm GEM V GEM E D E I µm GEM 55 Fe 50µm GEM V GEM µm GEM V GEM 50µm V GEM 50µm GEM 100µm GEM 50µm GEM
44 5.1: 5.1: 100µm GEM V GEM (V) E D (kv/cm) E I (kv/cm) 70µm V GEM Ar-CO E D Ar-CO E I Ar-CO µm V GEM Ar-CO E D Ar-CO : 50µm GEM 100µm GEM V GEM 43
45 5.1.3 E D E I E D E I : 50µm GEM 100µm GEM E D 5.4: 50µm GEM 100µm GEM E I E D 50µm GEM µm 90µm 140µm V GEM µm 44
46 5.5: V GEM 70µm E D : E D 70µm 50µm GEM R T 90µm E I 45
47 5.2 25µm GEM GEM X 25µm GEM 25µm GEM 10cm 10cm 25µm 70µm 140µm : 25µm GEM E D (kv/cm) E T (kv/cm) E I (kv/cm) 5.7 Ar-CO Ar-CO µm GEM 100µm GEM 5.7: µm GEM V GEM GEM GEM 1 46
48 5.8: 25µm GEM µm GEM : 47
49 V GEM (V) pulse height (100µm GEM) (mv) : 25µm GEM V GEM (V) V GEM (V) pulse height (100µm GEM) (25µm GEM) (mv) : 25µm GEM 25µm GEM 1 160V 50µm GEM GEM GEM 1 GEM GEM GEM 23cm 23cm 50µm 70µm 140µm ( 90 Sr 55 Fe) :
50 5.5: GEM V GEM1 2 3 (V) E D (kv/cm) E T1 (kv/cm) E T2 (kv/cm) E I (kv/cm) Ar-CO GEM V GEM E D E I 5.11: 90 Sr 5.12: 55 Fe 5.4 Radiation GEM GEM X GEM 100µm GEM γ 60 Co 100Mrad (Radiation GEM ) 100µm GEM µm GEM(70µm ) γ γ 5.5 GEM GEM1 100µm GEM GEM 49
51 図 5.13: Radiation GEM と通常の 100µm 厚 GEM(70µm 径) の VGEM に対するガス増幅度の 測定 検出面積 10cm 10cm LCP(絶縁体) の厚さ 100µm 孔径 (Cu) 90µm 径 130µm 径 孔径 (LCP) 70µm 径 90µm 径 ピッチ間隔 140µm 電極である Cu の孔径と LCP の孔径を変え 絶縁体の孔径を小さくすることで高いガス増幅度 が得られるようにした この GEM を後退 GEM と呼ぶ 後退 GEM には 2 種類あり それぞれで Cu と LCP の孔径が異なる それぞれの様子を表した ものが図 5.14 と図 5.15 である 図 5.14: 後退 GEM 孔径 90µm 径 (Cu) 図 5.15: 後退 GEM 孔径 130µm 径 (Cu) 70µm 径 (LCP) 90µm 径 (LCP) 50
52 GEM V GEM E D E I 100µm GEM 100µm GEM : GEM V GEM (V) E D (kv/cm) E I (kv/cm) E D Ar-CO E I Ar-CO V GEM Ar-CO Ar-CO Ar-CO Ar-CO Ar-CO Ar-CO Ar-CO Ar-CO Ar-CO E D E D : E D E D 51
53 5.5.2 E I E I : E I E I V GEM V GEM E D 50µm GEM 100µm GEM E D E I E D V GEM E I 6.0kV/cm E D : E D V GEM 52
54 E D 4.0kV/cm E D 4.0kV/cm E I : E I V GEM E I 100µm GEM 53
55 6 ASIC FPGA GEM NIM CAMAC GEM X NIM CAMAC ch 256ch 6.1: (NIM CAMAC) ASIC(Application Specific Integrated Circuit) FPGA(Field Programmable Gate Array) 6.1 ASIC FPGA GEM
56 6.2: ASIC FPGA 6.2 GEM 10cm 10cm GEM GEM ASIC 4 FPGA ASIC FE2006 ASIC [6] FPGA XiLinx XC4VLX25-10FF668 FPGA ASIC FPGA NIM+CAMAC : PC PC 55
57 TCP(Transmission Control Protocol) TCP ( ) ( ) TCP ASIC UDP(User Datagram Protocol) UDP TCP : (HV) (LV) PC HV- LV- ( ) ( ) ( ) HV ( ) LV ( ) ( ) ASIC FPGA FPGA PC : 56
58 6.2 GEM : 6.5 ASIC ASIC GEM 6.6: ( ) 57
59 : ( ) ( ) ASIC FPGA ASIC FPGA ASIC 4 FPGA 1 ASIC FPGA PC ASIC FPGA ASIC 1 ASIC 8 ASIC ASIC 1 8ch 1 64ch ASIC 6.8 ASIC ASIC DAC DAC V chip TH ASIC DAC DAC V ch TH 58
60 6.8: ASIC V TH V TH (LVDS) FPGA FPGA DAC ASIC ASIC : FE2006 DAC(V chip TH ) (10µsec) PZC(Pole Zero Cancellation) (20nsec ) V ch TH LVDS BPF(Band Pass Filter) ch ASIC ASIC 8 FPGA 59
61 6.10: 6.11: ASIC 60
62 6.3.2 FPGA FPGA : FPGA LVDS FPGA PC SiTCP PC SiTCP DAC V TH ASIC SiTCP [7] SiTCP SiTCP (TCP/IP) TCP TCP SiTCP TCP/IP SiTCP 6.13 SiTCP TCP UDP DAC SiTCP FPGA 6.14 FPGA Virtex FPGA ASIC 4 61
63 6.13: SiTCP 6.14: FPGA 62
64 6.4 V TH V TH DAC V TH V TH VTH ch Vchip TH V TH V chip TH V chip TH DAC FPGA 500mV < V chip TH < +500mV 1bit 4mV 8bit V chip TH PC V ch TH VTH ch ASIC DAC FPGA 31mV < VTH ch < 0mV 1bit 1mV V chip TH PC DAC +31mV V TH V TH V TH 6.15: V TH ASIC FPGA (NIM+CAMAC) (ASIC+FPGA) 63
65 7 GEM ( ) 3 He ( 3 He ) 3 He 5mm J-PARC 3 He GEM ( ) ( ) GEM γ GEM 64
66 3 He GEM 7.2 GEM 3 He 10 B α 10 B + n 7 Li + α MeV 7 Li + α MeV 7.1: B-GEM 7.1 GEM 10 B α ( ) α Cu α 10 B 1µm 7.3 B-GEM GEM 10 B B-GEM B-GEM 10 B 0.6µm 0.9µm 1.2µm 1 B-GEM 1.2µm(0.6µm + 0.6µm) 2.1µm(1.2µm + 0.9µm) 2.4µm(1.2µm + 1.2µm) 10 B 10 B 1 GEM GEM 7.2 B-GEM 50µm GEM 100µm GEM α 100 B-GEM 65
67 7.2: B-GEM B-GEM 1 B-GEM 7.4 B-GEM B-GEM GEM GEM B-GEM V GEM 7.3 GEM : 66
68 7.1: 1 V GEM V GEM1 V GEM2 3 E D E T1 E T2 E I (V) (V) (kv/cm) (kv/cm) (kv/cm) (kv/cm) V GEM1 P E D P E T1 P V GEM1 P V GEM V GEM GEM1 V GEM : V GEM1 GEM1 GEM1 E D E T1 ADC
69 7.5: E D ADC 7.6: E T1 ADC GEM R T GEM V GEM1 ADC E D ADC
70 7.7: V GEM1 V GEM1 V GEM 240V GEM 1 V GEM GEM : 7.9: V GEM V
71 7.2: 1 V GEM1 2 V GEM3 4 E D E T1 T2 E T3 E I (V) (V) (kv/cm) (kv/cm) (kv/cm) (kv/cm) 7.8 p P P P : V GEM1 2 Mean 7.10 Mean GEM V GEM 240V GEM B 10 B 11 B 10 B 20 GEM 10 B 10 B 99 GEM 10 B 1.2µm 2.1µm 2.4µm ( 252 Cf)
72 7.11: 7.12: 7.3: B-GEM V GEM1 V GEM2 E D E T E I (V) (V) (kv/cm) (kv/cm) (kv/cm) Ar-CO B 10 B 10 B B-GEM 7.13: 10 B 71
73 7.6 B-GEM B-GEM 10 B 1.2µm 2.4µm B-GEM 10 B R T(B B) B-GEM B-GEM R T(B 100µm) B-GEM 100µm GEM E T(B B) E T(B 100µm) 7.14: 7.4: B-GEM V GEM (V) V GEM (V) E D E T(B B) E T(B 100µm) E I (B-GEM) (100µm GEM) (kv/cm) (kv/cm) (kv/cm) (kv/cm) Ar-CO µm 2.4µm 1.2µm B-GEM 8 0.6µm 2.4µm B-GEM 4 1.2µm 2.4µm 1.2µm 7.16 B-GEM 72
74 7.16: B-GEM 7.15: B-GEM [8] : 7.8 γ 7.18 γ γ γ 10 B 73
75 7.18: γ 7.9 GEM 10 B 1.6mm 0.8mm 1.6mm 1.6mm mm 36ch 1.6mm 64ch 64ch 128ch 7.19 NIM CAMAC 16 GEM 74
76 7.19: NIM+CAMAC mm 1.6mm 0.8mm : 1.6mm 1.6mm mm 83mm 7.21 X Y XY 1.6mm 75
77 7.21: 1.6mm B-GEM 10 B 7.23 KEK mm 0.8mm 0.8mm 76
78 7.22: KEK 7.23: 0.8mm µm X Y 7.25 X 80µm 0.4mm 2 0.8mm 0.4mm 2 0.8mm 340µm 7.24: 0.8mm 7.25: 0.8mm 77
79 8 B-GEM 4 JRR3 4 (MUSASI NOP MINE1 MINE2) 8.1 MUSASI MUSASI Hz/cm 2 5cm 2cm MUSASI : MUSASI NOP 8.2: MUSASI 8.1: MUSASI V GEM (V) V GEM (V) E D E T(B B) E T(B 100µm) E I (B-GEM) (100µm GEM) (kv/cm) (kv/cm) (kv/cm) (kv/cm) Ar-CO Ar-CO
80 B-GEM 10 B 1.2µm B-GEM 10 B 2.4µm (B-GEM ) 10 B 1.2µm (B-Al) mm : ( ) ( ) 10 3 He B-GEM (2.2 ) 3 He µm 10 B GEM mm mm 0.8mm 16mm mm 1.6 mm GEM 140µm 0.14mm GEM 8.2 ±5 79
81 8.4: 0.5mm 8.5: 16mm 8.2:
82 B-GEM : MUSASI 2.24 K 2 SeO 4 NaCl 2 NaCl 8.7 hkl K 2 SeO : NaCl 8.8: K 2 SeO 4 81
83 mm B-GEM B-Al 2mm 2mm ( 8.9) : 8.10: 8.11: 10 3 He 3 He µm 10 B 1.2µm 10 B GEM 4 82
84 mm : 0.5mm X-ch mm mm X 0.465mm 1.09mm Y 0.507mm 1.19mm SiO 2 NaCl NaCl 8.13 GEM 8.14 GEM 2mm 2mm hkl GEM SiO 2 SiO 2 NaCl NaCl 83
85 8.13: 8.14: 8.15: NaCl hkl hkl : hkl 8.4: hkl 84
86 : 8.17: He ( 8.19) 8.18: SiO 2 (GEM ) 8.19: SiO 2 ( 3 He ) (30 50 ) 3 He 3 He 11 GEM SiO 2 85
87 8.2 NOP NOP Hz/cm 2 2mm 2mm NOP MUSASI 2 MUSASI : NOP 8.5: NOP V GEM (V) V GEM (V) E D E T(B B) E T(B 100µm) E I (B-GEM) (100µm GEM) (kv/cm) (kv/cm) (kv/cm) (kv/cm) Ar-CO Ar-CO Ar-CO GEM ( ) MINE NOP (SiO 2 ) NOP (RPMT) GEM
88 8.21: 50µm 8 RPMT RPMT GEM 8.23 GEM MINE2 8.3 MINE2 MINE cps 2.5mm 2.5mm MINE2 87
89 8.22: 50µm : RPMT 88
90 8.24: 8.24 θ in θ out θ in = θ out Z : (fringe) θ in θ out Z XY
91 8.26: 8.26 (offspecular) ( ) XY He ( 3 He ) ( 8.27) MINE : 8.27: J-PARC J-PARC 90
92 GEM GEM MINE2 NOP : MINE2 V GEM (V) V GEM (V) E D E T(B B) E T(B 100µm) E I (B-GEM) (100µm GEM) (kv/cm) (kv/cm) (kv/cm) (kv/cm) Ar-CO Ar-CO Ar-CO MINE : B-GEM 1.5µm 10 B B-GEM( 1.2µm )
93 8.30: 1 1mm 50mm 0.8mm 96 3 He GEM : 3 He GEM 8.31 GEM 92
94 3 He GEM : GEM ( 8.33) : 8.33: 93
95 3 He GEM 2 1 B-GEM ( ) 2 B-GEM 2 B-GEM B-GEM : B-GEM 8.36 B-Al 8.37 G10 ( ) 8.36: 8.37: B-GEM 94
96 : 8.39: 8.4 MINE1 MINE cps 2.5mm 2.5mm MINE1 k B h m v E = k B T = 1 2 mv2 = h2 2mλ
97 8.7: (mev ) (K) ( ) (5 100meV ) 1 nev ev TOF 3. 3 (Neutron Spin Echo: NSE) λ E E λ 8.40: 96
98 8.40 ( ) Mezei NSE ω L γ n µ N ω L = 4πγ nµ N B h B : ( ) ( ) 97
99 MINE : MINE1 V GEM (V) V GEM (V) E D E T(B B) E T(B 100µm) E I (B-GEM) (100µm GEM) (kv/cm) (kv/cm) (kv/cm) (kv/cm) Ar-CO Ar-CO MINE1 (500m/sec) 100nsec 50µm B-GEM B-GEM 1 10 B 2.1µm B-GEM : 98
100 3 He 18 ( MUSASI ) 24 (MUSASI ) 1/8(B GEM ) 2.1/1.2( 10 B ) 8/2.2( ) = Li PMT GEM 8.43: µsec GEM 1.67µsec Li PMT 1.71µsec GEM
101 8.44: B-GEM 2.0µm 10 B B-Al 0.8mm mm 24mm ch 8.46: 8.45: MINE
102 8.47: 110kHz A sin(fx + c) + B A B (A/B) MINE2 MINE1 26Hz 40msec MINE ( 1/100) 109kHz nsec 101
103 8.48: MINE1 8.49: 8.5 B-GEM B-GEM 1. 3 He γ 5. 3 He 3 He 3 He 5mm 1µsec B-GEM 0.46mm(FWHM 1mm) 10nsec γ γ GEM 10 5 Hz/mm 2 B-GEM J-PARC 102
104 9 GEM X X X ( 200keV ) X X 9.1 GEM X GEM 2 GEM X Z 10 B GEM(Au-GEM) 10 B Au X Au
105 9.1: GEM X V GEM (V) V GEM (V) E D (Au-GEM) (50µm GEM) (kv/cm) P Ar-CO E T(Au Au) E T(Au 50µm) E T(50µm 50µm) E I (kv/cm) (kv/cm) (kv/cm) (kv/cm) GEM 3µm Au µm GEM 3 X Na γ ( 511keV ) keV γ 9.1: 9.2: 22 Na γ 9.3 MINE Au-GEM (1.7 ) X 200keV 7 104
106 9.3: 9.4: X 2 X 1.6 mm 0.8 mm 2 50µm 55 Fe X 9.5 KEK : 9.6: 0.4mm 2 0.8mm ASIC FPGA 0.4mm 105
107 10 GEM 10.1 GEM GEM GEM V GEM GEM 10 5 GEM 50µm GEM (P10 ) GEM GEM GEM 100µm GEM 50µm GEM 100µm GEM 50µm GEM X GEM GEM 25µm GEM 1 25µm GEM 10 B Au 10.2 B-GEM 1 10 B 2.4µm B-GEM 4 1.2µm 10 B 30 FWHM 1.1mm ASIC FPGA 10 B 2.4µm B-GEM 8 10 B 10.3 X Au-GEM X 55 Fe 106
108 10.4 GEM 100µm GEM B-GEM Au-GEM X 0.8mm 10.1 ASIC 10.1: 107
109 ( ) ( ) MPGD ( ) ( ) 108
110 [1] F.Sauli, Principle of operation of multiwire proportional and drift chambers CERN (1977). [2] F.Sauli, GEM: A new concept for electron amplification in gas detectors, Nucl. Instrum. Meth.Phys.Res. A 386 (1997) [3] SCIENERGY Co., Ltd. ( [4] The Gas Detectors Development Group in CERN ( [5] S.Uno et. al, Performance study of new thicker GEM, Nucl. Instrum. Meth. Phys. Res. A 581 (2007) [6] Y.Fujita, et. al, Performance of Multi-Channel and Low Power Front-End ASIC for MPGD µ-pic Readout, 2007 IEEE Nuclear Science Symposium, N [7] T.Uchida Hardware-Based TCP Processor for Gigabit Ethernet, 2007 IEEE Nuclear Science Symposium Conferences Record, N [8] Se-Hwan Park, Yong Kyun Kim, and J.K. Kim Neutron Detection With a GEM, IEEE Transaction on Nuclear Science, Vol. 52, Bo. 5, Oct. 2005,
Thick-GEM 06S2026A 22 3
Thick-GEM 06S2026A 22 3 (MWPC-Multi Wire Proportional Chamber) MPGD(Micro Pattern Gas Detector) MPGD MPGD MPGD MPGD GEM(Gas Electron Multiplier) GEM GEM GEM Thick-GEM GEM Thick-GEM 10 4 Thick-GEM 1 Introduction
GEMを使った 中性子画像検出器の開発
GEM を用いた検出器の開発 千葉研究室修士 2 年 杉山史憲 発表の流れ 研究目的 GEMを用いた中性子画像検出器の原理 基本特性 ビームテスト 今後の実験 研究目的 1. 中性子検出の必要性 2. 中性子捕獲 3. 現在の中性子検出器 中性子検出の必要性 中性子の特徴 - スピンが 1/2 - 電荷がゼロ X 線で見た構造 中性子で見た構造 構造解析 窒素 炭素 酸素 水素たんぱく質 ( ミオグロビン
ATLAS 2011/3/25-26
ATLAS 2011/3/25-26 2 LHC (Large Hadron Collider)/ATLAS LHC - CERN - s=7 TeV ATLAS - LHC 1 Higgs 44 m 44m 22m 7000t 22 m 3 SCT( ) SCT(SemiConductor Tracker) - - 100 fb -1 SCT 3 SCT( ) R eta=1.0 eta=1.5
1 3 1.1 PET..................................... 3 1.1.1......................................... 3 1.1.2 PET................................. 4 1.2..
21 PET 06S2037G 2010 3 1 3 1.1 PET..................................... 3 1.1.1......................................... 3 1.1.2 PET................................. 4 1.2........................................
W 1983 W ± Z cm 10 cm 50 MeV TAC - ADC ADC [ (µs)] = [] (2.08 ± 0.36) 10 6 s 3 χ µ + µ 8 = (1.20 ± 0.1) 10 5 (Ge
22 2 24 W 1983 W ± Z 0 3 10 cm 10 cm 50 MeV TAC - ADC 65000 18 ADC [ (µs)] = 0.0207[] 0.0151 (2.08 ± 0.36) 10 6 s 3 χ 2 2 1 20 µ + µ 8 = (1.20 ± 0.1) 10 5 (GeV) 2 G µ ( hc) 3 1 1 7 1.1.............................
マイクロパターンガス検出器を用いた次世代型PMTの開発状況
マイクロパターンガス 検 出 器 を 用 いた ガスPMTの 開 発 状 況 門 叶 冬 樹 ( 山 形 大 理 ) 首 都 大 学 東 京 住 吉 孝 行 中 川 尊 SLAC J. Va vra 浜 松 ホトニクス 藤 田 良 雄 遠 藤 哲 朗 岡 田 晃 行 渥 美 卓 治 大 石 保 生 山 形 大 理 櫻 井 敬 久 郡 司 修 一 金 子 昌 弘 菊 地 健 太 郎 外 山 幸 太 従
アナログ・デジタルの仕様とパフォーマンス特性の用語集
www.tij.co.jp Application Report JAJA127 Σ Σ 2 3 Σ 4 5 Σ Σ 2 2 1 1 Data Out 1 2 3 4 Data 1 2 3 4 Out Data Out 1 2 3 4 6 A CS B CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 DOUT D 11 D 10 D 9 D 8 D 7 D 6 D 5
Undulator.dvi
X X 1 1 2 Free Electron Laser: FEL 2.1 2 2 3 SACLA 4 SACLA [1]-[6] [7] 1: S N λ [9] XFEL OHO 13 X [8] 2 2.1 2(a) (c) z y y (a) S N 90 λ u 4 [10, 11] Halbach (b) 2: (a) (b) (c) (c) 1 2 [11] B y = n=1 B
03J_sources.key
Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E
untitled
10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10
LEPS
LEPS2 2016 2 17 LEPS2 SPring-8 γ 3 GeV γ 10 Mcps LEPS2 7 120 LEPS Λ(1405) LEPS2 LEPS2 Silicon Strip Detector (SSD) SSD 100 µm 512 ch 6 cm 3 x y 2 SSD 6 3072 ch APV25-s1 APVDAQ VME APV25-s1 SSD 128 ch
1 1 2 2 3 3 RBS 3 K-factor 3 5 8 Bragg 15 ERDA 21 ERDA 21 ERDA 21 31 31 33 RUMP 38 42 42 42 42 42 42 4 45 45 Ti 45 Ti 61 Ti 63 Ti 67 Ti 84 i Ti 86 V 90 V 99 V 101 V 105 V 114 V 116 121 Ti 121 Ti 123 V
Mott散乱によるParity対称性の破れを検証
Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ
1-x x µ (+) +z µ ( ) Co 2p 3d µ = µ (+) µ ( ) W. Grange et al., PRB 58, 6298 (1998). 1.0 0.5 0.0 2 1 XMCD 0-1 -2-3x10-3 7.1 7.2 7.7 7.8 8.3 8.4 up E down ρ + (E) ρ (E) H, M µ f + f E F f + f f + f X L
BIT -2-
2004.3.31 10 11 12-1- BIT -2- -3-256 258 932 524 585 -4- -5- A B A B AB A B A B C AB A B AB AB AB AB -6- -7- A B -8- -9- -10- mm -11- fax -12- -13- -14- -15- s58.10.1 1255 4.2 30.10-16- -17- -18- -19-6.12.10
チュートリアル:ノンパラメトリックベイズ
{ x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ
25 3 4
25 3 4 1 µ e + ν e +ν µ µ + e + +ν e + ν µ e e + TAC START STOP START veto START (2.04 ± 0.18)µs 1/2 STOP (2.09 ± 0.11)µs 1/8 G F /( c) 3 (1.21±0.09) 5 /GeV 2 (1.19±0.05) 5 /GeV 2 Weinberg θ W sin θ W
news
ETL NEWS 1999.9 ETL NEWS 1999.11 Establishment of an Evaluation Technique for Laser Pulse Timing Fluctuations Optoelectronics Division Hidemi Tsuchida e-mail:[email protected] A new technique has been
1
1 2 3 4-1 4-2 4-3 5 6 7 8 9 10 11 12 13 TOPPAN FORMS CO., LTD. PDM CENTER COLOR CONTROL STRIP 1 2 3 4 5 6 7 0570-01-3500 03-3569-3500 0120-001144 0120-86-0962 03-6385-0962 0120-80-7761 050-3383-1414
positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) MeV : thermalization m psec 100
positron 1930 Dirac 1933 Anderson m 22Na(hl=2.6years), 58Co(hl=71days), 64Cu(hl=12hour) 68Ge(hl=288days) 0.5 1.5MeV : thermalization 10 100 m psec 100psec nsec E total = 2mc 2 + E e + + E e Ee+ Ee-c mc
42 3 u = (37) MeV/c 2 (3.4) [1] u amu m p m n [1] m H [2] m p = (4) MeV/c 2 = (13) u m n = (4) MeV/c 2 =
3 3.1 3.1.1 kg m s J = kg m 2 s 2 MeV MeV [1] 1MeV=1 6 ev = 1.62 176 462 (63) 1 13 J (3.1) [1] 1MeV/c 2 =1.782 661 731 (7) 1 3 kg (3.2) c =1 MeV (atomic mass unit) 12 C u = 1 12 M(12 C) (3.3) 41 42 3 u
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )
第85 回日本感染症学会総会学術集会後抄録(III)
β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ
main.dvi
CeF 3 1 1 3 1.1 KEK E391a... 3 1.1.1 KL 0 π0 νν... 3 1.1.2 E391a... 4 1.1.3... 5 1.2... 6 2 8 2.1... 8 2.2... 10 2.3 CeF 3... 12 2.4... 13 3 15 3.1... 15 3.2... 15 3.3... 18 3.4... 22 4 23 4.1... 23 4.2...
Ws shojia 2016x mini
16 -Feb 2017 ILC 飛跡測定器における GEM 型ゲート装置の特性評価 Characteristic evaluation of Gating GEM in ILC track measuring instrument 平成 28 年度修士論文審査会 Master's thesis presentation 岩手大学大学院工学研究科電気電子 情報システム工学専攻 博士前期課程 2 年
12-7 12-7 12-7 12-7 12-8 12-10 12-10 12-10 12-11 12-12 12-12 12-14 12-15 12-17 12-18 10 12-19 12-20 12-20 12-21 12-22 12-22 12-23 12-25 12-26 12-26 12-29 12-30 12-30 12-31 12-33 12-34 12-3 12-35 12-36
アトラスバレルSCT用量産モジュールの品質保証のシステム
1 2 (LHC) ( ) CERN 2006 4 14 TeV LHC 1989 2000 (LEP) LHC 40 MHz 10 34 cm 2 1 ( 3 10 33 cm 2 s 1 ) LHC 10 (ATLAS) LHC LHC 22 m 46 m 15,000 t (SCT) (TRT) SCT (Semi-Conductor Tracker) ( ) SCT SCT 4 ASIC12
Muon Muon Muon lif
2005 2005 3 23 1 2 2 2 2.1 Muon.......................................... 2 2.2 Muon........................... 2 2.3................................. 3 2.4 Muon life time.........................................
untitled
(1) 100 100 60% (2) (3) - 1 - 1 2 3 4 100 200-2 - 1 2 3-3 - 4 5 6 7......... (1) (2) (3) 1) 2) 3) 8(5) - 4 - 0.5 27.3 3 0.05 27.30 4 0.005 Système International d'unités 7218 1 (1) Pas Pas J/molK J/(molK)
46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5-
45 5 5.1 Y 3.2 Eq. (3) 1 R [s -1 ] ideal [s -1 ] Y [-] Y [-] ideal * [-] S [-] 3 R * ( ω S ) = ω Y = ω 3-1a ideal ideal X X R X R (X > X ) ideal * X S Eq. (3-1a) ( X X ) = Y ( X ) R > > θ ω ideal X θ =
24.15章.微分方程式
m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt
2017 (413812)
2017 (413812) Deep Learning ( NN) 2012 Google ASIC(Application Specific Integrated Circuit: IC) 10 ASIC Deep Learning TPU(Tensor Processing Unit) NN 12 20 30 Abstract Multi-layered neural network(nn) has
0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,
2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).
36 th IChO : - 3 ( ) , G O O D L U C K final 1
36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic
A13 C A139 A137 A131 A138 V CV FC/SMA 2.51/2.5 MM FF 4 4 5 5 6 A11971 A136 ND A132 1 mm ND1 % 1 %2 6 7 7 A133-9 15 mm 8 A134-9 A135 A135-9 A1127 A1858 A176 A1859 C A11213 C A9865 45V R T 11 15 mm XY XZ
PowerPoint プレゼンテーション
LSI Web Copyright 2005 e-trees.japan, Inc. all rights reserved. 2000 Web Web 300 Copyright 2005 e-trees.japan, Inc. all rights reserved. 2 LSI LSI ASIC Application Specific IC LSI 1 FPGA Field Programmable
1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e
No. 1 1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e I X e Cs Ba F Ra Hf Ta W Re Os I Rf Db Sg Bh
( ) 09:00 17:40 08: :00 09: :05 10:15 1 ( ) -01 ( 5 ) (10:15 10:25 ) 10:25 11:50 2 ( ) -02 ( 6 ) (11:50 13:00 ) 13:00 1
29 30 2 7 ( ) 09:00 17:40 08:55 31 501 09:00 09:05 31 501 9:05 10:15 1 ( ) -01 ( 5 ) (10:15 10:25 ) 10:25 11:50 2 ( ) -02 ( 6 ) (11:50 13:00 ) 13:00 14:10 1 ( ) -03 ( 5 ) (14:10 14:20 ) 14:20 16:10 2 (
a a b a b c d e R c d e A a b e a b a b c d a b c d e f a M a b f d a M b a b a M b a M b M M M R M a M b M c a M a R b A a b b a CF a b c a b a M b a b M a M b c a A b a b M b a A b a M b C a M C a M
