Microsoft PowerPoint 近畿地整Centrifuge.pptx
|
|
|
- しょうこ ちゅうか
- 6 years ago
- Views:
Transcription
1 地盤工学における遠心模型実験の妥当性 ~ 遠心模型実験に関する国際プロジェクトを通じて ~ 京都大学防災研究所飛田哲男 1
2 遠心教 教義 : 遠心模型実験は万能なり. 得られた結果を信ずべし. 信者の数 : 不明 ( 全世界で数千人か ) 主な信者 : 大学教員, 発注者 ( 施主 ), 数値解析教の信者急進的な信者の特性 : 実験データを盲信する ( 遠心原理主義 ) 縁起 : 193 年代ロシアで自然発生的 (?) に始まる ( 始祖 : ダビデンコフとポコロフスキー ) 総本山大阪市立大学宗 (1964 年 ) ( 開祖 : 三笠教授 ) 門徒 : 京大, その他国内多数 総本山ケンブリッジ大学宗 (1964 年 ) ( 開祖 : スコフィールド教授 ) 門徒 :UC Davis, RPI, 京大, 東工大, その他多数 2
3 遠心教 年表 1869 年エドゥアルド フィリップス ( フランス ) 弾性理論の限界を指摘. 遠心模型実験の相似則提案 ( その後約 6 年間進展なし ) 1931 年フィリップ バッキー ( コロンビア大学 ) 遠心場で坑道の天井崩壊を模擬. ただし, 計測装置は使われておらず, その後進展なし. Prof. Phillips 1932 年ダビデンコフとポロフスキー ( ロシア ) 遠心模型実験の研究企画案 ( ロシア語 ) 当初は核開発の一環として利用 年ポロフスキーとヒョードロフ ( ロシア ) 第 1 回国際地盤工学会 ( ハーバード ) で遠心模型実験ついて発表 ( 遠心に関するロシア人初の英語文献 ) ( 鉄のカーテンで西側との交流なし ) 1964 年三笠 ( 大阪市立大学 ) 自重の影響を考慮した圧密理論の検証に, 商用では初となる遠心力載荷装置のちに自ら設計した装置を使った 年スコフィールド ( ケンブリッジ大学 )Cam Clay モデル ( 土の弾塑性構成則 ) の検証のため, ロシアのテキスト (1968, 1969 年版 ) を参考に, 遠心力載荷装置を開発 Prof. Schofield 1974 年スコフィールド ( ケンブリッジ大学 ) 1m ビーム と呼ばれる大型の装置を開発 "Geotechnical Centrifuge Technology" Ed. by R. N. Taylor 3
4 国名 機関 有効半径 (m) 最大加速度 (g) Canada Queen's U France CESTA 1 1 France LCPC, Nantes Germany Ruhr U Bochum India IIT, Bombay Japan Chuo U Japan Fish Agy 3 15 Japan Hokkaido Devel Agy Japan Kajima Co Japan Kyoto U Japan Min of Const, PWRI Japan Min of Trans, PARI Japan Nippon Koei Co Japan Nishimatsu Co Japan Nikken Sekkei NGI Japan Obayashi Japan Osaka City U Japan Shimizu Co Japan Taisei Co Japan Takenaka Co Korea Daewoo Inst Const Tech Korea KAIST 5. 2 Holland Delft Geot 6 4 China China Inst Wat Res China Hong Kong UST 4 15 China Inst Wat Cons Res China Nanjing Hydr Res Inst 5 2 China Yangtze Riv Res Inst China Tongji U 3. 2 Russia Moscow Inst Rail Eng Taiwan Nat Cent U 3 2 UK Cambridge U UK Manchester U USA Rensselaer Poly Inst 3 2 USA Sandia Lab USA U Calif, Davis USA U Colorado, Boulder 6 2 USA US Army Corp Eng, WES 遠心教本山 末寺 IFSTTAR, France Tongji Univ, China UC Davis, USA 4
5 本尊 : 遠心力載荷装置とは? 地盤 構造物系の挙動を正確に把握するための模型実験に使用する装置 5
6 本堂 : 遠心力載荷装実験室 於京都大学防災研究所 プラットフォーム + 土槽この地下に本尊があります. 有効回転半径 2.5m 振動台 蓄圧タンク 油タンクと油圧ポンプ 6
7 指導原理 ( 遠心実験の仕組み ) 遠心模型実験では, 模型に大きな遠心加速度を作用させます. このため, アーム先端のプラットフォームと呼ばれるブランコになっているところに模型を載せます. そしてアームを高速で回転させると, ブランコが遠心力で持ち上がってきます. この時, ブランコに載せた模型は横向きになりますが, 遠心力が外向きにかかっているので, 模型は落ちてきません. ちょうど水の入ったバケツを手で持って, 体ごとぐるぐる回るのと一緒です. 回転速度が上がってくると, バケツは横向きになりますが, 遠心力により水はこぼれませんね. これと同じ原理です. 7
8 遠 載荷装置がなぜ必要か 相似則により拘束圧依存性を す の応 ーひずみ関係を忠実に再現 規模な 建築構造物の挙動を縮 モデルで再現 実物 縮 模型 重 加速度 1G さの縮尺 1/N ( さくする ) 遠 加速度 N G 応力 応力 地下の地盤要素 ひずみ 等しい! ひずみ 8
9 実物遠心場模型 1G 場模型 地盤 ( 模型 ) z : 密度 gz 相似則 1/N に縮尺する z/n gz z/n g(z/n) 作用する重力 / 遠心加速度 1 G N G (N>1) 1 G 深さ z の上載圧 ( 拘束圧 ) gz (Ng)(z/N)= gz gz/n 応力 - ひずみ関係 応力 応力 応力 ポイント! 土の強度は拘束圧に大きく依存する! ひずみ ひずみ ひずみ 9
10 津波防波堤の転倒 211 年東北地 太平洋沖地震 津波による釜 湾港防波堤の被災 1
11 飽和傾斜地盤を対象とした遠心模型実験における 半径方向の遠心力場の影響 A part of the following contents have been submitted to the special issue for LEAP in Soil Dynamics and Earthquake Engineering. (5/19/216) 11
12 国際プロジェクト LEAP (Liquefaction Experiment and Analysis Project) とは? VELACS Project (Arulanandan & Scott ) の 21 世紀版 Arulanandan K, Scott RF ( ). "Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems," Proceedings of the International Conference on the Verification of Numerical Procedures for the Analysis of Soil Liquefaction Problems, Vols. 1 and 2, A. A. Balkema, Rotterdam, the Netherlands. 強い非線形性を有する地盤振動問題 ( 液状化地盤 ) に対する数値解析コードの妥当性の検証 と 一斉試験による飽和砂地盤の遠心場模型振動実験 参加機関京大, 東工大, 愛媛大,UC Davis(USA), RPI(USA), GWU(USA), Cambridge(UK), Ziejian(China), NCU(Taiwan) 12
13 遠心模型実験における誤差の要因 半径方向の遠心力の影響 ( 地盤内鉛直応力の不均一性 ) 加振または2 次圧密時の載荷速度の影響 砂と構造物模型の寸法効果 コリオリ力 ( りよく ) 本研究で検討したこと LEAP に関する一斉実験 +α 飽和傾斜地盤に対する振動実験 傾斜地盤の地表面形状を 曲面 と 平面 にした場合の比較 13
14 傾斜模型地盤の断面と加速 度計, 水圧計の設置位置 (a) 曲面モデル (b) 平面モデル 加速度, 変位は下流向きを正とする 遠心場 :44.4 G 粘性流体 :44.4cSt 傾斜角 :5 度 4 m 2 m 加振方向 ( 斜面の傾斜方向 ) とアームの回転方向は平行 4.9 m 加振方向 14
15 (a) 曲面モデル こちらのモデルがより精密に実地盤を表現していると考えられる 遠心力のため水面は曲面を描く 4 m 2 m 加振方向 15
16 (b) 平面モデル 模型作成が容易なため, 通常の実験に ( 特に断りなく ) 使われ, 数値解析の妥当性確認にも使われることがある. 遠心力のため水面は曲面を描く 4.9 m 4 m 2 m 加振方向 16
17 加振ケース Table 1(a) Event records for the test with curved surface 加振は全部で 5 回うち 2 回目と 4 回目が本加振 ターゲット最大加速度 1 回目 :.15g 2 回目 :.15g 3 回目 :.15g 4 回目 :.25g 5 回目 :.15g Table 1(b) Event records for the test with plane surface 17
18 修行僧 模型地盤の作成, 乾燥砂を所定の高さから落下させて均質な水平砂地盤を作る. 18
19 曲面モデルの作成には, 半径 2.5m の円弧を持つ金型を 5 度傾け, それに沿うように掃除機で砂を吸い取った. 19
20 模型地盤を粘性流体で完全に飽和させるために, 真空槽の中で間隙中の空気をいったん CO2 で置き換え, その後真空状態で流体を滴下する. 2
21 粘性流体の滴下の様子. しずくで地盤表面が乱されるのを防ぐためスポンジを引いている. 黒い点は地盤変位を計測するためのマーカー ( プラスチック製 ) 21
22 完成した曲面モデル 22
23 (a) Before mounting on the centrifuge platform (b) After the test 加振実験前後の地盤の状況 ( 曲面モデル ) 23
24 (a) Before mounting on the centrifuge arm (b) After the test 加振実験前後の地盤の状況 ( 平面モデル ) 24
25 Acceleration (g) a) AV b) AV c) AH d) AH Curved surface :Motion #2 Acceleration (g) Acceleration (g) Acceleration (g) Acceleration (g).35 e) AH f) AH g) AH h) AH 加速度時刻歴 ( 曲面モデル )Motion #2 曲面モデルでは, 地中加速度 (AH1 4) の負側 ( 上流側 ) に大きなスパイクが出ているが, 正側にも明瞭なスパイクが見受けられる. つまり, 地盤が体積膨張 と収縮を繰り返しながら (=Cyclic mobility), 徐々 に下流側に変位している (= 側方流動 ) ことがわかるがわかる. 下向き加速度正 加速度スパイクが発生する仕組み 25
26 加速度計の設置位置 26
27 .4 a) AV1 Curved surface :Motion #4 Acceleration (g) 1.2 e) AH4 曲面モデル : 入力加速度が大きくなっても傾向は同じ. Acceleration (g) b) AV c) AH11 Acceleration (g) Acceleration (g) f) AH g) AH2 地中加速度 (AH1 4): やや負側 ( 上流側 ) に大きなスパイクが出ているが, 正側にも明瞭なスパイクは見受けられる d) AH12 Acceleration (g) h) AH 加速度時刻歴 ( 曲面モデル )Motion #4 27
28 Acceleration (g) a) AV b) AV c) AH d) AH Plane surface :Motion #2 Acceleration (g) Acceleration (g) Acceleration (g) Acceleration (g) 1.2 e) AH f) AH g) AH h) AH 加速度時刻歴 ( 平面モデル )Motion #2 平面モデル : 地中加速度 (AH1 4) の負側 ( 上流側 ) のスパイクが卓越している. つまり, 地盤は体積膨張と収縮を繰り返しながら主として下流側に変位していることがわかる. 28
29 .4 a) AV1 Plane surface :Motion #4 Acceleration (g) 1.2 e) AH4 平面モデル : 入力加速度が大きくなっても傾向は同じ. Acceleration (g) b) AV c) AH11 Acceleration (g) Acceleration (g) f) AH g) AH2 地中加速度 (AH1 4) の負側 ( 上流側 ) のスパイクが卓越している. つまり, 地盤は体積膨張と収縮を繰り返しながら主として下流側に変位していることがわかる d) AH12 Acceleration (g) h) AH 加速度時刻歴 ( 平面モデル )Motion #4 29
30 Excess pore water pressure (kpa) a) P1 P2 P3 P b) Curved surface: Motion #2 P1 P9 Excess pore water pressure (kpa) a) P1 P2 P3 P b) Curved surface: Motion #4 P9 P (a) Motion #2 (b) Motion #4 過剰間隙水圧時刻歴 ( 曲面モデル ) 曲面モデル浅い地点の過剰間隙水圧 (P3 と P4) の最大値は, 初期の有効上載圧を大きく上回っている. これは地盤が流動したことにより, 上載圧が増加したためか? 不思議? 3
31 水圧計の設置位置 P9 P1 31
32 Excess pore water pressure (kpa) a) P1 P2 P3 P b) Plane surface: Motion #2 P1 P Excess pore water pressure (kpa) a) P1 P2 P3 P b) Plane surface: Motion #4 P9 P (a) Motion #2 (b) Motion #4 過剰間隙水圧時刻歴 ( 平面モデル ) 平面モデル浅い地点の過剰間隙水圧 (P3 と P4) の最大値は, 初期の有効上載圧付近に留まっている. 地盤が流動しても, 上載圧が増加していないことを示しているのか? 32
33 地表面のマーカー変位 (a) Curved surface model Motion #4 前後の地変面の側方流動の状況 ( 曲面モデル ) 一様に下流側に変位 33?
34 地表面のマーカー変位 Motion #4 前後の地変面の側方流動の状況 ( 平面モデル ) 34
35 マーカ変位が斜め下流方向!? プラットフォームがきちんと上がっていないのか? 35
36 曲面を描く遠心場に対して傾斜地盤をいかにつくるか. O Q (, R) Sandbox P (, r) z x Equipotential line Rotated equipotential line 点 (, r) に関する座標変換 x' cos sin x z ' sin cos z r r 曲面モデルの作成方法 36
37 曲面を描く遠心力場を, 平面上に投影してみる. こうすることで, 実験模型がどのような 重力場にあるのかがわかる. O d x h A Equipotential line ( d, h) Projected equipotential line z B d d h, d h h 曲がった等遠心力線の直線への射影 37
38 実験時の地表面形状 射影した地表面形状 38
39 実験時の地表面形状 射影した地表面形状 39
40 Figure 19 Original shape and projected the ground surface: (a) Curved surface and (b) Plane 4 surface.
41 まとめ 教訓 : 常に批判精神を持っていれば, 実験結果を盲信する遠心原理主義者にはならない 飽和傾斜地盤に対する振動実験を行い, 斜面形状が 曲面 と 平面 の場合の応答の違いを比較した. サイクリックモビリティーによる加速度時刻歴のスパイクの出方に明らかな差 曲面 模型: 過剰間隙水圧の最大値が初期有効拘束圧より大きくなる 平面 模型: 側方流動量がやや大きい いずれも模型も側方流動方向は斜め下流方向 等ポテンシャル面上では, 平面 模型の傾斜が下流に向かって急になる 41
Microsoft PowerPoint - 2_6_shibata.ppt [互換モード]
圧密問題への逆問題の適用 一次元圧密と神戸空港の沈下予測 1. 一次元圧密の解析 2. 二次元圧密問題への適用 3. 神戸空港の沈下予測 1. 一次元圧密の解析 一次元圧密の実験 試験システムの概要 分割型圧密試験 逆解析の条件 未知量 ( 同定パラメータ ) 圧縮指数 :, 透水係数 :k 初期体積ひずみ速度 : 二次圧密係数 : 観測量沈下量 ( 計 4 点 ) 逆解析手法 粒子フィルタ (SIS)
Microsoft PowerPoint - suta.ppt [互換モード]
弾塑性不飽和土構成モデルの一般化と土 / 水連成解析への適用 研究の背景 不飽和状態にある土構造物の弾塑性挙動 ロックフィルダム 道路盛土 長期的に正確な予測 不飽和土弾塑性構成モデル 水頭変動 雨水の浸潤 乾湿の繰り返し 土構造物の品質変化 不飽和土の特徴的な力学特性 不飽和土の特性 サクション サクション s w C 飽和度が低い状態 飽和度が高い状態 サクションの効果 空気侵入値 B. サクション増加
PowerPoint プレゼンテーション
不飽和土の力学を用いた 締固めメカニズムの解明 締固めとは 土に力を加え 間隙中の空気を追い出すことで土の密度を高めること 不飽和土 圧縮性の減少透水性の減少せん断 変形抵抗の増大 などに効果あり 締固め土は土構造物の材料として用いられている 研究背景 現場締固め管理 締固め必須基準 D 値 施工含水比 施工層厚 水平まきだし ( ρdf ) 盛土の乾燥密度 D値 = 室内締固め試験による最大乾燥密度
Microsoft PowerPoint - 発表II-3原稿r02.ppt [互換モード]
地震時の原子力発電所燃料プールからの溢水量解析プログラム 地球工学研究所田中伸和豊田幸宏 Central Research Institute of Electric Power Industry 1 1. はじめに ( その 1) 2003 年十勝沖地震では 震源から離れた苫小牧地区の石油タンクに スロッシング ( 液面揺動 ) による火災被害が生じた 2007 年中越沖地震では 原子力発電所内の燃料プールからの溢水があり
自由落下と非慣性系における運動方程式 目次無重力... 2 加速度計は重力加速度を測れない... 3 重量は質量と同じ数値で kg が使える... 3 慣性系における運動方程式... 4 非慣性系における運動方程式... 6 見かけの力... 7 慣性系には実在する慣
自由落下と非慣性系における運動方程式 1 1 2 3 4 5 6 7 目次無重力... 2 加速度計は重力加速度を測れない... 3 重量は質量と同じ数値で kg が使える... 3 慣性系における運動方程式... 4 非慣性系における運動方程式... 6 見かけの力... 7 慣性系には実在する慣性力があるか... 7 1 2 無重力 (1) 非慣性系の住人は無重力を体感できる (a) 併進的な加速度運動をしている非慣性系の住人
国土技術政策総合研究所 研究資料
3. 解析モデルの作成汎用ソフトFEMAP(Ver.9.0) を用いて, ダムおよび基礎岩盤の有限要素メッシュを8 節点要素により作成した また, 貯水池の基本寸法および分割数を規定し,UNIVERSE 2) により差分メッシュを作成した 3.1 メッシュサイズと時間刻みの設定基準解析結果の精度を確保するために, 堤体 基礎岩盤 貯水池を有限要素でモデル化する際に, 要素メッシュの最大サイズならびに解析時間刻みは,
Microsoft PowerPoint - 知財報告会H20kobayakawa.ppt [互換モード]
亀裂の変形特性を考慮した数値解析による岩盤物性評価法 地球工学研究所地圏科学領域小早川博亮 1 岩盤構造物の安定性評価 ( 斜面の例 ) 代表要素 代表要素の応力ひずみ関係 変形: 弾性体の場合 :E,ν 強度: モールクーロン破壊規準 :c,φ Rock Mech. Rock Engng. (2007) 40 (4), 363 382 原位置試験 せん断試験, 平板載荷試験 原位置三軸試験 室内試験
<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074>
地盤数値解析学特論 防災環境地盤工学研究室村上哲 Mrakam, Satoh. 地盤挙動を把握するための基礎. 変位とひずみ. 力と応力. 地盤の変形と応力. 変位とひずみ 変形勾配テンソルひずみテンソル ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソル 微小変形状態でのひずみテンソル ひずみテンソルの物理的な意味
数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュ
数値計算で学ぶ物理学 4 放物運動と惑星運動 地上のように下向きに重力がはたらいているような場においては 物体を投げると放物運動をする 一方 中心星のまわりの重力場中では 惑星は 円 だ円 放物線または双曲線を描きながら運動する ここでは 放物運動と惑星運動を 運動方程式を導出したうえで 数値シミュレーションによって計算してみる 4.1 放物運動一様な重力場における放物運動を考える 一般に質量の物体に作用する力をとすると運動方程式は
土の三軸圧縮試験
J G S 5 土の三軸試験の供試体作製 設置 サンプルデータ試験年月日平成 6 年 9 月 6 日 試料番号 ( 深さ ) T- (8.~8.7m) 試験者藤代哲也 供試体を用いる試験の基準番号と名称 試料の状態 供試体の作製 土質名称 置 飽和過程圧密前(試験前供試体 No. 直径 平均直径 D i 初高さ 期平均高さ H i 状体積 V i 含水比 w i 質量 m i 態) 湿潤密度 ρ ti
Microsoft PowerPoint - 宅地液状化_印刷用
戸建て住宅地の液状化被害メカニズムの解明と対策工の検討 名古屋大学大学院工学研究科社会基盤工学専攻中井健太郎 名古屋大学連携研究センター野田利弘 平成 27 年 11 月 14 日第 9 回 NIED-NU 研究交流会 1. 背景 目的 2. 建物による被害影響 材料定数, 境界条件 高さ 重量の影響 地盤層序と固有周期の影響 3. 被害に及ぼす隣接建物の影響 2 棟隣接時の隣接距離と傾斜方向の関係
<4D F736F F D E682568FCD CC82B982F192668BAD93785F F2E646F63>
7. 粘土のせん断強度 ( 続き ) 盛土 Y τ X 掘削 飽和粘土地盤 せん断応力 τ( 最大値はせん断強度 τ f ) 直応力 σ(σ) 一面せん断 図 強固な地盤 2 建物の建設 現在の水平な地表面 ( 建物が建設されている過程では 地下水面の位置は常に一定とする ) 堆積 Y 鉛直全応力 σ ( σ ) 水平全応力 σ ( σ ) 間隙水圧 図 2 鉛直全応力 σ ( σ ) 水平全応力
2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように
3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入
本日話す内容
6CAE 材料モデルの VV 山梨大学工学部土木環境工学科吉田純司 本日話す内容 1. ゴム材料の免震構造への応用 積層ゴム支承とは ゴムと鋼板を積層状に剛結 ゴム層の体積変形を制限 水平方向 鉛直方向 柔 剛 加速度の低減 構造物の支持 土木における免震 2. 高減衰積層ゴム支承の 力学特性の概要 高減衰ゴムを用いた支承の復元力特性 荷重 [kn] 15 1 5-5 -1-15 -3-2 -1 1
木村の物理小ネタ ケプラーの第 2 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という) が単位時間に描く面積を 動点 P の定点 O に
ケプラーの第 法則と角運動量保存則 A. 面積速度面積速度とは平面内に定点 O と動点 P があるとき, 定点 O と動点 P を結ぶ線分 OP( 動径 OP という が単位時間に描く面積を 動点 P の定点 O に関する面積速度の大きさ という 定点 O まわりを回る面積速度の導き方導き方 A ( x( + D, y( + D v ( q r ( A ( x (, y( 動点 P が xy 座標平面上を時刻
Microsoft PowerPoint - 流体力学の基礎02(OpenFOAM 勉強会 for geginner).pptx
~ 流体力学の基礎 ~ 第 2 回 流体静力学 2011 年 10 月 22 日 ( 土 ) 講習会のスケジュール概要 ( あくまでも現時点での予定です ) 流体力学の基礎 第 1 回目 2011.09 流体について 第 2 回目 2011.10 流体静力学 第 3 回目 2011.11/12 流体運動の基礎理論 1 第 4 回目 2012.01 流体運動の基礎理論 2 第 5 回目 2012.02
<94F E4F8EB25F >
JGS 5 土の三軸試験の供試体作製 設置 初期状態% 設)炉容器 No. 後供試体を用いる試験の基準番号と名称 JGS 51-9 土の繰返し非排水三軸試験 試 料 の 状 態 1) 乱さない 土粒子の密度 ρ s g/cm 供 試 体 の 作 製 ) トリミング 液 性 限 界 w L ) % 土 質 名 称 礫まじり粘土質砂 塑 性 限 界 w P ) % 1 5.1.96.98 質量 m i
6
6. 圧密理論 6. 圧密理論 6.. 圧密方程式の誘導 粘土層の圧密原因とメカニズム 地下水位の低下 盛土建設 最終圧縮量と圧縮速度 6. 圧密理論 記号の統一間隙水圧 ( 絶対圧 ): u 間隙水圧 (gauge 圧 ): u u p a ( 大気圧 ) 過剰間隙水圧 : Δu ( 教科書は これを u と記している 初期状態が u p a で u の時で uδu の状態を対象にしている ) 微小の増分
第 Ⅰ 部 Excel VBA による一次元圧密 FE 解析 1. 軟弱地盤の長期沈下と二次圧密慣用的一次元圧密解析は, 標準圧密試験結果を利用し実際地盤の圧密沈下量とその発生時間を予測する.1 日間隔で載荷する標準圧密試験では, 二次圧密の継続中に次の載荷段階の荷重が載荷される. 圧密期間を長くす
目 次 まえがき iii 第 Ⅰ 部 Excel VBA による一次元圧密 FE 解析 1 1. 軟弱地盤の長期沈下と二次圧密 1 2. 弾塑性一次元圧密 FE 解析例 3 3. 二次圧密モデルと一次元圧密方程式 5 4. 二次圧密を考慮した一次元圧密 FE 解析 7 4.1 土質定数の決定法 7 4.2 計算例 ~ 1; 単一層, 均質地盤 : 両面排水条件 Consol A.xlsm 8 4.3
Microsoft PowerPoint - H24 aragane.pptx
海上人工島の経年品質変化 研究背景 目的 解析条件 ( 境界条件 構成モデル 施工履歴 材料パラメータ ) 実測値と解析値の比較 ( 沈下量 ) 将来の不等沈下予測 ケーススタディー ( 埋土施工前に地盤改良を行う : 一面に海上 SD を打設 ) 研究背景 目的 解析条件 ( 境界条件 構成モデル 施工履歴 材料パラメータ ) 実測値と解析値の比較 ( 沈下量 ) 将来の不等沈下予測 ケーススタディー
国土技術政策総合研究所 研究資料
参考資料 崩壊の恐れのある土層厚の空間分布を考慮したがけ崩れ対策に関する検討 参考資料 崩壊の恐れのある土層厚の空間分布を考慮したがけ崩れ対策に関する検討 ここでは 5 章で示した方法により急傾斜地における崩壊する恐れがある層厚の面的分布が明らかとなった場合のがけ崩れ対策手法について検討する 崩壊する恐れがある層厚の面的な分布は 1 土砂災害警戒区域等における土砂災害防止対策の推進に関する法律( 以下
4. 粘土の圧密 4.1 圧密試験 沈下量 問 1 以下の問いに答えよ 1) 図中の括弧内に入る適切な語句を答えよ 2) C v( 圧密係数 ) を 圧密試験の結果から求める方法には 圧密度 U=90% の時間 t 90 から求める ( 5 ) 法と 一次圧密理論曲線を描いて作成される ( 6 )
4. 粘土の圧密 4. 圧密試験 沈下量 問 以下の問いに答えよ ) 図中の括弧内に入る適切な語句を答えよ ) ( 圧密係数 ) を 圧密試験の結果から求める方法には 圧密度 U9% の時間 9 から求める ( 5 ) 法と 一次圧密理論曲線を描いて作成される ( 6 ) と実験曲線を重ね合わせて圧密度 5% の 5 を決定する ( 6 ) 法がある ) 層厚 の粘土層がある この粘土層上の載荷重により粘土層の初期間隙比.
杭の事前打ち込み解析
杭の事前打ち込み解析 株式会社シーズエンジニアリング はじめに杭の事前打込み解析 ( : Pile Driving Prediction) は, ハンマー打撃時の杭の挙動と地盤抵抗をシミュレートする解析方法である 打ち込み工法の妥当性を検討する方法で, 杭施工に最適なハンマー, 杭の肉厚 材質等の仕様等を決めることができる < 特徴 > 杭施工に最適なハンマーを選定することができる 杭の肉厚 材質等の仕様を選定することができる
<4D F736F F F696E74202D AB97CD8A E631318FCD5F AB8D5C90AC8EAE816A2E B8CDD8AB B83685D>
弾塑性構成式 弾塑性応力 ひずみ解析における基礎式 応力の平衡方程式 ひずみの適合条件式 構成式 (), 全ひずみ理論 () 硬化則 () 塑性ポテンシャル理論の概要 ひずみ 応力の増分, 速度 弾性丸棒の引張変形を考える ( 簡単のため 公称 で考える ). 時間増分 dt 時刻 t 0 du u 時刻 t t 時刻 t t のひずみ, 応力 u, 微小な時間増分 dt におけるひずみ増分, 応力増分
(1) 擁壁の設計 東京都 H=2.0m < 常時に関する計算 > 2000 PV w1 w2 w3 PH GL 350 1800 97 4 土の重量 16.0, コンクリートの重量 24.0 摩擦係数 0.30, 表面載荷 9.8 ( 土圧係数は直接入力による ) 安定計算用の土圧係数 0.500 壁体計算用の土圧係数 0.500 W1 = 12.6, W2 = 12.3, W3 = 78.1 PH
Microsoft PowerPoint - fuseitei_6
不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という
PowerPoint プレゼンテーション
SALOME-MECA を使用した RC 構造物の弾塑性解析 終局耐力と弾塑性有限要素法解析との比較 森村設計信高未咲 共同研究者岐阜工業高等専門学校柴田良一教授 研究背景 2011 年に起きた東北地方太平洋沖地震により多くの建築物への被害がみられた RC 構造の公共建築物で倒壊まではいかないものの大きな被害を負った報告もあるこれら公共建築物は災害時においても機能することが求められている今後発生が懸念されている大地震を控え
H23 基礎地盤力学演習 演習問題
せん断応力 τ (kn/m ) H6 応用地盤力学及び演習演習問題 4 年月日. 強度定数の算定 ある試料について一面せん断試験 ( 供試体の直径 D=6.cm, 高さ H=.cm) を行い 表に示す データを得た この土の強度定数 c, φ を求めよ 垂直応力 P (N) 4 せん断力 S (N) 5 8 < 解答 > 供試体の断面積 A=πD /4 とすると 垂直応力 σ=p/a 最大せん断応力
パソコンシミュレータの現状
第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に
<8E9197BF2D375F8DC489748FF389BB82CC8C9F93A295FB964081A695CF8D5882C882B52E786477>
再液状化の検討方法 1. 液状化の判定方法 液状化の判定は 建築基礎構造設計指針 ( 日本建築学会 ) に準拠して実施する (1) 液状化判定フロー 液状化判定フローを図 -7.1 に示す START (2) 判定対象土層 資料 -7 液状化の判定を行う必要がある飽和土層は 一般に地表面から 20m 程度以浅の沖積層で 考慮すべき土の種類は 細粒分含有率が 35% 以下の土とする ただし 埋立地盤など人口造成地盤では
ニュートン重力理論.pptx
3 ニュートン重力理論 1. ニュートン重力理論の基本 : 慣性系とガリレイ変換不変性 2. ニュートン重力理論の定式化 3. 等価原理 4. 流体力学方程式とその基礎 3.1 ニュートン重力理論の基本 u ニュートンの第一法則 = 力がかからなければ 等速直線運動を続ける u 等速直線運動に見える系を 慣性系 と呼ぶ ² 直線とはどんな空間の直線か? ニュートン理論では 3 次元ユークリッド空間
Microsoft Word - thesis.doc
剛体の基礎理論 -. 剛体の基礎理論初めに本論文で大域的に使用する記号を定義する. 使用する記号トルク撃力力角運動量角速度姿勢対角化された慣性テンソル慣性テンソル運動量速度位置質量時間 J W f F P p .. 質点の並進運動 質点は位置 と速度 P を用いる. ニュートンの運動方程式 という状態を持つ. 但し ここでは速度ではなく運動量 F P F.... より質点の運動は既に明らかであり 質点の状態ベクトル
Microsoft Word - CPTカタログ.doc
新しい地盤調査法のすすめ CPT( 電気式静的コーン貫入試験 ) による地盤調査 2002 年 5 月 ( 初編 ) 2010 年 9 月 ( 改訂 ) 株式会社タカラエンジニアリング 1. CPT(Cone Peneraion Tesing) の概要日本の地盤調査法は 地盤ボーリングと標準貫入試験 ( 写真 -1.1) をもとに土質柱状図と N 値グラフを作成する ボーリング孔内より不攪乱試料を採取して室内土質試験をおこない土の物理
構造力学Ⅰ第12回
第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB
PowerPoint Presentation
Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /
Microsoft Word - 第5章.doc
第 5 章表面ひび割れ幅法 5-1 解析対象 ( 表面ひび割れ幅法 ) 表面ひび割れ幅法は 図 5-1 に示すように コンクリート表面より生じるひび割れを対象とした解析方法である. すなわち コンクリートの弾性係数が断面で一様に変化し 特に方向性を持たない表面にひび割れを解析の対象とする. スラブ状構造物の場合には地盤を拘束体とみなし また壁状構造物の場合にはフーチングを拘束体として それぞれ外部拘束係数を定める.
177 箇所名 那珂市 -1 都道府県茨城県 市区町村那珂市 地区 瓜連, 鹿島 2/6 発生面積 中 地形分類自然堤防 氾濫平野 液状化発生履歴 なし 土地改変履歴 大正 4 年測量の地形図では 那珂川右岸の支流が直線化された以外は ほぼ現在の地形となっている 被害概要 瓜連では気象庁震度 6 強
177 箇所名 那珂市 -1 都道府県茨城県 市区町村那珂市 地区 瓜連, 鹿島 1/6 発生面積 中 地形分類自然堤防 氾濫平野 液状化発生履歴 なし 土地改変履歴 大正 4 年測量の地形図では 那珂川右岸の支流が直線化された以外は ほぼ現在の地形となっている 被害概要 瓜連では気象庁震度 6 強を記録し 地震動が強い マンホールの浮上または周辺地盤の沈下 液状化によるものかどうかは明瞭でないが
<926E906B8E9E2D958282AB8FE382AA82E882CC8C9F93A22E626376>
ボックスカルバートの地震時設計 浮き上がりの検討. 設計条件 () 設計地震動 地震動 レベル () 概要図 400 3900 3000 3000 4000 (3) ボックスカルバート条件 ) 寸法諸元形状 内幅 B(mm) 内高 H(mm) 頂版厚 T(mm) 底版厚 T(mm) 左側壁厚 T3(mm) 右側壁厚 T4(mm) 外幅 B0(mm) 外高 H0(mm) 頂版ハンチ高 C(mm) 底版ハンチ高
19年度一次基礎科目計算問題略解
9 年度機械科目 ( 計算問題主体 ) 略解 基礎科目の解析の延長としてわかる範囲でトライしてみたものです Coprigh (c) 7 宮田明則技術士事務所 Coprigh (c) 7 宮田明則技術士事務所 Ⅳ- よってから は許容荷重として は直径をロ - プの断面積 Ⅳ- cr E E E I, から Ⅳ- Ⅳ- : q q q q q q q q q で絶対値が最大 で絶対値が最大モーメントはいずれも中央で最大となる
<897E8C F80837D A815B838B81458FE395948ECE95C7817B8145>
円形標準マンホール 上部斜壁 + 床版タイプ 浮上がりの検討. 設計条件 () 設計地震動 地震動レベル () 概要図 呼び方内径 都型 ( 内径 0cm) 00 00 0 600 0 0.00.0 0.0 0.0.0.70 0 60 00 60 60 00.0.0 00 00 00 00 00 P () マンホール条件 ) 寸法諸元 6 7 種類 呼び名 高さ モル 上部 下部 タル 外径 内径
Microsoft Word - 技術資料Vol.2.docx
技術資料 Vol.2 Civil Engineering & Consultants 株式会社クレアテック東京都千代田区西神田 2 丁目 5-8 共和 15 番館 6 階 TEL:03-6268-9108 / FAX:03-6268-9109 http://www.createc-jp.com/ ( 株 ) クレアテック技術資料 Vol.2 P.1 解析種別キーワード解析の目的解析の概要 3 次元静的線形解析
Microsoft PowerPoint - elast.ppt [互換モード]
弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)
ギリシャ文字の読み方を教えてください
埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 単振り子の振動の近似解と厳密解 -/ テーマ H: 単振り子の振動の近似解と厳密解. 運動方程式図 のように, 質量 m のおもりが糸で吊り下げられている時, おもりには重力 W と糸の張力 が作用しています. おもりは静止した状態なので,W と F は釣り合った状態注 ) になっています. すなわち, W です.W は質量 m と重力加速度
Microsoft PowerPoint - 第5回電磁気学I
1 年 11 月 8 日 ( 月 ) 1:-1: Y 平成 年度工 系 ( 社会環境工学科 ) 第 5 回電磁気学 Ⅰ 天野浩 項目 電界と電束密度 ガウスの発散定理とガウスの法則の積分形と微分形 * ファラデーの電気力線の使い方をマスターします * 電界と電束密度を定義します * ガウスの発散定理を用いて ガウスの法則の積分形から微分形をガウスの法則の積分形から微分形を導出します * ガウスの法則を用いて
7 章問題解答 7-1 予習 1. 長方形断面であるため, 断面積 A と潤辺 S は, 水深 h, 水路幅 B を用い以下で表される A = Bh, S = B + 2h 径深 R の算定式に代入すると以下のようになる A Bh h R = = = S B + 2 h 1+ 2( h B) 分母の
7 章問題解答 7- 予習. 長方形断面であるため, 断面積 と潤辺 S は, 水深, 水路幅 B を用い以下で表される B, S B + 径深 R の算定式に代入すると以下のようになる B R S B + ( B) 分母の /B は河幅が水深に対して十分に広ければ, 非常に小さな値となるため, 上式は R ( B) となり, 径深 R は水深 で近似できる. マニングの式の水深 を等流水深 0 と置き換えると,
Microsoft PowerPoint - ВЬ“H−w†i…„…C…m…‰…Y’fl†j.ppt
乱流とは? 不規則運動であり, 速度の時空間的な変化が複雑であり, 個々の測定結果にはまったく再現性がなく, 偶然の値である. 渦運動 3 次元流れ 非定常流 乱流は確率過程 (Stochastic Process) である. 乱流工学 1 レイノルズの実験 UD = = ν 慣性力粘性力 乱流工学 F レイノルズ数 U L / U 3 = mα = ρl = ρ 慣性力 L U u U A = µ
大阪大学物理 8 を解いてみた Ⅱ. 問 ( g cosq a sin q ) m - 台 B 上の観測者から見ると, 小物体は, 斜面からの垂直抗力 N, 小物体の重力 mg, 水平左向きの慣性力 ma を受け, 台 B の斜面と平行な向きに運動する したがって, 小物体は台 B の斜面に垂直な方
大阪大学物理 8 を解いてみた Ⅰ. 問 g 最高点の座標を y max とすると, 力学的エネルギー保存則より \ y m mgy 補足 max g max 小物体の運動方向に対する仕事は重力 ( 保存力 ) の斜面に沿った成分のみであり, 垂直抗力 ( 非保存力 ) の仕事は である よって, 力学的エネルギー保存則が成り立つ これを確かめてみよう 小物体は重力の斜面に沿った外力を受けながらその運動エネルギーを失っていく
seika.PS
Carrier Gas Distiled Water Heater Mixed Gas Carrier gas with H 2 O Mixed Gas Inlet Sample Purge Ar gas Quartz Rod Quartz Tube Furnace Thermo Couple Clucible (Molten Salt) Gas Outlet アクティブ制御を用いた長尺アームの制振制御
物理演習問題
< 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が
2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録
遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数
4 beautiful teeth now 5 6 7 8 9 3.5 mm 3.3 mm 10 11.5 13 15 4.1 mm 3.75 mm 8.5 10 11.5 13 15 18 4 mm 8.5 10 11.5 13 15 18 5.1 mm 5 mm 8.5 10 11.5 13 15 18 10 5.5 mm 7mm 4.1 mm 5.1 mm 3.75 mm 4 mm 5 mm
Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt
シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析
計算機シミュレーション
. 運動方程式の数値解法.. ニュートン方程式の近似速度は, 位置座標 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます. 本来は が の極限をとらなければいけませんが, 有限の小さな値とすると 秒後の位置座標は速度を用いて, と近似できます. 同様にして, 加速度は, 速度 の時間微分で, d と定義されます. これを成分で書くと, d d li li とかけます.
円筒面で利用可能なARマーカ
円筒面で利用可能な AR マーカ AR Marker for Cylindrical Surface 2014 年 11 月 14 日 ( 金 ) 眞鍋佳嗣千葉大学大学院融合科学研究科 マーカベース AR 二次元マーカはカメラ姿勢の推定, 拡張現実等広い研究分野で利用されている 現実の風景 表示される画像 デジタル情報を付加 カメラで撮影し, ディスプレイに表示 使用方法の単純性, 認識の安定性からマーカベース
<4D F736F F D2081A E682568FCD926E94D592B28DB E94D589FC97C78C7689E62E646F63>
第 7 章 地盤調査 地盤改良計画 第 1 節地盤調査 1 地盤調査擁壁の構造計算や大規模盛土造成地の斜面安定計算等に用いる土質定数を求める場合は 平成 13 年 7 月 2 日国土交通省告示第 1113 号地盤の許容応力度及び基礎ぐいの許容支持力を求めるための地盤調査の方法並びにその結果に基づき地盤の許容応力度及び基礎ぐいの許容支持力を定める方法等を定める件 ( 以下 この章において 告示 という
補足 中学で学習したフレミング左手の法則 ( 電 磁 力 ) と関連付けると覚えやすい 電磁力は電流と磁界の外積で表される 力 F 磁 電磁力 F li 右ねじの回転の向き電 li ( l は導線の長さ ) 補足 有向線分とベクトル有向線分 : 矢印の位
http://totemt.sur.ne.p 外積 ( ベクトル積 ) の活用 ( 面積, 法線ベクトル, 平面の方程式 ) 3 次元空間の つのベクトルの積が つのベクトルを与えるようなベクトルの掛け算 ベクトルの積がベクトルを与えることからベクトル積とも呼ばれる これに対し内積は符号と大きさをもつ量 ( スカラー量 ) を与えるので, スカラー積とも呼ばれる 外積を使うと, 平行四辺形や三角形の面積,
土の段階載荷による圧密試験
J I S A 1 1 7 土の段階載荷による圧密試験 ( 計算書 ) サンプルデータ試験年月日平成 6 年 9 月 6 日 試料番号 ( 深さ ) T1- (14.00~14.85m) 試験者藤代哲也初試験機 No. 1 直径 D cm 6.000 含水比 w0 % 5.3 供期最低 ~ 最高室温 0.5~1.0断面積 A cm 8.7 間隙比 e 0, 体積比 f 0 0.930 状土質名称粘性土まじり砂質礫
PowerPoint Presentation
CAE 演習 :Eas-σ lite に よる応力解析 目標 : 機械工学実験 はりの曲げと応力集中 の有限要素法による応力解析を行う 用語 CAD: Computer Aided Design CAE: Computer Aided Engineering コンピュータシミュレーション CAM: Computer Aided Manufacturing スケジュール. 有限要素法の基礎と応用例 2.
第6章 実験モード解析
第 6 章実験モード解析 6. 実験モード解析とは 6. 有限自由度系の実験モード解析 6.3 連続体の実験モード解析 6. 実験モード解析とは 実験モード解析とは加振実験によって測定された外力と応答を用いてモードパラメータ ( 固有振動数, モード減衰比, 正規固有モードなど ) を求める ( 同定する ) 方法である. 力計 試験体 変位計 / 加速度計 実験モード解析の概念 時間領域データを利用する方法
Microsoft PowerPoint - 1章 [互換モード]
1. 直線運動 キーワード 速さ ( 等速直線運動, 変位 ) 加速度 ( 等加速度直線運動 ) 重力加速度 ( 自由落下 ) 力学 I 内容 1. 直線運動 2. ベクトル 3. 平面運動 4. 運動の法則 5. 摩擦力と抵抗 6. 振動 7. 仕事とエネルギー 8. 運動量と力積, 衝突 9. 角運動量 3 章以降は, 運動の向きを考えなければならない 1. 直線運動 キーワード 速さ ( 等速直線運動,
Microsoft Word - 4_構造特性係数の設定方法に関する検討.doc
第 4 章 構造特性係数の設定方法に関する検討 4. はじめに 平成 年度 年度の時刻歴応答解析を実施した結果 課題として以下の点が指摘 された * ) 脆性壁の評価法の問題 時刻歴応答解析により 初期剛性が高く脆性的な壁については現在の構造特性係数 Ds 評価が危険であることが判明した 脆性壁では.5 倍程度必要保有耐力が大きくなる * ) 併用構造の Ds の設定の問題 異なる荷重変形関係を持つ壁の
伝熱学課題
練習問題解答例 < 第 章強制対流熱伝達 >. 式 (.9) を導出せよ (.6) を変換する 最初に の微分値を整理しておく (.A) (.A) これを用いて の微分値を求める (.A) (.A) (.A) (.A6) (.A7) これらの微分値を式 (.6) に代入する (.A8) (.A9) (.A) (.A) (.A) (.9). 薄い平板が温度 で常圧の水の一様な流れの中に平行に置かれている
地盤情報DBの利用と活用方法
地盤モデルと DYNEQ CKC-Liq を利用した解析演習 地盤工学会関東支部関東地域における地盤情報の社会的 工学的活用法の検討委員会 ( 委員長 : 龍岡文夫 副委員長 : 安田進 幹事長 : 清木隆文 ) 中央開発株式会社王寺秀介 1 1. 地震応答解析の実施例 電子地盤図の地盤モデルを用いた地震応答解析の実施例を紹介する この事例は 地盤モデルの TXT ファイルを地震応答解析プログラム
京都大学博士 ( 工学 ) 氏名宮口克一 論文題目 塩素固定化材を用いた断面修復材と犠牲陽極材を併用した断面修復工法の鉄筋防食性能に関する研究 ( 論文内容の要旨 ) 本論文は, 塩害を受けたコンクリート構造物の対策として一般的な対策のひとつである, 断面修復工法を検討の対象とし, その耐久性をより
塩素固定化材を用いた断面修復材と犠牲陽極材を併用し Titleた断面修復工法の鉄筋防食性能に関する研究 ( Abstract_ 要旨 ) Author(s) 宮口, 克一 Citation Kyoto University ( 京都大学 ) Issue Date 2015-01-23 URL https://doi.org/10.14989/doctor.k18 Right Type Thesis
スライド 1
5.5.2 画像の間引き 5.1 線形変換 5.2 アフィン変換 5.3 同次座標 5.4 平面射影変換 5.5 再標本化 1. 画素数の減少による表現能力の低下 画像の縮小 変形を行う際 結果画像の 画素数 < 入力画像の 画素数 ( 画素の密度 ) ( 画素の密度 ) になることがある この場合 結果画像の表現力 < 入力画像の表現力 ( 情報量 ) ( 情報量 ) 結果的に 情報の損失が生じる!
OCW-iダランベールの原理
講義名連続体力学配布資料 OCW- 第 2 回ダランベールの原理 無機材料工学科准教授安田公一 1 はじめに今回の講義では, まず, 前半でダランベールの原理について説明する これを用いると, 動力学の問題を静力学の問題として解くことができ, さらに, 前回の仮想仕事の原理を適用すると動力学問題も簡単に解くことができるようになる また, 後半では, ダランベールの原理の応用として ラグランジュ方程式の導出を示す
15690B_表紙1-4.pdf
ISO 14001 ISO 13485:2003 0086 Beautiful Teeth Now...4...5...6...7...8...9...9...10...10....11...11...12...13...14...17...18...23...24...29 1...30 2...32 3...33 4...34...35...39 3 beautiful teeth now 2
<4D F736F F F696E74202D20906C8D488AC28BAB90DD8C7689F090CD8D488A D91E F1>
人工環境設計解析工学構造力学と有限要素法 ( 第 回 ) 東京大学新領域創成科学研究科 鈴木克幸 固体力学の基礎方程式 変位 - ひずみの関係 適合条件式 ひずみ - 応力の関係 構成方程式 応力 - 外力の関係 平衡方程式 境界条件 変位規定境界 反力規定境界 境界条件 荷重応力ひずみ変形 場の方程式 Γ t Γ t 平衡方程式構成方程式適合条件式 構造力学の基礎式 ひずみ 一軸 荷重応力ひずみ変形
.( 斜面上の放物運動 ) 目的 : 放物運動の方向の分け方は, 鉛直と水平だけではない 図のように, 水平面から角 だけ傾いた固定した滑らかな斜面 と, 質量 の小球を用意する 原点 から斜面に垂直な向きに, 速さ V で小球を投げ上げた 重力の加速度を g として, 次の問い に答えよ () 小
折戸の物理 演習編 ttp://www.orito-buturi.co/ N..( 等加速度運動目的 : 等加速度運動の公式を使いこなす 問題を整理する能力を養う ) 直線上の道路に,A,B の 本の線が 5. の間隔で道路に 垂直に交差して引かれている この線上を一定の加速度で運 動しているトラックが通過する トラックの先端が A を通過してか ら後端が B を通過するまでの時間は.8s であった
RISO P ‘C’³
RISO REPORT 2000 1 2 3 4 5 6 T O P I C S 7 8 T O P I C S 39 100,000 12,000 6,000 80,000 60,000 40,000 20,000 10,000 8,000 6,000 4,000 2,000 5,000 4,000 3,000 2,000 1,000 0 0 0 H8/3 H9/3 H10/3 H11/3 H12/3
強化プラスチック裏込め材の 耐荷実験 実験報告書 平成 26 年 6 月 5 日 ( 株 ) アスモ建築事務所石橋一彦建築構造研究室千葉工業大学名誉教授石橋一彦
強化プラスチック裏込め材の 耐荷実験 実験報告書 平成 26 年 6 月 5 日 ( 株 ) アスモ建築事務所石橋一彦建築構造研究室千葉工業大学名誉教授石橋一彦 1. 実験目的 大和建工株式会社の依頼を受け 地下建設土留め工事の矢板と腹起こしの間に施工する 強 化プラスチック製の裏込め材 の耐荷試験を行って 設計荷重を保証できることを証明する 2. 試験体 試験体の実測に基づく形状を次に示す 実験に供する試験体は3
Microsoft PowerPoint - 講義PPT2019.ppt [互換モード]
. CA 演習 :as σ lite による応力解析 目標 : 機械工学実験 はりの曲げと応力集中 の有限要素法による応力解析を行う CAD: Computer Aided Design CA: Computer Aided ngineering コンピュータシミュレーション CAM: Computer Aided Manufacturing スケジュール. 有限要素法の基礎と応用例. as σの使い方の説明.
