Microsoft PowerPoint - fuseitei_6
|
|
|
- ひでより みねむら
- 9 years ago
- Views:
Transcription
1 不静定力学 Ⅱ 骨組の崩壊荷重の計算 不静定力学 Ⅱ では, 最後の問題となりますが, 骨組の崩壊荷重の計算法について学びます 1
2 参考書 松本慎也著 よくわかる構造力学の基本, 秀和システム このスライドの説明には, 主にこの参考書の説明を引用しています 2
3 崩壊荷重 構造物に作用する荷重が徐々に増大すると, 構造物内に発生する応力は増加し, やがて, 構造物は荷重に耐えられなくなる そのときの荷重を崩壊荷重あるいは終局荷重という 荷重 (b) (c) 終局状態 (a) 弾性状態 塑性状態 変形 建物の設計では, 地震などによって損傷を受けないということが重要ですが, 数百年に一度おこるような巨大地震に対しては, 損傷を完全に回避することは困難なことです したがって, このような巨大地震に対しては, 人命保護のために, 損傷は受けても潰れない ( 崩壊しない ) ことを保証する必要があります 巨大地震で建物の崩壊を防ぐには, どの程度の地震荷重 ( 水平力 ) によって, 建物が崩壊するのかを求めておく必要があります このように建物が崩壊する荷重を 崩壊荷重 または 終局荷重 と呼びます ( なお, 終局荷重は, 建物が抵抗力を無くした時点での荷重です ) 図には, 骨組に作用する水平荷重が徐々に大きくなっていった時の建物の変形と作用する荷重との関係を図とグラフで示してあります (a) の弾性状態では, 建物に損傷がなく, 荷重が無くなると元の状態に戻ります しかし,(b) の塑性状態では, 建物にひびが入り, 損傷を受けます しかし, まだ崩壊には至らず, 人命は保護されます ( ただし, 補修は大変です ) (c) の終局状態では, 柱または梁が崩壊し, 建物が崩れます 人命にも被害を及ぼします この授業の目的は,(c) の状態の荷重 ( 崩壊荷重 ) を求めることにあります 3
4 材料特性のモデル化 応力 σ 応力 σ 降伏応力 σ y モデル化 ひずみ ε ひずみ ε 実際の応力 - ひずみ関係 ( 複雑 ) 完全弾塑性モデル ( 単純 ) まず, このような骨組の崩壊荷重を求めるためには, いくつかの仮定が必要です 一つは, 材料の応力とひずみの関係を右の図のようにモデル化します このような応力 -ひずみ関係のモデルを, 完全弾塑性モデルと呼びます この完全弾塑性モデルでは, ある応力に達するとひずみが一定になります すなわち, 同じ応力でどんどん変形が進むということです このひずみが一定になる時の応力を 降伏応力 と呼びます ここでは, 完全弾塑性という言葉と, 降伏応力 σy という言葉を憶えてください 4
5 完全弾塑性モデルの部材断面内における応力分布 このような完全弾塑性モデルを仮定すると, 曲げモーメントが加わる部材の断面の応力状態は図に示すように変化して行きます まず, 応力が降伏応力に至るまでは,(a), (b) のように応力の傾きは直線になります 断面の端が, 降伏応力に達すると, それ以上応力は高くならないため,(c) のように, 断面の端から徐々に応力一定の領域が進展していきます この状態が弾塑性状態です そして, 最終的に (d) のように, 断面の全領域が降伏し, 曲げに対する抵抗力が0になります これが断面の崩壊です この状態を全塑性状態と呼びます 崩壊荷重を求めるためには, この全塑性状態の曲げモーメントを求める必要があります この全塑性状態の曲げモーメントを 全塑性モーメント と呼びます 5
6 全塑性モーメント y σ y D B x C σ y T j D j = 2 BD C = T = σ y 2 部材断面 全塑性状態 全塑性モーメント 塑性断面係数 2 M p = C j = T j = BD σ D BD y = σ y = Zpσ y BD Z p = 4 2 全塑性モーメントMpは, 力の釣合からσyと断面寸法を用いて, ここに示す式で表されます ここで,Zpは, 塑性断面係数 と呼ばれ,σyは, 全塑性モーメントを塑性断面係数で割ることによって得られます 全塑性モーメントMpと塑性断面係数 Zpという言葉を憶えてください また,ZpがBD^2/4となることも憶えてください 6
7 代表的な断面形に対する塑性断面係数 長方形以外の断面の塑性断面係数は, この表のように求められています 7
8 崩壊機構の形成 荷重 荷重が増大すると 崩壊荷重 塑性ヒンジ 崩壊荷重を求めるためには, もう一つ仮定が必要です それは, どの部分 ( 断面 ) が壊れるかと, どのような形で構造全体が崩壊するかがわかっているという仮定です 例えば, 図のような問題では, 部材端部と荷重点が壊れることを仮定しています そして, 断面が崩壊する部分を図に示すようなヒンジで表します そして, 全体崩壊が生じる時のヒンジの位置を仮定します 8
9 様々な崩壊機構 たとえば, 図に示すような門形ラーメンでは, 様々な崩壊形 ( 崩壊機構 ) が考えられます このような崩壊形の中から, どのような崩壊形で崩壊に至るかを仮定する必要があります なお, 演習問題では, 崩壊形 ( 崩壊機構 ) は, 与えられています 実際は, いくつかの崩壊形に対して, 崩壊荷重を計算し, その最も小さいものを崩壊荷重とします 9
10 崩壊荷重の計算法 1. 骨組の崩壊機構を仮定する 2. 外力のなす仕事を計算する外力のなす仕事 = P 3. 内力のなす仕事を計算する内力のなす仕事 = M 4. 仮想仕事の原理より崩壊荷重を求める外力のなす仕事 = 内力のなす仕事 P= M それでは, 以上の基礎知識を元に, 崩壊荷重の求め方について説明します まず, 骨組の崩壊機構を仮定します 次に, その仮定された崩壊機構の変位をなどの変数とし, 外力のなす仕事量を計算します 外力のなす仕事量は, 外力 ( 外力の作用している点の外力方向の変位 ) によって計算できます これをすべての外力に対して計算し, 総和をとったものが外力の仕事量です 次に, 仮定された崩壊機構の各部材の内力のなす仕事量を計算します 各部材の内力の仕事量は, 各部材両端断面の回転角とその部材の全塑性モーメントを掛けることによって計算されます そして, 最後に外力のなす仕事量と内力のなす仕事量が等しいという仮想仕事の原理を用いて, 崩壊荷重 Pを求めます この時, 各部材の回転角 は, 節点の変位 を用いて表すことができるため, 仮定した仮想変位 は, この式から消去されます したがって, 崩壊荷重 Pは, 全塑性モーメントを長さで割った形で表されます 10
11 例題 2L P B 2M p M p 2M p C D L A 3L 次に, 具体的な例題で崩壊荷重の求め方を説明します この例題では, 柱の全塑性モーメントが, 梁の場合の 2 倍になっていることに注意してください 11
12 Step1 崩壊機構の仮定 P u B 2 2 C L 2L D A 3L まず, 崩壊機構を図のように仮定します この場合, 梁の両端 B, Cと固定端側の柱脚 Aにヒンジを仮定しています なお,D 点は, ピン支持であるため, ここでは仕事は発生しません 次に崩壊機構のどこかの節点の変位をと置き, どこかの部材の回転角をと置きます この場合は,B 点の荷重方向の変位をと置き, 柱 ABの傾きをと置いています 次に, 機構のヒンジの回転角をすべてで表します この場合は,B 点とC 点の変位が等しいことから, 柱 DCの傾きは2になります また, 柱 BAと梁 BCは,B 点にヒンジができなければ直角のはずですから,B 点の梁の回転角はになります また,C 点がヒンジでなければ,DCとCBは直角のはずですから,C 点の梁の回転角は 2になります 12
13 Step2 外力のなす仕事の計算 P u B 2 2 C L 2L D A P = P u ただし, 2L 次に, 外力の仕事量を計算します 外力の仕事量は, 外力 ( 外力が作用する節点の外力方向の変位 ) となります この場合は,Pu となります また,は, 近似的に,AB 要素の長さ となりますから,2Lで表されます 13
14 Step3 内力のなす仕事の計算 P u B 2 2 C L 2L D A M = 2M + M + M 2 ヒンジA p p p ヒンジB ヒンジC 次に内力のなした仕事量を計算します 内力の仕事量は, ヒンジを発生させるためのエネルギーに費やされますから, それぞれのヒンジについて仕事量を計算すればOKです まず, ヒンジAができるためには, 柱の全塑性モーメント2Mpの内力が必要です したがって, ヒンジAができた時の仕事量は,2Mp となります 次に, ヒンジBができるためには, 梁の全塑性モーメントMpの内力が必要ですから, 仕事量はMp です ヒンジCができるためには, 梁の全塑性モーメントが必要ですから, 仕事量はMp です ここで, 柱にヒンジがある場合は, 柱の全塑性モーメントを, 梁にヒンジがある場合は, 梁の全塑性モーメントを用いることに注意してください 14
15 Step4 仮想仕事の原理より崩壊荷重を求める P u B 2 2 C L 2L D A P = M P = 2M + M + M 2 u p p p P 2L = 5M u 5M Pu = 2L p p 最後に, 外力の仕事量と内力の仕事量が等しいとする仮想仕事の原理を用いて, 崩壊荷重 Puを求めます この時, 荷重は曲げモーメントを長さに割ったものになることを頭に入れておいて下さい この式によれば,Mp の値が計算されれば, 崩壊荷重が求まります 15
16 断面寸法と降伏応力が与えられれば, 崩壊荷重が計算できる P u 5M = 2L p D M p = BD 4 2 σ y B 部材断面 P u = 5 BD 2L 4 2 σ y 全塑性モーメントMpは, 断面形状と降伏応力が与えられれば計算できます 長方形断面の場合, 塑性断面係数は,BD^2/4でしたから, 崩壊荷重はここに示す式で計算できます 16
Microsoft PowerPoint - fuseitei_4
不静定力学 Ⅱ 固定法 今回から, 固定法について学びます 参考書 教科書 藤本盛久, 和田章監修 建築構造力学入門, 実教育出版 松本慎也著 よくわかる構造力学の基本, 秀和システム 参考書として,3つ挙げておきますが, 固定法に関しては松本慎也さんの書かれた本がわかりやすいと思います この本は, 他の手法についてもわかりやすく書いてあるので, 参考書としては非常に良い本です この授業の例題も,
構造力学Ⅰ第12回
第 回材の座屈 (0 章 ) p.5~ ( 復習 ) モールの定理 ( 手順 ) 座屈とは 荷重により梁に生じた曲げモーメントをで除して仮想荷重と考える 座屈荷重 偏心荷重 ( 曲げと軸力 ) 断面の核 この仮想荷重に対するある点でのせん断力 たわみ角に相当する曲げモーメント たわみに相当する ( 例 ) 単純梁の支点のたわみ角 : は 図 を仮想荷重と考えたときの 点の支点反力 B は 図 を仮想荷重と考えたときのB
Microsoft PowerPoint - zairiki_3
材料力学講義 (3) 応力と変形 Ⅲ ( 曲げモーメント, 垂直応力度, 曲率 ) 今回は, 曲げモーメントに関する, 断面力 - 応力度 - 変形 - 変位の関係について学びます 1 曲げモーメント 曲げモーメント M 静定力学で求めた曲げモーメントも, 仮想的に断面を切ることによって現れる内力です 軸方向力は断面に働く力 曲げモーメント M は断面力 曲げモーメントも, 一つのモーメントとして表しますが,
<4D F736F F D208D5C91A297CD8A7793FC96E591E631308FCD2E646F63>
第 1 章モールの定理による静定梁のたわみ 1-1 第 1 章モールの定理による静定梁のたわみ ポイント : モールの定理を用いて 静定梁のたわみを求める 断面力の釣合と梁の微分方程式は良く似ている 前章では 梁の微分方程式を直接積分する方法で 静定梁の断面力と変形状態を求めた 本章では 梁の微分方程式と断面力による力の釣合式が類似していることを利用して 微分方程式を直接解析的に解くのではなく 力の釣合より梁のたわみを求める方法を学ぶ
<4D F736F F D2097CD8A7793FC96E582BD82ED82DD8A E6318FCD2E646F63>
- 第 章たわみ角法の基本式 ポイント : たわみ角法の基本式を理解する たわみ角法の基本式を梁の微分方程式より求める 本章では たわみ角法の基本式を導くことにする 基本式の誘導法は各種あるが ここでは 梁の微分方程式を解いて基本式を求める方法を採用する この本で使用する座標系は 右手 右ネジの法則に従った座標を用いる また ひとつの部材では 図 - に示すように部材の左端の 点を原点とし 軸線を
Microsoft Word - 1B2011.doc
第 14 回モールの定理 ( 単純梁の場合 ) ( モールの定理とは何か?p.11) 例題 下記に示す単純梁の C 点のたわみ角 θ C と, たわみ δ C を求めよ ただし, 部材の曲げ 剛性は材軸に沿って一様で とする C D kn B 1.5m 0.5m 1.0m 解答 1 曲げモーメント図を描く,B 点の反力を求める kn kn 4 kn 曲げモーメント図を描く knm 先に得られた曲げモーメントの値を
PowerPoint プレゼンテーション
材料実験演習 第 6 回 2017.05.16 スケジュール 回 月 / 日 標題 内容 授業種別 時限 実験レポート評価 講義 演習 6,7 5 月 16 日 8 5 月 23 日 5 月 30 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート 鉄筋コンクリート梁実験レポート作成
PowerPoint プレゼンテーション
材料実験演習 第 6 回 2015.05.17 スケジュール 回 月 / 日 標題 内容 授業種別 時限 講義 演習 6,7 5 月 17 日 8 5 月 24 日 5 月 31 日 9,10 6 月 7 日 11 6 月 14 日 講義 曲げモーメントを受ける鉄筋コンクリート(RC) 梁の挙動その1 構造力学の基本事項その2 RC 梁の特徴演習 曲げを受ける梁の挙動 実験 鉄筋コンクリート梁の載荷実験レポート
Microsoft PowerPoint - 構造力学Ⅰ第03回.pptx
分布荷重の合力 ( 効果 ) 前回の復習 ( 第 回 ) p. 分布荷重は平行な力が連続して分布していると考えられる 例 : 三角形分布 l dx P=ql/ q l qx q l 大きさ P dx x 位置 Px 0 x x 0 l ql 0 : 面積に等しい 0 l l 重心に等しいモーメントの釣合より ( バリノンの定理 ) l qx l qx ql q 3 l ql l xdx x0 xdx
第1章 単 位
H. Hamano,. 長柱の座屈 - 長柱の座屈 長い柱は圧縮荷重によって折れてしまう場合がある. この現象を座屈といい, 座屈するときの荷重を座屈荷重という.. 換算長 長さ の柱に荷重が作用する場合, その支持方法によって, 柱の理論上の長さ L が異なる. 長柱の計算は, この L を用いて行うと都合がよい. この L を換算長 ( あるいは有効長さという ) という. 座屈荷重は一般に,
スライド 1
第 3 章 鉄筋コンクリート工学の復習 鉄筋によるコンクリートの補強 ( 圧縮 ) 鉄筋で補強したコンクリート柱の圧縮を考えてみよう 鉄筋とコンクリートの付着は十分で, コンクリートと鉄筋は全く同じように動くものとする ( 平面保持の仮定 ) l Δl 長さの柱に荷重を載荷したときの縮み量をとする 鉄筋及びコンクリートの圧縮ひずみは同じ量なのでで表す = Δl l 鉄筋及びコンクリートの応力はそれぞれの弾性定数を用いて次式で与えられる
PowerPoint Presentation
H8 年度有限要素法 1 構造強度設計 1. 塑性崩壊 1.3 疲労設計 ( 一部修正版 ) H8-1/6 早川 (R : 夏学期の復習部分 ) 1. 塑性崩壊とその評価法 ( 極限解析 ) R 塑性崩壊 : 構造物として使用に耐えないほどの過度の塑性変形 全断面降伏 前提 : 弾完全塑性材モデル E ひずみ硬化ありひずみ硬化なし : 降伏強さ E : ヤング率 ε 図 1.3 弾完全塑性材モデルの応力
Microsoft PowerPoint - 静定力学講義(6)
静定力学講義 (6) 静定ラーメンの解き方 1 ここでは, 静定ラーメンの応力 ( 断面力 ) の求め方について学びます 1 単純ばり型ラーメン l まず, ピンとローラーで支持される単純支持ばり型のラーメン構造の断面力の求め方について説明します まず反力を求める H V l V H + = 0 H = Y V + V l = 0 V = l V Vl+ + + l l= 0 + l V = + l
Microsoft PowerPoint - zairiki_11
許容応力度設計の基礎 圧縮材の設計 ( 座屈現象 ) 構造部材には 圧縮を受ける部材があります 柱はその代表格みたいなものです 柱以外にも トラス材やブレース材 ラチス材といったものがあります ブレースは筋交いともいい はりや柱の構面に斜め材として設けられています この部材は 主に地震などの水平力に抵抗します 一方 ラチス材は 細長い平鋼 ( 鉄の板 ) を組み合わせて はりや柱をつくることがありますが
パソコンシミュレータの現状
第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に
<4D F736F F D208D5C91A297CD8A7793FC96E591E6388FCD2E646F63>
8-1 第 8 章梁の微分方程式 ポイント : ベルヌーイ オイラー梁による梁の微分方程式 平面保持と法線保持の仮定 本章では 梁理論の基本となるベルヌーイ オイラー梁に従い 3 次元物体である梁を 1 次元の線材に置換し その挙動を支配する梁の微分方程式を誘導する このベルヌーイ オイラー梁は 平面保持と法線保持の両仮定で成立しており この 種の仮定を用いることで 梁内の応力やひずみを容易に求めることができる
<4D F736F F D208D7E959A82A882E682D18F498BC78BC882B B BE98C60816A2E646F63>
降伏時および終局時曲げモーメントの誘導 矩形断面 日中コンサルタント耐震解析部松原勝己. 降伏時の耐力と変形 複鉄筋の矩形断面を仮定する また コンクリートの応力ひずみ関係を非線形 放物線型 とする さらに 引張鉄筋がちょうど降伏ひずみに達しているものとし コンクリート引張応力は無視する ⅰ 圧縮縁のひずみ
Super Build/FA1出力サンプル
*** Super Build/FA1 *** [ 計算例 7] ** UNION SYSTEM ** 3.44 2012/01/24 20:40 PAGE- 1 基本事項 計算条件 工 事 名 : 計算例 7 ( 耐震補強マニュアル設計例 2) 略 称 : 計算例 7 日 付 :2012/01/24 担 当 者 :UNION SYSTEM Inc. せん断による変形の考慮 : する 剛域の考慮 伸縮しない材(Aを1000
Microsoft PowerPoint - zairiki_10
許容応力度設計の基礎 はりの断面設計 前回までは 今から建てようとする建築物の設計において 建物の各部材断面を適当に仮定しておいて 予想される荷重に対してラーメン構造を構造力学の力を借りていったん解き その仮定した断面が適切であるかどうかを 危険断面に生じる最大応力度と材料の許容応力度を比較することによって検討するという設計手法に根拠を置いたものでした 今日は 前回までとは異なり いくつかの制約条件から
<4D F736F F D208D5C91A297CD8A7793FC96E591E6328FCD2E646F63>
-1 ポイント : 材料の応力とひずみの関係を知る 断面内の応力とひずみ 本章では 建築構造で多く用いられる材料の力学的特性について学ぶ 最初に 応力とひずみの関係 次に弾性と塑性 また 弾性範囲における縦弾性係数 ( ヤング係数 ) について 建築構造用材料として代表的な鋼を例にして解説する さらに 梁理論で使用される軸方向応力と軸方向ひずみ あるいは せん断応力とせん断ひずみについて さらにポアソン比についても説明する
PowerPoint Presentation
Non-linea factue mechanics き裂先端付近の塑性変形 塑性域 R 破壊進行領域応カ特異場 Ω R R Hutchinson, Rice and Rosengen 全ひずみ塑性理論に基づいた解析 現段階のひずみは 除荷がないとすると現段階の応力で一義的に決まる 単純引張り時の応カーひずみ関係 ( 構成方程式 ): ( ) ( ) n () y y y ここで α,n 定数, /
道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月
道路橋の耐震設計における鉄筋コンクリート橋脚の水平力 - 水平変位関係の計算例 (H24 版対応 ) ( 社 ) 日本道路協会 橋梁委員会 耐震設計小委員会 平成 24 年 5 月 目次 本資料の利用にあたって 1 矩形断面の橋軸方向の水平耐力及び水平変位の計算例 2 矩形断面 (D51 SD490 使用 ) 橋軸方向の水平耐力及び水平変位の計算例 8 矩形断面の橋軸直角方向の水平耐力及び水平変位の計算例
PowerPoint プレゼンテーション
SALOME-MECA を使用した RC 構造物の弾塑性解析 終局耐力と弾塑性有限要素法解析との比較 森村設計信高未咲 共同研究者岐阜工業高等専門学校柴田良一教授 研究背景 2011 年に起きた東北地方太平洋沖地震により多くの建築物への被害がみられた RC 構造の公共建築物で倒壊まではいかないものの大きな被害を負った報告もあるこれら公共建築物は災害時においても機能することが求められている今後発生が懸念されている大地震を控え
技術者のための構造力学 2014/06/11 1. はじめに 資料 2 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した
. はじめに 資料 節点座標系による傾斜支持節点節点の処理 三好崇夫加藤久人 従来, マトリックス変位法に基づく骨組解析を紹介する教科書においては, 全体座標系に対して傾斜 した斜面上の支持条件を考慮する処理方法として, 一旦, 傾斜支持を無視した全体座標系に関する構造 全体の剛性マトリックスを組み立てた後に, 傾斜支持する節点に関して対応する剛性成分を座標変換に よって傾斜方向に回転処理し, その後は通常の全体座標系に対して傾斜していない支持点に対するのと
<4D F736F F F696E74202D AD482DC82C682DF2E B8CDD8AB B83685D>
力のつり合い反力 ( 集中荷重 ) V 8 V 4 X H Y V V V 8 トラス部材に生じる力 トラスの解法 4k Y 4k 4k 4k ' 4k X ' 30 E ' 30 H' 節点を引張る力節点を押す力部材に生じる力を表す矢印の向きに注意 V 0k 反力の算定 V' 0k 力のつり合いによる解法 リッターの切断法 部材 の軸力を求める k k k 引張側に仮定 3 X cos30 Y 04
<4D F736F F D208D5C91A297CD8A7793FC96E591E631318FCD2E646F63>
11-1 第 11 章不静定梁のたわみ ポイント : 基本的な不静定梁のたわみ 梁部材の断面力とたわみ 本章では 不静定構造物として 最も単純でしかも最も大切な両端固定梁の応力解析を行う ここでは 梁の微分方程式を用いて解くわけであるが 前章とは異なり 不静定構造物であるため力の釣合から先に断面力を決定することができない そのため 梁のたわみ曲線と同時に断面力を求めることになる この両端固定梁のたわみ曲線や断面力分布は
FEM原理講座 (サンプルテキスト)
サンプルテキスト FEM 原理講座 サイバネットシステム株式会社 8 年 月 9 日作成 サンプルテキストについて 各講師が 講義の内容が伝わりやすいページ を選びました テキストのページは必ずしも連続していません 一部を抜粋しています 幾何光学講座については 実物のテキストではなくガイダンスを掲載いたします 対象とする構造系 物理モデル 連続体 固体 弾性体 / 弾塑性体 / 粘弾性体 / 固体
材料の力学解答集
材料の力学 ( 第 章 ) 解答集 ------------------------------------------------------------------------------- 各種応力の計算問題 (No1) 1. 断面積 1mm の材料に 18N の引張荷重が働くとき, 断面に生じる応力はどれほどか ( 18(N/mm ) または 18(MP)) P 18( N) 18 N /
第1章 単 位
H. Hmno 問題解答 問題解答. 力の釣合い [ 問題.] V : sin. H :.cos. 7 V : sin sin H : cos cos cos 上第 式より これと第 式より.. cos V : sin sin H : coscos cos 上第 式より これと第 式より.98. cos [ 問題.] :. V :. : 9 9. V :. : sin V : sin 8.78 H
Taro-2012RC課題.jtd
2011 RC 構造学 http://design-s.cc.it-hiroshima.ac.jp/tsato/kougi/top.htm 課題 1 力学と RC 構造 (1) 図のような鉄筋コンクリート構造物に どのように主筋を配筋すればよいか 図中に示し 最初に 生じる曲げひび割れを図示せよ なお 概略の曲げモーメント図も図示せよ w L 3 L L 2-1 - 課題 2. コンクリートの自重
耳桁の剛性の考慮分配係数の計算条件は 主桁本数 n 格子剛度 zです 通常の並列鋼桁橋では 主桁はすべて同じ断面を使います しかし 分配の効率を上げる場合 耳桁 ( 幅員端側の桁 ) の断面を大きくすることがあります 最近の桁橋では 上下線を別橋梁とすることがあり また 防音壁などの敷設が片側に有る
格子桁の分配係数の計算 ( デモ版 ) 理論と解析の背景主桁を並列した鋼単純桁の設計では 幅員方向の横桁の剛性を考えて 複数の主桁が協力して活荷重を分担する効果を計算します これを 単純な (1,0) 分配に対して格子分配と言います レオンハルト (F.Leonhardt,1909-1999) が 1950 年初頭に発表した論文が元になっていて 理論仮定 記号などの使い方は その論文を踏襲して設計に応用しています
PowerPoint Presentation
CAE 演習 :Eas-σ lite に よる応力解析 目標 : 機械工学実験 はりの曲げと応力集中 の有限要素法による応力解析を行う 用語 CAD: Computer Aided Design CAE: Computer Aided Engineering コンピュータシミュレーション CAM: Computer Aided Manufacturing スケジュール. 有限要素法の基礎と応用例 2.
<4D F736F F D208D5C91A297CD8A7793FC96E591E6398FCD2E646F63>
9-1 第 9 章静定梁のたわみ ポイント : 梁の微分方程式を用いて梁のたわみを求める 静定梁のたわみを計算 前章では 梁の微分方程式を導き 等分布荷重を受ける単純梁の解析を行った 本節では 導いた梁の微分方程式を利用し さらに多くの静定構造物の解析を行い 梁の最大たわみや変形状態を求めることにする さらに を用いて課題で解析した構造を数値計算し 解析結果を比較 検討しよう 9.1 はじめに キーワード梁の微分方程式単純梁の応力解析片持ち梁の応力解析
Microsoft PowerPoint - 講義PPT2019.ppt [互換モード]
. CA 演習 :as σ lite による応力解析 目標 : 機械工学実験 はりの曲げと応力集中 の有限要素法による応力解析を行う CAD: Computer Aided Design CA: Computer Aided ngineering コンピュータシミュレーション CAM: Computer Aided Manufacturing スケジュール. 有限要素法の基礎と応用例. as σの使い方の説明.
Microsoft PowerPoint - elast.ppt [互換モード]
弾性力学入門 年夏学期 中島研吾 科学技術計算 Ⅰ(48-7) コンピュータ科学特別講義 Ⅰ(48-4) elast 弾性力学 弾性力学の対象 応力 弾性力学の支配方程式 elast 3 弾性力学 連続体力学 (Continuum Mechanics) 固体力学 (Solid Mechanics) の一部 弾性体 (lastic Material) を対象 弾性論 (Theor of lasticit)
SPACEstJ User's Manual
6-1 第 6 章部材の断面力計算 ポイント : 部材断面力の計算 両端の変位より両端外力を計算する 本章では 両端の変位を用いて部材両端の材端力を求め 断面内の応力との釣合より 断面力を求める方法を学ぶ ここでは 部材荷重は等分布荷重を考慮しているため 基本応力と節点荷重による断面力を重ね合わせて 実際の部材断面力を求める 6.1 はじめに キーワード 部材断面力の計算部材座標系の変位等分布荷重による基本応力
1
半剛節が部材上の任意点にある部材剛性方程式 米子高専 川端康洋 稲田祐二. ピン半剛節を有する部材の解析の歴史 ()940 二見秀雄材の途中にピン接合点を有するラーメン材の算式とその応用建築学会論文集 つのピン節を含む部材の撓角法基本式と荷重項ピン節を含む部材の撓角法基本式と荷重項が求められている 以降 固定モーメント法や異形ラーメンの解法への応用が研究された 戦後には 関連する論文は見当たらない
< B795FB8C6094C28F6F97CD97E12E786477>
長方形板の計算システム Ver3.0 適用基準 級数解法 ( 理論解析 ) 構造力学公式集( 土木学会発行 /S61.6) 板とシェルの理論( チモシェンコ ヴォアノフスキークリ ガー共著 / 長谷川節訳 ) 有限要素法解析 参考文献 マトリックス構造解析法(J.L. ミーク著, 奥村敏恵, 西野文雄, 西岡隆訳 /S50.8) 薄板構造解析( 川井忠彦, 川島矩郎, 三本木茂夫 / 培風館 S48.6)
国土技術政策総合研究所資料
5. 鉄筋コンクリート橋脚の耐震補強設計における考え方 5.1 平成 24 年の道路橋示方書における鉄筋コンクリート橋脚に関する規定の改定のねらい H24 道示 Ⅴの改定においては, 橋の耐震性能と部材に求められる限界状態の関係をより明確にすることによる耐震設計の説明性の向上を図るとともに, 次の2 点に対応するために, 耐震性能に応じた限界状態に相当する変位を直接的に算出する方法に見直した 1)
PowerPoint プレゼンテーション
不飽和土の力学を用いた 締固めメカニズムの解明 締固めとは 土に力を加え 間隙中の空気を追い出すことで土の密度を高めること 不飽和土 圧縮性の減少透水性の減少せん断 変形抵抗の増大 などに効果あり 締固め土は土構造物の材料として用いられている 研究背景 現場締固め管理 締固め必須基準 D 値 施工含水比 施工層厚 水平まきだし ( ρdf ) 盛土の乾燥密度 D値 = 室内締固め試験による最大乾燥密度
Microsoft Word - 第5章.doc
第 5 章表面ひび割れ幅法 5-1 解析対象 ( 表面ひび割れ幅法 ) 表面ひび割れ幅法は 図 5-1 に示すように コンクリート表面より生じるひび割れを対象とした解析方法である. すなわち コンクリートの弾性係数が断面で一様に変化し 特に方向性を持たない表面にひび割れを解析の対象とする. スラブ状構造物の場合には地盤を拘束体とみなし また壁状構造物の場合にはフーチングを拘束体として それぞれ外部拘束係数を定める.
<8D5C91A28C768E5A8F91836C C768E5A8F A2E786C73>
スカイセイフティネット構造計算書 スカイテック株式会社 1. 標準寸法 2. 設計条件 (1) 荷重 通常の使用では スカイセーフティネットに人や物は乗せないことを原則とするが 仮定の荷重としてアスファルト ルーフィング1 巻 30kgが1スパンに1 個乗ったとした場合を考える ネットの自重は12kgf/1 枚 これに単管 (2.73kgf/m) を1m 辺り2 本考える 従ってネット自重は合計で
二次関数 1 二次関数とは ともなって変化する 2 つの数 ( 変数 ) x, y があります x y つの変数 x, y が, 表のように変化するとき y は x の二次関数 といいます また,2 つの変数を式に表すと, 2 y x となりま
二次関数 二次関数とは ともなって変化する つの数 ( 変数 ) x, y があります y 0 9 6 5 つの変数 x, y が, 表のように変化するとき y は x の二次関数 といいます また, つの変数を式に表すと, x となります < 二次関数の例 > x y 0 7 8 75 x ( 表の上の数 ) を 乗して 倍すると, y ( 表の下の数 ) になります x y 0 - -8-8 -
7 章問題解答 7-1 予習 1. 長方形断面であるため, 断面積 A と潤辺 S は, 水深 h, 水路幅 B を用い以下で表される A = Bh, S = B + 2h 径深 R の算定式に代入すると以下のようになる A Bh h R = = = S B + 2 h 1+ 2( h B) 分母の
7 章問題解答 7- 予習. 長方形断面であるため, 断面積 と潤辺 S は, 水深, 水路幅 B を用い以下で表される B, S B + 径深 R の算定式に代入すると以下のようになる B R S B + ( B) 分母の /B は河幅が水深に対して十分に広ければ, 非常に小さな値となるため, 上式は R ( B) となり, 径深 R は水深 で近似できる. マニングの式の水深 を等流水深 0 と置き換えると,
まえがき 材料力学の教科書を見ると 2ページ目から 微分 積分 行列の式などがずらっと並んでいます もう それを見るだけで拒絶反応を起こしてしまう方もおられるのではないでしょうか? 確かに 三次元で評価しようとするとそのような計算が必要になるかもしれませんが 一次元 二次元なら 簡単な式にまとめられ
技術士だぁーちゃんの 材料力学基礎講座 http://www.eonet.ne.jp/~northriver/gijutsushi/ まえがき 材料力学の教科書を見ると 2ページ目から 微分 積分 行列の式などがずらっと並んでいます もう それを見るだけで拒絶反応を起こしてしまう方もおられるのではないでしょうか? 確かに 三次元で評価しようとするとそのような計算が必要になるかもしれませんが 一次元
Microsoft Word - 建築研究資料143-1章以外
4. ブレース接合部 本章では, ブレース接合部について,4 つの部位のディテールを紹介し, それぞれ問題となる点や改善策等を示す. (1) ブレースねらい点とガセットプレートの形状 (H 形柱, 弱軸方向 ) 対象部位の概要 H 形柱弱軸方向にガセットプレートタイプでブレースが取り付く場合, ブレースの傾きやねらい点に応じてガセットプレートの形状等を適切に設計する. 検討対象とする接合部ディテール
物理演習問題
< 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が
スライド 1
概要材料に外から力が作用すると応力が発生し それに見合った変形が生じる 変形が発生すると 材料に内力が発生し 内力は外力と釣り合い変形が止まる この応力と変形 ( 歪 ) の関係を本講座では復習する 学習の内容. 応力と歪. 真っ直ぐな軸に外力が軸方向に作用する場合 3. 真っ直ぐな梁の曲げ. 軸のねじり 5. 座屈 6. エネルギー法 第 章 : 釣り合いの状態力の釣り合いとモーメントの釣り合いを満たすことによる.
. 軸力作用時における曲げ耐力基本式の算定 ) ここでは破壊包絡線の作成を前提としているので, コンクリートは引張領域を無視した RC 断面時を考える. 圧縮域コンクリートは応力分布は簡易的に, 降伏時は線形分布, 終局時は等価応力ブロック ( 図 -2) を考えることにする. h N ε f e
課題 軸力と曲げモーメントの相互作用図. はじめに 骨組構造を形成する梁 柱構造部材には, 一般に軸力, 曲げモーメント, せん断力が作用するが, ここでは軸力と曲げモーメントの複合断面力を受ける断面の相互作用図 (interation urve) を考える. とくに, 柱部材では, 偏心軸圧縮力や, 地震 風などの水平力を受け ( 図 -), 軸力 + 曲げ荷重下の検討は, 設計上不可欠となる.
材料強度試験 ( 曲げ試験 ) [1] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [2] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有
材料強度試験 ( 曲げ試験 [] 概要 実験 実習 Ⅰ の引張り試験に引続き, 曲げ試験による機械特性評価法を実施する. 材料力学で学ぶ梁 の曲げおよびたわみの基礎式の理解, 材料への理解を深めることが目的である. [] 材料の変形抵抗変形抵抗は, 外力が付与された時の変形に対する各材料固有の抵抗値のことであり, 一般に素材の真応力 - 真塑性ひずみ曲線で表される. 多くの金属材料は加工硬化するため,
Microsoft PowerPoint - H24 aragane.pptx
海上人工島の経年品質変化 研究背景 目的 解析条件 ( 境界条件 構成モデル 施工履歴 材料パラメータ ) 実測値と解析値の比較 ( 沈下量 ) 将来の不等沈下予測 ケーススタディー ( 埋土施工前に地盤改良を行う : 一面に海上 SD を打設 ) 研究背景 目的 解析条件 ( 境界条件 構成モデル 施工履歴 材料パラメータ ) 実測値と解析値の比較 ( 沈下量 ) 将来の不等沈下予測 ケーススタディー
上式を整理すると d df - N = 両辺を で割れば df d - N = (5) となる ところで
長柱の座屈 断面寸法に対して非常に長い柱に圧縮荷重を加えると 初期段階においては一様圧縮変形を生ずるが ある荷重に達すると急に横方向にたわむことがある このように長柱が軸圧縮荷重を受けていて突然横方向にたわむ現象を座屈といい この現象を示す荷重を座屈荷重 cr このときの応力を座屈応力 s cr という 図 に示すように一端を鉛直な剛性壁に固定された長柱が自 図 曲げと圧縮を受けるはり + 由端に圧縮力
RC 規準 3 条改定案 平成 0 年 3 月 3 日 /4 月 日第 回公開小委員会提出用 5. 前各項の算定のほか, 梁は次の限度に従うこと. () 長期荷重時に正負最大曲げモーメントを受ける部分の引張鉄筋断面積は,0.004 bd または存在応力によって必要とされる量の 4/3 倍のうち, 小
RC 規準 3 条改定案 平成 0 年 3 月 3 日 /4 月 日第 回公開小委員会提出用 3 条梁の曲げに対する断面算定 本文案 下線部は改定箇所を示す. 重取消線は削除した部分を示す. 梁の設計用曲げモーメントは, 以下の方法で計算する. () 使用性検討用の長期設計用曲げモーメントは, その部材に長期荷重が作用した場合の最大曲げモーメントとする. () 修復性検討用の短期設計用曲げモーメントは,
2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように
3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入
第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える. 5.1 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f = l 2pL である. ただし, L [ 単位 m] は棒の長さ, [ 2 N / m ] 3 r[ 単位 Kg / m ] E r
第 5 章 構造振動学 棒の振動を縦振動, 捩り振動, 曲げ振動に分けて考える 5 棒の縦振動と捩り振動 まっすぐな棒の縦振動の固有振動数 f[ Hz] f l pl である ただし, L [ 単位 m] は棒の長さ, [ N / m ] [ 単位 Kg / m ] E は (5) E 単位は棒の材料の縦弾性係数 ( ヤング率 ) は棒の材料の単位体積当りの質量である l は境界条件と振動モードによって決まる無
破壊の予測
本日の講義内容 前提 : 微分積分 線形代数が何をしているかはうろ覚え 材料力学は勉強したけど ちょっと 弾性および塑性学は勉強したことが無い ー > ですので 解らないときは質問してください モールの応力円を理解するとともに 応力を 3 次元的に考える FM( 有限要素法 の概略 内部では何を計算しているのか? 3 物が壊れる条件を考える 特に 変形 ( 塑性変形 が発生する条件としてのミーゼス応力とはどのような応力か?
を 0.1% から 0.5% 1.0% 1.5% 2.0% まで増大する正負交番繰り返し それぞれ 3 回の加力サイクルとした 加力図および加力サイクルは図に示すとおりである その荷重 - 変位曲線結果を図 4a から 4c に示す R6-1,2,3 は歪度が 1.0% までは安定した履歴を示した
エネルギー吸収を向上させた木造用座屈拘束ブレースの開発 Development of Buckling Restrained Braces for Wooden Frames with Large Energy Dissapation 吉田競人栗山好夫 YOSHIDA Keito, KURIYAMA Yoshio 1. 地震などの水平力に抵抗するための方法は 種々提案されているところであるが 大きく分類すると三種類に分類される
第 14 章柱同寸筋かいの接合方法と壁倍率に関する検討 510
第 14 章柱同寸筋かいの接合方法と壁倍率に関する検討 5 14.1 検討の背景と目的 9 mm角以上の木材のたすき掛け筋かいは 施行令第 46 条第 4 項表 1においてその仕様と耐力が規定されている 既往の研究 1では 9 mm角筋かい耐力壁の壁倍率が 5. を満たさないことが報告されているが 筋かい端部の仕様が告示第 146 号の仕様と異なっている 本報では告示どおりの仕様とし 9 mm角以上の筋かいたすき掛けの基礎的なデータの取得を目的として検討を行った
集水桝の構造計算(固定版編)V1-正規版.xls
集水桝の構造計算 集水桝 3.0.5 3.15 横断方向断面の計算 1. 計算条件 11. 集水桝の寸法 内空幅 B = 3.000 (m) 内空奥行き L =.500 (m) 内空高さ H = 3.150 (m) 側壁厚 T = 0.300 (m) 底版厚 Tb = 0.400 (m) 1. 土質条件 土の単位体積重量 γs = 18.000 (kn/m 3 ) 土の内部摩擦角 φ = 30.000
平板曲げ理論による部材の等分布荷重または節点の集中荷重を受ける薄板のたわみと断面力の計算ソフト 鉄筋コンクリート床版や鋼板などの平板 ( 薄板 ) の等分布や集中荷重による作用曲げモーメント等の算出方法は 下記の平板の曲げ解析法一覧表より [1 平板曲げ理論による解析 ( 理論解 ) による方法 ]
平板曲げ理論による部材の等分布荷重または節点の集中荷重を受ける薄板のたわみと断面力の計算ソフト 鉄筋コンクリート床版や鋼板などの平板 ( 薄板 ) の等分布や集中荷重による作用曲げモーメント等の算出方法は 下記の平板の曲げ解析法一覧表より [1 平板曲げ理論による解析 ( 理論解 ) による方法 ] と [2 格子モデルによる微小変位理論 ( 棒部材の簡易格子モデル )] および [3 簡易算出式による方法
断面の諸量
断面の諸量 建設システム工学科高谷富也 断面 次モーメント 定義 G d G d 座標軸の平行移動 断面 次モーメント 軸に平行な X Y 軸に関する断面 次モーメント G X G Y を求める X G d d d Y 0 0 G 0 G d d d 0 0 G 0 重心 軸に関する断面 次モーメントを G G とし 軸に平行な座標軸 X Y の原点が断面の重心に一致するものとする G G, G G
Microsoft Word - 建築研究資料143-1章以外
3.H 形断面柱を用いた柱梁接合部 本章では,H 形断面柱を用いた柱梁接合部に関して,6 つの部位の接合部ディテールを紹介し, それらについて, それぞれ問題となる点や改善策等を示す. (1) 柱梁接合部の標準ディテール 対象部位の概要 H 形柱を用いた柱梁接合部の標準ディテール 検討対象とする接合部ディテール 検討課題 各接合形式における柱梁接合部の各部位の材質 板厚を検討する. 34 検討課題に対応した接合部ディテールの例
第 2 章 構造解析 8
第 2 章 構造解析 8 2.1. 目的 FITSAT-1 の外郭構造が, 打ち上げ時の加速度等によって発生する局所的な応力, 及び温度変化によってビスに発生する引っ張り応力に対して, 十分な強度を有することを明らかにする. 解析には SolidWorks2011 を用いた. 2.2. 適用文書 (1)JMX-2011303B: JEM 搭載用小型衛星放出機構を利用する小型衛星への構造 フラクチャコントロール計画書
<4D F736F F D CC82E898678E77906A E DD8C7697E181698F4390B3816A312E646F63>
付録 1. 吹付枠工の設計例 グラウンドアンカー工と併用する場合の吹付枠工の設計例を紹介する 付録図 1.1 アンカー配置 開始 現地条件の設定現況安全率の設定計画安全率の設定必要抑止力の算定アンカー体の配置計画アンカー設計荷重の設定作用荷重および枠構造の決定設計断面力の算定安全性の照査 土質定数 (C φ γ) 等を設定 例 ) ここでは Fs0.95~1.05 を設定 例 ) ここでは Fsp1.20~1.50
全学ゼミ 構造デザイン入門 構造解析ソフトの紹介 解析ソフト 1
全学ゼミ 構造デザイン入門 構造の紹介 1 次回 11/15 解析演習までに準備すること 集合場所 計算機センターE26教室 デザインをだいたい決定する 変更可 側面図 横から 平面図 上から 下面図 下から などを作成 部材は線 接合部は点で表現 部材表 寸法 部材長さを決定 40m以下を確認 B B A H H H A 側面図 H H 部材 部材表 長さ 個数 小計 A 1.2m 2 2.4m
国土技術政策総合研究所 研究資料
参考資料 崩壊の恐れのある土層厚の空間分布を考慮したがけ崩れ対策に関する検討 参考資料 崩壊の恐れのある土層厚の空間分布を考慮したがけ崩れ対策に関する検討 ここでは 5 章で示した方法により急傾斜地における崩壊する恐れがある層厚の面的分布が明らかとなった場合のがけ崩れ対策手法について検討する 崩壊する恐れがある層厚の面的な分布は 1 土砂災害警戒区域等における土砂災害防止対策の推進に関する法律( 以下
技術専攻の学 生に向けた授業「材料力」
愛知教育大学技術教育研究,3,pp. 15~20,October,2016 技術専攻の学生に向けた授業 材料力学 の授業実践 Class practice of the lecture "Strength of materials" for the technology education student 北村一浩愛知教育大学技術教育講座 Kazuhiro Kitamura Department of
(Microsoft PowerPoint - \221\34613\211\361)
計算力学 ~ 第 回弾性問題の有限要素解析 (Ⅱ)~ 修士 年後期 ( 選択科目 ) 担当 : 岩佐貴史 講義の概要 全 5 講義. 計算力学概論, ガイダンス. 自然現象の数理モデル化. 行列 場とその演算. 数値計算法 (Ⅰ) 5. 数値計算法 (Ⅱ) 6. 初期値 境界値問題 (Ⅰ) 7. 初期値 境界値問題 (Ⅱ) 8. マトリックス変位法による構造解析 9. トラス構造の有限要素解析. 重み付き残差法と古典的近似解法.
静的弾性問題の有限要素法解析アルゴリズム
概要 基礎理論. 応力とひずみおよび平衡方程式. 降伏条件式. 構成式 ( 応力 - ひずみ関係式 ) 有限要素法. 有限要素法の概要. 仮想仕事の原理式と変分原理. 平面ひずみ弾性有限要素法定式化 FEM の基礎方程式平衡方程式. G G G ひずみ - 変位関係式 w w w. kl jkl j D 構成式応力 - ひずみ関係式 ) (. 変位の境界条件力の境界条件境界条件式 t S on V
応用数学Ⅱ 偏微分方程式(2) 波動方程式(12/13)
偏微分方程式. 偏微分方程式の形 偏微分 偏導関数 つの独立変数 をもつ関数 があるとき 変数 が一定値をとって だけが変化したとす ると は だけの関数となる このとき を について微分して得られる関数を 関数 の に関する 偏微分係数 略して偏微分 あるいは偏導関数 pil deiie といい 次のように表される についても同様な偏微分を定義できる あるいは あるいは - あるいは あるいは -
<4D F736F F F696E74202D E94D58B9393AE82F AC82B782E982BD82DF82CC8AEE E707074>
地盤数値解析学特論 防災環境地盤工学研究室村上哲 Mrakam, Satoh. 地盤挙動を把握するための基礎. 変位とひずみ. 力と応力. 地盤の変形と応力. 変位とひずみ 変形勾配テンソルひずみテンソル ひずみテンソル : 材料線素の長さの 乗の変化量の尺度 Green-Lagrange のひずみテンソルと Alman のひずみテンソル 微小変形状態でのひずみテンソル ひずみテンソルの物理的な意味
Microsoft PowerPoint - シミュレーション工学-2010-第1回.ppt
シミュレーション工学 ( 後半 ) 東京大学人工物工学研究センター 鈴木克幸 CA( Compter Aded geerg ) r. Jaso Lemo (SC, 98) 設計者が解析ツールを使いこなすことにより 設計の評価 設計の質の向上を図る geerg の本質の 計算機による支援 (CA CAM などより広い名前 ) 様々な汎用ソフトの登場 工業製品の設計に不可欠のツール 構造解析 流体解析
1 次関数 1 次関数の式 1 次の表は, ろうそくを燃やした時間 x 分と残りのろうそくの長さ ycm の関係を表しています 次の問いに答えなさい x( 分 ) y(cm ) (1) 上の表のをうめなさい (2) ろうそくは,5 分間に何 cm 短くなっていく
次関数 次関数の式 次の表は, ろうそくを燃やした時間 分と残りのろうそくの長さ cm の関係を表しています 次の問いに答えなさい ( 分 ) 0 5 0 5 (cm ) 0 () 上の表のをうめなさい () ろうそくは,5 分間に何 cm 短くなっていくか () ろうそくは, 分間に何 cm の割合で短くなっていくか () ろうそくは, 分間に何 cm の割合で短くなっていくか (5) ろうそくの長さ
ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル
時系列分析 変量時系列モデルとその性質 担当 : 長倉大輔 ( ながくらだいすけ 時系列モデル 時系列モデルとは時系列データを生み出すメカニズムとなるものである これは実際には未知である 私たちにできるのは観測された時系列データからその背後にある時系列モデルを推測 推定するだけである 以下ではいくつかの代表的な時系列モデルを考察する 自己回帰モデル (Auoregressive Model もっとも頻繁に使われる時系列モデルは自己回帰モデル
19年度一次基礎科目計算問題略解
9 年度機械科目 ( 計算問題主体 ) 略解 基礎科目の解析の延長としてわかる範囲でトライしてみたものです Coprigh (c) 7 宮田明則技術士事務所 Coprigh (c) 7 宮田明則技術士事務所 Ⅳ- よってから は許容荷重として は直径をロ - プの断面積 Ⅳ- cr E E E I, から Ⅳ- Ⅳ- : q q q q q q q q q で絶対値が最大 で絶対値が最大モーメントはいずれも中央で最大となる
Microsoft Word - 4_構造特性係数の設定方法に関する検討.doc
第 4 章 構造特性係数の設定方法に関する検討 4. はじめに 平成 年度 年度の時刻歴応答解析を実施した結果 課題として以下の点が指摘 された * ) 脆性壁の評価法の問題 時刻歴応答解析により 初期剛性が高く脆性的な壁については現在の構造特性係数 Ds 評価が危険であることが判明した 脆性壁では.5 倍程度必要保有耐力が大きくなる * ) 併用構造の Ds の設定の問題 異なる荷重変形関係を持つ壁の
コンクリート実験演習 レポート
. 鉄筋コンクリート (RC) 梁の耐力算定.1 断面諸元と配筋 ( 主鉄筋とスターラップ ) スターラップ :D D D 5 7 軸方向筋 ( 主筋 ) (a) 試験体 1 スターラップ :D D D 5 7 軸方向筋 ( 主筋 ) (b) 試験体 鉄筋コンクリート (RC) 梁の断面諸元と配筋 - 1 - . 載荷条件 P/ P/ L-a a = 5 = a = 5 L = V = P/ せん断力図
aja_1st_本講座_構造_14_note_01
本日の目標 2 () 力の種類 モーメント 集中荷重 モーメント荷重 荷重の分力 を理解できる (2) 力の釣り合い 力の釣り合より 未知力の算定 ができる (3) 判別 構造体の 判別 ができる 平成 5 20 年 : 静定構造物はどれか (4) 支点の反力 支点の反力 を求めることができる 平成 24 年 : 支点に反力が生じない場合の荷重の比を求めよ (5) 梁 ラーメンの応力 応力 を求めることができる
( 計算式は次ページ以降 ) 圧力各種梁の条件別の計算式の見出し 梁のタイプ 自由 案内付 支持 のタイプ 片持ち梁 短銃ん支持 支持 固定 固定 固定 固定 ====== はねだし単純梁 ====== 2 スパンの連続梁 集中 等分布 偏心分布 等偏分布 他の多スパン 条件につ いては 7 の説
梁の図面と計算式 以下の梁の図面と計算式は鉄の溶接の設計に役立つと認められたものです 正 (+) と負 (-) が方程式に使用されている 正 (+) と負 (-) を含む記号が 必ずしも正しくない場合があるのでご注意ください また 以下の情報は一般向けの参考として提供されるもので 内容についての保証をするものではありません せん断図面において基準線の上は正 (+) です せん断図面において基準線の下は負
1. 一般事項 1) 接合金物 名称 : フラットプレートスリム合板仕様 用途 : 在来軸組工法建築物における軸組材相互の接合 補強 2) 試験依頼者 名称 : 株式会社タナカ 所在地 : 茨城県土浦市大畑 連絡先 : TEL ) 試験の目的
1. 一般事項 1) 接合金物 名称 : フラットプレートスリム合板仕様 用途 : 在来軸組工法建築物における軸組材相互の接合 補強 2) 試験依頼者 名称 : 株式会社タナカ 所在地 : 300-4111 茨城県土浦市大畑 702-1 連絡先 : TEL 029-862-1223 3) 試験の目的 当該接合金物を用いた接合部の短期基準接合耐力 ( 引張 ) を評価する 柱頭柱脚接合部 ( 中柱型
<4D F736F F F696E74202D AB97CD8A E630398FCD5F8AC C896E291E8816A2E B8CDD8AB B83685D>
単純な ( 単純化した ) 応力状態における弾塑性問題 () 繊維強化複合材の引張り () 三本棒トラスへの負荷 () はりの曲げ (4) 円筒 丸棒のねじりとせん断変形 (5) 熱弾塑性問題 負荷 ( 弾性変形 ) 負荷 ( 弾塑性変形 ) 除荷 残留応力 第 9 章,4 ページ ~ その. 繊維強化複合材料の引張り Rs.: []htt://authrs.library.caltch.du/5456//hrst.it.du/hrs/
A-2
. 荷重および外力.1 クレーン荷重の考え方 よくある指摘事例 クレーン荷重の設定方法や建物の設計方法が不明確な事例がある. 関係法令等 令第 8 条, 第 83 条, 第 84 条平成 1 年国交省告示第 5 号 指摘の趣旨 クレーンを有する建物の構造設計を行うにあたり,015 年技術基準 1) にはクレーン荷重の設定方法や考え方 長期, 地震時 ) が示されておらず, また設計上の注意事項も記載されていない.
Microsoft Word - 断面諸量
応用力学 Ⅱ 講義資料 / 断面諸量 断面諸量 断面 次 次モーメントの定義 図 - に示すような形状を有する横断面を考え その全断面積を とする いま任意に定めた直交座標軸 O-, をとり また図中の斜線部の微小面積要素を d とするとき d, d () で定義される, をそれぞれ与えられた横断面の 軸, 軸に関する断面 次モーメント (geometrcal moment of area) という
-
計算書番号 :01710014655 日付 :017 年 10 月 0 日 14:6:55 面材張り大壁 詳細計算書 仕様名 新グレー本モデルプラン 大壁 1. 計算条件 1. 1 概要情報 仕様名仕様詳細 特記事項 新グレー本モデルプラン 大壁 壁面を構成する面材数階高 H(mm) 壁長 (mm) 1 枚 730 910 1. 面材 釘情報 面材寸法 (mm) 730 910 面材厚さ t(mm)
