自然言語処理24_705
|
|
|
- やすもり うみのなか
- 6 years ago
- Views:
Transcription
1 nwjc2vec: word2vec nwjc2vec nwjc2vec nwjc2vec 2 nwjc2vec 7 nwjc2vec word2vec nwjc2vec: Word Embedding Data Constructed from NINJAL Web Japanese Corpus Hiroyuki Shinnou, Masayuki Asahara, Kanako Komiya and Minoru Sasaki We constructed word embedding data (named as nwjc2vec ) using the NINJAL Web Japanese Corpus and word2vec software, and released it publicly. In this report, nwjc2vec is introduced, and the result of two types of experiments that were conducted to evaluate the quality of nwjc2vec is shown. In the first experiment, the evaluation based on word similarity is considered. Using a word similarity dataset, we calculate Spearman s rank correlation coefficient. In the second experiment, the evaluation based on task is considered. As the task, we consider word sense disambiguation (WSD) and language model construction using Recurrent Neural Network (RNN). The results obtained using the nwjc2vec were compared with the results obtained using word embedding constructed from the article data of newspaper for seven years. The nwjc2vec is shown to be high quality. Key Words: Word Embedding, NINJAL Web Japanese Corpus, word2vec, Department of Computer and Information Sciences, Ibaraki University, National Institute for Japanese Language and Linguistics
2 Vol. 24 No. 5 December one-hot N N w i N i 1 0 w one-hot Mikolov word2vec (Mikolov, Sutskever, Chen, Corrado, and Dean 2013b; Mikolov, Chen, Corrado, and Dean 2013a) ( 2016) 1 word2vec 2 GloVe 3 NWJC (Asahara, Maekawa, Imada, Kato, and Konishi 2014) nwjc2vec 4 NWJC ,050 5 NWJC 1,200 nwjc2vec 1 mecab-owakati word2vec unidic 706
3 nwjc2vec: nwjc2vec nwjc2vec nwjc2vec Recurrent Neural Network, RNN 7 nwjc2vec 2 nwjc2vec 2.1 NWJC NWJC 100 Heritrix URL nwc-toolkit MeCab UniDic CaboCha UniDic 11 URL (Asahara, Kawahara, Takei, Masuoka, Ohba, Torii, Morii, Tanaka, Maekawa, Kato, and Konishi 2016) NWJC Q CaboCha./configure --with-posset=unidic UniDic 707
4 Vol. 24 No. 5 December word2vec 1 NWJC Q word2vec 12 CBOW 2 word2vec 13 word 14 mrph nwjc2vec 2 nwjc2vec nwjc2vec 1 1 e_1 e_2 e_200 1 : NWJC Q URL 83,992,556 8,399 URL 3,885,889, ,463,142, ,836,947, word2vec CBOW or skip-gram -cbow 1 -size 200 -window 8 -negative 25 softmax -hs 0 -sample 1e-4 -iter word2vec demo-word.sh NWJC nwjc2vec 3 14 unidic-mecab kana-accent dicrc
5 nwjc2vec: e_i i,,,,*,*,*,,,,,,,,*,*,*, ,,,,*,*,*,,,,,,,,*,*,*, 1 word2vec 15 1 nwjc2vec 1,738, ,541,651 nwjc2vec 3 etc 3 (%) 1,570, , , , , , , , , etc 2, ,738, L2-16 header 1 1,738,
6 Vol. 24 No. 5 December etc , ,,,,,,,,,,,,,,,,,,,,,,,,,,,
7 nwjc2vec: 3 nwjc2vec ( 2017) nwjc2vec 2 7 nwjc2vec 3.1 mai2vec nwjc2vec ,791,403 MeCab UniDic word2vec mai2vec word2vec nwjc2vec 2 mai2vec 132,
8 Vol. 24 No. 5 December ,102 1, mai2vec nwjc2vec mai2vec nwjc2vec 5 mai2vec nwjc2vec 18 6 nwjc2vec mai2vec mai2vec Sugawara (Sugawara, Takamura, Sasano, and Okumura 2015) Sugawara 2 / / / / / / / / / / / / / / / / / / / V Sugawara 2 4 V V V V V
9 nwjc2vec: 7 (%) baseline mai2vec nwjc2vec mai2vec-0 nwjc2vec V V V V nwjc2vec mai2vec nwjc2vec - / - / - / - / - / - / - / - / - / - / - / - / - / - / - / - / - / - / - SemEval-2 (Okumura, Shirai, Komiya, and Yokono 2011) baseline SemEval-2 mai2vec mai2vec nwjc2vec nwjc2vec 1 1 word2vec mai2vec-0 nwjc2vec-0 SVM 19 nwjc2vec nwjc2vec RNN RNN t s t w t 19 cjlin/libsvm/ 713
10 Vol. 24 No. 5 December 2017 w t+1 RNN Long Short-Term Memory LSTM (Gers, Schmidhuber, and Cummins 2000) LSTM t 2 t w t w t LSTM LSTM t + 1 LSTM w 0 w t h t c t y t W one-hot W y t w t+1 w t w t LSTM mai2vec (mai2vec-lm) nwjc2vec (nwjc2vec-lm) nwjc2vec LSTM (base-lm) 2 LSTM t 714
11 nwjc2vec: (Maekawa, Yamazaki, Ogiso, Maruyama, Ogura, Kashino, Koiso, Yamaguchi, Tanaka, and Den 2014) Yahoo! Yahoo! 7,330 7, epoch epoch base-lm mai2vec-lm nwjc2vec-lm ,
12 Vol. 24 No. 5 December 2017 mai2vec-lm nwjc2vec-lm base-lm nwjc2vec-lm mai2vec-lm nwjc2vec mai2vec 4 mai2vec nwjc2vec nwjc2vec mai2vec mai2vec ( 2017) mai2vec nwjc2vec nwjc2vec mai2vec SemEval-2 baseline baseline SemEval-2 baseline baseline 0.2% ( 2015) 77.28% nwjc2vec 0.43% Yamaki wikipedia 77.10% (Yamaki, Shinnou, Komiya, and Sasaki 2016) mai2vec mai2vec nwjc2vec baseline nwjc2vec mai2vec 0.64% 0.64% mai2vec nwjc2vec 175,302 15,082 mai2vec 7,424 3,204 nwjc2vec nwjc2vec mai2vec 716
13 nwjc2vec: 9 fine-tuning epoch nwjc2vec-lm fine-tuning nwjc2vec fine-tuning fine-tuning fine-tuning nwjc2vec 21 ( 2016) nwjc2vec mai2vec 30 nwjc2vec fine-tuning LSTM 9 4 epoch fine-tuning fine-tuning 5 nwjc2vec nwjc2vec word2vec nwjc2vec 2 nwjc2vec 21 window 5 Negative Sample 20 SkipGram 717
14 Vol. 24 No. 5 December fine-tuning nwjc2vec nwjc2vec nwjc2vec fine-tuning ( ) ( ) all-words WSD ( ) Asahara, M., Kawahara, K., Takei, Y., Masuoka, H., Ohba, Y., Torii, Y., Morii, T., Tanaka, Y., Maekawa, K., Kato, S., and Konishi, H. (2016). BonTen Corpus Concordance System for NINJAL Web Japanese Corpus. In Proceedings of COLING 2016, the 26th International 718
15 nwjc2vec: Conference on Computational Linguistics: System Demonstrations, pp Asahara, M., Maekawa, K., Imada, M., Kato, S., and Konishi, H. (2014). Archiving and Analysing Techniques of the Ultra-large-scale Web-based Corpus Project of NINJAL, Japan. Alexandria: The Journal of National and International Library and Information Issues, 25 (1 2), pp (2017). nwjc2vec:. 23, pp Gers, F. A., Schmidhuber, J., and Cummins, F. (2000). Learning to Forget: Continual Prediction with LSTM. Neural Computation, 12 (10), pp Maekawa, K., Yamazaki, M., Ogiso, T., Maruyama, T., Ogura, H., Kashino, W., Koiso, H., Yamaguchi, M., Tanaka, M., and Den, Y. (2014). Balanced Corpus of Contemporary Written Japanese. Language Resources and Evaluation, 48 (2), pp Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a). Efficient Estimation of Word Representations in Vector Space. In ICLR Workshop Paper. Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013b). Distributed Representations of Words and Phrases and Their Compositionality. In Advances in Neural Information Processing Systems, pp (2016).., 31 (2), pp Okumura, M., Shirai, K., Komiya, K., and Yokono, H. (2011). On SemEval-2010 Japanese WSD Task., 18 (3), pp (2016). Chainer.. (2015).. 21, pp Sugawara, H., Takamura, H., Sasano, R., and Okumura, M. (2015). Context Representation with Word Embeddings for WSD. In PACLING-2015, pp Yamaki, S., Shinnou, H., Komiya, K., and Sasaki, M. (2016). Supervised Word Sense Disambiguation with Sentences Similarities from Context Word Embeddings. In PACLIC-30, pp
16 Vol. 24 No. 5 December
IPSJ SIG Technical Report Vol.2010-NL-199 No /11/ treebank ( ) KWIC /MeCab / Morphological and Dependency Structure Annotated Corp
1. 1 1 1 2 treebank ( ) KWIC /MeCab / Morphological and Dependency Structure Annotated Corpus Management Tool: ChaKi Yuji Matsumoto, 1 Masayuki Asahara, 1 Masakazu Iwatate 1 and Toshio Morita 2 This paper
Modal Phrase MP because but 2 IP Inflection Phrase IP as long as if IP 3 VP Verb Phrase VP while before [ MP MP [ IP IP [ VP VP ]]] [ MP [ IP [ VP ]]]
30 4 2016 3 pp.195-209. 2014 N=23 (S)AdvOV (S)OAdvV 2 N=17 (S)OAdvV 2014 3, 2008 Koizumi 1993 3 MP IP VP 1 MP 2006 2002 195 Modal Phrase MP because but 2 IP Inflection Phrase IP as long as if IP 3 VP Verb
¥ì¥·¥Ô¤Î¸À¸ì½èÍý¤Î¸½¾õ
2013 8 18 Table of Contents = + 1. 2. 3. 4. 5. etc. 1. ( + + ( )) 2. :,,,,,, (MUC 1 ) 3. 4. (subj: person, i-obj: org. ) 1 Message Understanding Conference ( ) UGC 2 ( ) : : 2 User-Generated Content [
A Japanese Word Dependency Corpus ÆüËܸì¤Îñ¸ì·¸¤ê¼õ¤±¥³¡¼¥Ñ¥¹
A Japanese Word Dependency Corpus 2015 3 18 Special thanks to NTT CS, 1 /27 Bunsetsu? What is it? ( ) Cf. CoNLL Multilingual Dependency Parsing [Buchholz+ 2006] (, Penn Treebank [Marcus 93]) 2 /27 1. 2.
NINJAL Project Review Vol.3 No.3
NINJAL Project Review Vol.3 No.3 pp.107 116 March 2013 Learners Spoken Corpus of Japanese and Developmental Sequence of Verbs SAKODA Kumiko 1 C-JAS 2 2.1 1 1 8 13 3 OPI Oral Proficiency Interview 9 10
自然言語処理21_249
1,327 Annotation of Focus for Negation in Japanese Text Suguru Matsuyoshi This paper proposes an annotation scheme for the focus of negation in Japanese text. Negation has a scope, and its focus falls
Haiku Generation Based on Motif Images Using Deep Learning Koki Yoneda 1 Soichiro Yokoyama 2 Tomohisa Yamashita 2 Hidenori Kawamura Scho
Haiku Generation Based on Motif Images Using Deep Learning 1 2 2 2 Koki Yoneda 1 Soichiro Yokoyama 2 Tomohisa Yamashita 2 Hidenori Kawamura 2 1 1 School of Engineering Hokkaido University 2 2 Graduate
第62巻 第1号 平成24年4月/石こうを用いた木材ペレット
Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting
1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2
CHLAC 1 2 3 3,. (CHLAC), 1).,.,, CHLAC,.,. Suspicious Behavior Detection based on CHLAC Method Hideaki Imanishi, 1 Toyohiro Hayashi, 2 Shuichi Enokida 3 and Toshiaki Ejima 3 We have proposed a method for
1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.,, 464 8601 470 0393 101 464 8601 E-mail: [email protected], {ide,murase,hirayama}@is.nagoya-u.ac.jp,
Vol.54 No (July 2013) [9] [10] [11] [12], [13] 1 Fig. 1 Flowchart of the proposed system. c 2013 Information
Vol.54 No.7 1937 1950 (July 2013) 1,a) 2012 11 1, 2013 4 5 1 Similar Sounds Sentences Generator Based on Morphological Analysis Manner and Low Class Words Masaaki Kanakubo 1,a) Received: November 1, 2012,
大学における原価計算教育の現状と課題
1 1.1 1.2 1.3 2 2.1 2.2 3 3.1 3.2 3.3 2014a 50 ABC Activity Based Costing LCC Lifecycle Costing MFCA Material Flow Cost Accounting 2 2 2016 9 1 2 3 2014b 2005 2014b 2000 1 2 1962 5 1 3 2 3 4 5 50 2012
( )
NAIST-IS-MT1051071 2012 3 16 ( ) Pustejovsky 2 2,,,,,,, NAIST-IS- MT1051071, 2012 3 16. i Automatic Acquisition of Qualia Structure of Generative Lexicon in Japanese Using Learning to Rank Takahiro Tsuneyoshi
kut-paper-template.dvi
14 Application of Automatic Text Summarization for Question Answering System 1030260 2003 2 12 Prassie Posum Prassie Prassie i Abstract Application of Automatic Text Summarization for Question Answering
untitled
2010 58 1 39 59 c 2010 20 2009 11 30 2010 6 24 6 25 1 1953 12 2008 III 1. 5, 1961, 1970, 1975, 1982, 1992 12 2008 2008 226 0015 32 40 58 1 2010 III 2., 2009 3 #3.xx #3.1 #3.2 1 1953 2 1958 12 2008 1 2
..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i
25 Feature Selection for Prediction of Stock Price Time Series 1140357 2014 2 28 ..,,,,. 2013 1 1 12 31, ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i Abstract Feature Selection for Prediction of Stock Price Time
<95DB8C9288E397C389C88A E696E6462>
2011 Vol.60 No.2 p.138 147 Performance of the Japanese long-term care benefit: An International comparison based on OECD health data Mie MORIKAWA[1] Takako TSUTSUI[2] [1]National Institute of Public Health,
,,,,., C Java,,.,,.,., ,,.,, i
24 Development of the programming s learning tool for children be derived from maze 1130353 2013 3 1 ,,,,., C Java,,.,,.,., 1 6 1 2.,,.,, i Abstract Development of the programming s learning tool for children
1 1 tf-idf tf-idf i
14 A Method of Article Retrieval Utilizing Characteristics in Newspaper Articles 1055104 2003 1 31 1 1 tf-idf tf-idf i Abstract A Method of Article Retrieval Utilizing Characteristics in Newspaper Articles
Q-Learning Support-Vector-Machine NIKKEI NET Infoseek MSN 10 1 12 22 170 121 10 9 15 12 22 85 2 85 10 i
21 Stock price forecast using text mining 1100323 2010 3 1 Q-Learning Support-Vector-Machine NIKKEI NET Infoseek MSN 10 1 12 22 170 121 10 9 15 12 22 85 2 85 10 i Abstract Stock price forecast using text
IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-
1 3 5 4 1 2 1,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-View Video Contents Kosuke Niwa, 1 Shogo Tokai, 3 Tetsuya Kawamoto, 5 Toshiaki Fujii, 4 Marutani Takafumi,
udc-3.dvi
49 UDC 371.279.1 3 4 753 1 2 2 1 2 47 6 2005 11 14 50 No.35, 2006 1 1.1 AO 2003 2004 2005 2005 1 1 2005 1998 1999 2002 12 11 2000 SAT ACT Law School Admission Test LSAT Medical College Admission Test MCAT
& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro
TV 1,2,a) 1 2 2015 1 26, 2015 5 21 Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Rotation Using Mobile Device Hiroyuki Kawakita 1,2,a) Toshio Nakagawa 1 Makoto Sato
21 Pitman-Yor Pitman- Yor [7] n -gram W w n-gram G Pitman-Yor P Y (d, θ, G 0 ) (1) G P Y (d, θ, G 0 ) (1) Pitman-Yor d, θ, G 0 d 0 d 1 θ Pitman-Yor G
ol2013-nl-214 No6 1,a) 2,b) n-gram 1 M [1] (TG: Tree ubstitution Grammar) [2], [3] TG TG 1 2 a) ohno@ilabdoshishaacjp b) khatano@maildoshishaacjp [4], [5] [6] 2 Pitman-Yor 3 Pitman-Yor 1 21 Pitman-Yor
HASC2012corpus HASC Challenge 2010,2011 HASC2011corpus( 116, 4898), HASC2012corpus( 136, 7668) HASC2012corpus HASC2012corpus
HASC2012corpus 1 1 1 1 1 1 2 2 3 4 5 6 7 HASC Challenge 2010,2011 HASC2011corpus( 116, 4898), HASC2012corpus( 136, 7668) HASC2012corpus HASC2012corpus: Human Activity Corpus and Its Application Nobuo KAWAGUCHI,
WII-A 2017 Web SNS Tweet 2. [ 02] [ 10, 14, 07, 12, 12]. Matsumoto et al. [Matsumoto 11] [ 15] / Support Vector Machine 2 / [ 01, 16] [ 01] [ 1
1 Web 2017 Conversion of Japanese Slang into Standard Japanese Considering Sensibility Kazuyuki Matsumoto Seiji Tsuchiya Misako Imono Minoru Yoshida Kenji Kita Tokushima University [email protected]
2016
2016 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
corpus.indd
22 JC-D-10-02 23 2 c 2011 21 1 I BCCWJ 3 1 BCCWJ 5 1.1 BCCWJ 3..................... 5 1.2 BCCWJ 2...................... 6 2 3 SC 7 2.1 SC SC............. 7 2.1.1 SC SC................... 7 2.1.2......................
_念3)医療2009_夏.indd
Evaluation of the Social Benefits of the Regional Medical System Based on Land Price Information -A Hedonic Valuation of the Sense of Relief Provided by Health Care Facilities- Takuma Sugahara Ph.D. Abstract
NINJAL Research Papers No.8
(NINJAL Research Papers) 8: 177 196 (2014) ISSN: 2186-134X print/2186-1358 online 177 3 3 3 1940 3 late adoption real time 3 apparent time * 1. 1 2 3 1.1 3 1 1953 * 2014 3 18 2014 5 13 109 NINJAL 2012
Kintsch, W. 1994 Text comprehension, memory, and learning. American Psychologist, 49, 294-303. Leon, J. A., & Penalba, G. E. 2002 Understanding causality and temporal sequences in scientific discourse.
Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth
Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth and Foot Breadth Akiko Yamamoto Fukuoka Women's University,
ñ{ï 01-65
191252005.2 19 *1 *2 *3 19562000 45 10 10 Abstract A review of annual change in leading rice varieties for the 45 years between 1956 and 2000 in Japan yielded 10 leading varieties of non-glutinous lowland
untitled
580 26 5 SP-G 2011 AI An Automatic Question Generation Method for a Local Councilor Search System Yasutomo KIMURA Hideyuki SHIBUKI Keiichi TAKAMARU Hokuto Ototake Tetsuro KOBAYASHI Tatsunori MORI Otaru
Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m
Vol.55 No.1 2 15 (Jan. 2014) 1,a) 2,3,b) 4,3,c) 3,d) 2013 3 18, 2013 10 9 saccess 1 1 saccess saccess Design and Implementation of an Online Tool for Database Education Hiroyuki Nagataki 1,a) Yoshiaki
05_藤田先生_責
This report shows innovation of competency of our faculty of social welfare. The aim of evaluation competency is improvement in the Social welfare education effects, by understanding of studentʼs development
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.
THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE. E-mail: {ytamura,takai,tkato,tm}@vision.kuee.kyoto-u.ac.jp Abstract Current Wave Pattern Analysis for Anomaly
DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)
1 2 1 3 Experimental Evaluation of Convenient Strain Measurement Using a Magnet for Digital Public Art Junghyun Kim, 1 Makoto Iida, 2 Takeshi Naemura 1 and Hiroyuki Ota 3 We present a basic technology
2 ( ) i
25 Study on Rating System in Multi-player Games with Imperfect Information 1165069 2014 2 28 2 ( ) i ii Abstract Study on Rating System in Multi-player Games with Imperfect Information Shigehiko MORITA
情報処理学会研究報告 IPSJ SIG Technical Report Vol.2013-HPC-139 No /5/29 Gfarm/Pwrake NICT NICT 10TB 100TB CPU I/O HPC I/O NICT Gf
Gfarm/Pwrake NICT 1 1 1 1 2 2 3 4 5 5 5 6 NICT 10TB 100TB CPU I/O HPC I/O NICT Gfarm Gfarm Pwrake A Parallel Processing Technique on the NICT Science Cloud via Gfarm/Pwrake KEN T. MURATA 1 HIDENOBU WATANABE
36 Theoretical and Applied Linguistics at Kobe Shoin No. 20, 2017 : Key Words: syntactic compound verbs, lexical compound verbs, aspectual compound ve
tikeya[at]shoin.ac.jp Difference between the Japanese Compound Verbs Das and Hajime : A Corpus-based Study Tomoko IKEYA Kobe Shoin Women s University Institute of Linguistic Sciences Abstract BCCWJ-NT
Web Stamps 96 KJ Stamps Web Vol 8, No 1, 2004
The Journal of the Japan Academy of Nursing Administration and Policies Vol 8, No 1, pp 43 _ 57, 2004 The Literature Review of the Japanese Nurses Job Satisfaction Research Which the Stamps-Ozaki Scale
[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing
1,a) 1,b) 1,c) 2012 11 8 2012 12 18, 2013 1 27 WEB Ruby Removal Filters Using Genetic Programming for Early-modern Japanese Printed Books Taeka Awazu 1,a) Masami Takata 1,b) Kazuki Joe 1,c) Received: November
fiš„v8.dvi
(2001) 49 2 333 343 Java Jasp 1 2 3 4 2001 4 13 2001 9 17 Java Jasp (JAva based Statistical Processor) Jasp Jasp. Java. 1. Jasp CPU 1 106 8569 4 6 7; [email protected] 2 106 8569 4 6 7; [email protected]
BOK body of knowledge, BOK BOK BOK 1 CC2001 computing curricula 2001 [1] BOK IT BOK 2008 ITBOK [2] social infomatics SI BOK BOK BOK WikiBOK BO
DEIM Forum 2012 C8-5 WikiBOK 252 5258 5 10 1 E-mail: [email protected], {kaz,masunaga}@si.aoyama.ac.jp, {yabuki,sakuta}@it.aoyama.ac.jp Body Of Knowledge, BOK BOK BOK BOK BOK, BOK Abstract Extention
Comparison of the strengths of Japanese Collegiate Baseball Leagues in past 30 seasons Takashi Toriumi 1, Hirohito Watada 2, The Tokyo Big 6 Baseball
Powered by TCPDF (www.tcpdf.org) Title 東京六大学野球リーグ及び東都大学野球リーグを含めた各大学野球連盟における過去 30シーズンの平均競技力の比較研究 Sub Title Comparison of the strengths of Japanese collegiate baseball leagues in past 30 seasons Author 鳥海,
-like BCCWJ CD-ROM CiNii NII BCCWJ BCCWJ
-like BCCWJ CD-ROM CiNii NII BCCWJ BCCWJ BCCWJ Yahoo! Yahoo! BCCWJ BCCWJ BCCWJ BOAO PS Zipper CLASSY with Oggi Precious JJ GINZA Domani Precious Oggi ViVi GINZA BCCWJ NEXTSTEP Windows XP FD ELO KIDDIES
The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website
The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). The material has been made available on the website by the author(s) under the agreement with the IPSJ.
DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme
DEIM Forum 2009 C8-4 QA NTT 239 0847 1 1 E-mail: {kabutoya.yutaka,kawashima.harumi,fujimura.ko}@lab.ntt.co.jp QA QA QA 2 QA Abstract Questions Recommendation Based on Evolution Patterns of a QA Community
16_.....E...._.I.v2006
55 1 18 Bull. Nara Univ. Educ., Vol. 55, No.1 (Cult. & Soc.), 2006 165 2002 * 18 Collaboration Between a School Athletic Club and a Community Sports Club A Case Study of SOLESTRELLA NARA 2002 Rie TAKAMURA
. Yahoo! 1!goo 2 QA..... QA Web Web 2 3 4 5 6 7 8 2. [1]Web Web Yin [2] Web Web Web. [3] Web Wikipedia 1 2
DEIM Forum 211 F6-3 Web 35 855 1 2 35 855 1 2 11 843 2 1 2 E-mail: [email protected], {yohei,satoh}@slis.tsukuba.ac.jp, [email protected] QA Web Web Web QA Diversified-query Generating System Using
untitled
2009 57 2 393 411 c 2009 1 1 1 2009 1 15 7 21 7 22 1 1 1 1 1 1 1 1. 1 1 1 2 3 4 12 2000 147 31 1 3,941 596 1 528 1 372 1 1 1.42 350 1197 1 13 1 394 57 2 2009 1 1 19 2002 2005 4.8 1968 5 93SNA 6 12 1 7,
The Japanese Journal of Experimental Social Psychology. 2002, Vol. 41, No. 2, 155-164 V. 1986 An introduction to human memory. Routledge & Kegan Paul.) Hay, D. C., & Young, A. W. 1982 The human
外国語学部 紀要30号(横書)/03_菊地俊一
Information Technology: IT e-learning e-japan e-japan e-japan IT IT IT IT IT IT e-japan e-japan e-japan e-japan e-japan e-japan IT e-japan e-japan e-japan e-japan IIe-Japan e-japan II e-japan IT e-japan
1 2 8 24 32 44 48 49 50 SEC journal Vol.11 No.2 Sep. 2015 1 2 SEC journal Vol.11 No.2 Sep. 2015 SEC journal Vol.11 No.2 Sep. 2015 3 4 SEC journal Vol.11 No.2 Sep. 2015 SEC journal Vol.11 No.2 Sep. 2015
@08470030ヨコ/篠塚・窪田 221号
Abstract Among three distinctive types of Japanese writing systems Kanji, Hiragana and Katakana, a behavioral experiment using 97 university students as subjects implies that Katakana is regarded as most
*1 *2 *1 JIS A X TEM 950 TEM JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbe
*1 *2 *1 JIS A 14812008X TEM 950 TEM 1 2 3 4 JIS Development and Research of the Equipment for Conversion to Harmless Substances and Recycle of Asbestos with Superheated Steam Part 3 An evaluation with
音響モデル triphone 入力音声 音声分析 デコーダ 言語モデル N-gram bigram HMM の状態確率として利用 出力層 triphone: 3003 ノード リスコア trigram 隠れ層 2048 ノード X7 層 1 Structure of recognition syst
1,a) 1 1 1 deep neural netowrk(dnn) (HMM) () GMM-HMM 2 3 (CSJ) 1. DNN [6]. GPGPU HMM DNN HMM () [7]. [8] [1][2][3] GMM-HMM Gaussian mixture HMM(GMM- HMM) MAP MLLR [4] [3] DNN 1 1 triphone bigram [5]. 2
main.dvi
305 8550 1 2 CREST [email protected] 1 7% 2 2 3 PRIME Multi-lingual Information Retrieval 2 2.1 Cross-Language Information Retrieval CLIR 1990 CD-ROM a. b. c. d. b CLIR b 70% CLIR CLIR 2.2 (b) 2
WHITE PAPER RNN
WHITE PAPER RNN ii 1... 1 2 RNN?... 1 2.1 ARIMA... 1 2.2... 2 2.3 RNN Recurrent Neural Network... 3 3 RNN... 5 3.1 RNN... 6 3.2 RNN... 6 3.3 RNN... 7 4 SAS Viya RNN... 8 4.1... 9 4.2... 11 4.3... 15 5...
