0 (Preliminary) T S pv

Size: px
Start display at page:

Download "0 (Preliminary) T S pv"

Transcription

1 0 (Preliminary) S p p S (two variables function) (total differential) : ( ) (1) (2) Legendre F (3) (4) Maxwell 47 i c 2015 etsuya Kanagawa

2 Maxwell [ ] Joule Joule [ ] Mayer Mayer Joule homson [ ] Joule homson [ ] J Joule homson [ ] : ds [ ] ii c 2015 etsuya Kanagawa

3 : df : dg iii c 2015 etsuya Kanagawa

4 II ( ) : 3F305, 5254 kanagawa kz.tsukuba.ac.jp : 1. ( 6 ), ( 5 ),., , 60 II ( ).,,. 2. : 100. (a) (manaba ): 4 (b) 10 9 [1]: 5 (c) [2]: 7 (d) [3]: 7 (e) [4]: 7 (f) : 70, (a) (e) 30 2, (f) 70., (10:10 ), 3 4.,,. II ( ). 2 (manaba ) I.. 3 [ ],,, ( ). 4 [ ]. 5 II,.,, (4 1). 1 c 2015 etsuya Kanagawa

5 , 27 I., I,, 8.,, I,. 4. :.,,,. I,, 9. 10, ,.,,,,,., manaba, 13. 6,,.,,,,.,,,,.,, ( )., ( ),,. 7 [ ],,,,,, (, ). 8 I,, 27 I,,. 9 I,,,,., , ( I ),,, ,,.,,. 12 [ ],,,,., ( ).,,,., I,,.,, 6. 13,, (, 2 c 2015 etsuya Kanagawa

6 5. :, 14. : ( 0), ( 1), Maxwell ( 2), ( Joule, Mayer, Joule homson )( 3) 15, ( 4) ( ) A301 ( ), ( ) :, 18, 19. manaba ). ( ),,.. 14,.,,,.,,. 15 4,.,. II.,,,.. 16,. 17 ( ).,,,.. 18,,.,, (Legendre transform). 19 [ ],.,., (mechanics). (mass point) ( I). ( ) (particle mechanics),. ( ), (rigid body). (deformation), (continuum) ( ).,,,., Newton [, (Newton ), ]. (mechanical engineering) [ ( ) ], 2, 2,,.,.,,. 3 c 2015 etsuya Kanagawa

7 0 (Preliminary) 0.1 II 20, F F U S (0.1), G G H S (0.2) ,, U H S, F G, S p H H U + p (0.3) 20 [ ], (state quantity), (state variable),. [ ]. 21,. G. F 1 U, H. 22 [ ] (definition),. (formula) (law),, [ (0.1)(0.2) 1 ].,,,. 24 [ ] (free energy), Helmholtz ( )., (free enthalpy), Gibbs ( ). (Gibbs ), Gibbs G, (Helmholtz ), H F ( ). 4 c 2015 etsuya Kanagawa

8 G (0.2), G H S = U + p S = F + p (0.4), F G. (0.4), (0.1)(0.2)., S 25. (0.4), F G. U p 26, (0.3) 27., F G,. (0.1)(0.2),,,, (0.1) (0.3)., 29. : 25 [ ],.,, 100., (,,, ).,.,., G = H S S, G = F + p p.. 26 p, pd,.,, G = F + pd F, F pd ( ),,,.,,. 27, S p ( 1 )., I ( ),, 1. 28,, F G.,,.,, F G (, ). 29 [ ] : (i) (pressure) p (volume), (mechanics). (ii) 0 (the zeroth law of thermodynamics), (temperature) ( I 2 ). (iii) 1, (internal energy) U. (iv) (enthalpy) H, (isobaric process). (v) 2, (entropy) S. 5 c 2015 etsuya Kanagawa

9 (i), ( ) 30 31, p (ii),, U, H ( U + p ) 33, S 34., (0.1)(0.2) F G 2 35.,, 6,. 1. U, H, F, G, 4, 36., U, H, F, G, [ ] ( ) ( ),,, ( ).. 31 [ ] (extensive variable),, (intensive variable),. 32 [ ] 3, II (chemical potential).,, (concentration).,,, (specific enthalpy) h = H/m, (m )., II,. [ ] ( I ). 33 [ ] Gibbs., Gibbs ( ). 34 [ ] (reversible process),, S 2.,. (finite value). 35, p, (, U, H, S, F, G) ,, 4, ( ),,. 37,.,, ( ).,. 1 d Q 6 c 2015 etsuya Kanagawa

10 , p S J (0.4) ( ) F d = U d p d (0.5) 2 ( ) G d = H d + dp (0.6) 2 [ ] (0.1)(0.2), (0.7) 41, ( ) ( ) F U S ( ) = d = d = Ud du ds = U ds pd d + ds = ( ) (0.8) 2 38,. 39 1,, (0.1) (0.4), S p ( p) (S ) (, S p )., S, (heat quantity) ds (= d Q). 40 (0.4) 10 9 ( 1 ).. 41 ( 4), : d(fg) = fdg + gdf (0.7) (, : derivative, differential quotient), (differential),,. 7 c 2015 etsuya Kanagawa

11 . (0.6) , ( ) = ( ) ( ) 45., 46 : (0.10) du = d Q d W (0.11), U, ,, du., d Q d W, d 42, (0.5),,, dh = ds + dp (0.9).,, (1.15)., [ 26 II ( ) 27 I [ A]( ) ]. 43, d 1 d = 2 = d 1 = 1 2 d, 3 (, ).,,, df ( ).,,. 44 (0.19). 45 (system). (surroundings), (boundary). 46, [ ( : infinitesimal), ] (heat quantity) (work). (process), c 2015 etsuya Kanagawa

12 49., 2 : (i) 50, 51, ( ) d p, d W = pd (0.12)., I,,,,. 50,.,. 51 (displacement), (force). 52 I (0.12),. (0.12),. 9 c 2015 etsuya Kanagawa

13 (ii) 53 S ds d Q (0.17), d Q, d Q = ds (0.18). (0.17),, 57., (0.18) ( 0.2.1). 53 [ ],,. ( ), :,. 54 [ ] (irreversible process), S, ds d Q (0.13) (Q ).,.,, ( 4),. 55 [ ] : ds = d Q d. ( ), ( )..,,. 56 [ ] ds, S, (definite integral) S 2 S 1 S = 2 1 d Q (0.14). 2 : (i) = 0, S = d Q = Q 12 0 (0.15). 1 (integrand) (isothermal), 2., Q 12 1 (thermal equilibrium state) 2 12 (, I, 12, , Q 12 Q 1 2 ). (ii), d Q 0, ds = 0, S = 0. S 1 = S 2 (0.16). [ ],. 57 [ ], Clausius, d Q/, 10 c 2015 etsuya Kanagawa

14 , 58 59, 60, du = ds pd (0.19). (0.19) 61.,, p S,, S [(0.17) (0.18)] 62.,,,,, (0.18)., p,,, S 4. (i). p ,,,. 58,, (0.11) (conservation law of energy)., (0.19), S,., (0.19),, ( ) ( ).,,,., (0.19), 3 ( ),,. 59 [ 58 ] ds = d Q,, (0.19)., (i),, (ii) (0.19),, (0.19),. 60 [ ],., 3, (reversible) (quasi-static)..,.,,.,,.,, 1 1,., 2,,., (counterexample). 61,., (0.19), I ( 4, ). 62 (0.11) (empirical law), (0.12). 63 [ ]., 11 c 2015 etsuya Kanagawa

15 (ii)., , S. ds,. ds d.,, 2 66 : d W = pd (0.12) d Q = ds (0.18), p d., ds (0.12). 3. (0.19) 70.,,., ( ) ( ).,,, ( ),., (i) ( ), (ii) ( ), (iii), ( )., ( ) ( ),., ( ) ( ),. 64,., ( ), ( ) [,, (heat input),,, (heat output) ]. 65 [ ],, ( ), 20 C.. 3 : (i) ; (ii) ; (iii),. 66 [ ]., 99%,.,,. 67 [ ] (0.18),,., ( ),, ( ). d d, ( ). 68 d Q = d, S. S [J/K], 1 K., p S,,. 69, S.,,. d W = pd, p, d Q,, ds ( 2 ), (0.12) ( 12 c 2015 etsuya Kanagawa

16 0.3, ( 3) 71., ( 1),, Maxwell ( 2). I,,, II III,,.,,.,, (two variables function) f x y, x y, f(x, y) ( ) 74., x y,, f 75. f x y ,., ). 71, Boyle Charles. 72 d I, ( ). 73,,,,,.,,,,., (differentiation), :, ( ), pp. 1 6, ( ) (independent variable), ( ) (dependent variable)/ (unknown variable). 75, f, x y.,. (point). (curve).. 76, z = f(x, y)., f (x, y) z, z.,. 77 [ ] 1 y = f(x), x, y, 1, 2,., 13 c 2015 etsuya Kanagawa

17 , 78, 2,., 79 : p = mr = p(, ), = mr p = (p, ), = p mr = (p, ) (0.20) p,, 2 80., 81,, (inverse function), f, x = f 1 (y), x, y (x y )., 2,,., ( 0.4.6). 78, II. 1 ( Boyle, Charles, Poisson. )., 2 1,,,,. [ ],,,.. [ ] II, 3 n.,, 1 2,, 2 3 n., 2, m (mass), R (gas constant). 80,,, 2., p ( ). 81 [ ], t, v(t)., x, δ(x)., (t, x), u(t, x) p(t, x).,,,.,,,.. 82,,,., 1., c 2015 etsuya Kanagawa

18 0.4.2 (total differential) x y ( ), f(x, y) , df(x, y), df(x, y) = [df](x, y ) + [df](y, x ) = (x ) + (y ) = f f dx + dy (0.21) x y , (i) f/ x, y 87, ( ) f x lim f(x + x, y) f(x, y) f = lim x 0 x x 0 x (0.22) 88., f/ x (, ), x f ( ). x dx, ( f/ x)dx, x f, , x,, y.,. 84 [ ] f(x, y),, 3 : (i) x y, (ii) x, (iii) y.,, (i) = (ii) + (iii). (0.21).. 85 (0.21) 3., (0.21) 3,., (differentiability),., (proposition),..,. 87, x f. 88 (symbol), x, a., x,,.,,., aylor (higher-order terms), ( ). 89 f/ x., f(x, y) x 15 c 2015 etsuya Kanagawa

19 , y [ (0.21) 1 ] 90. (ii),. x dx f ( f/ x)dx, y dy f ( f/ y)dy, f ( ). (iii) df, dx, dy 3, (, ) 93, ( ) (iv), (0.21)., y 96, dy = 0, df(x, y), df(x, y) y=const. = f dx (0.23) x 97., x y,,, (verb). 90 (0.21) 3 1, y. x y, (i) dx y. x., (ii) f/ x y., (0.21) 3, d, (infinitesimal).,, 1 dy/dx (finite value), (fractional number). 92, 10 30, ,,,,. 93,, ( 1 ). 94 (product), (sum), ( )., (0.21) 3 ( ) = + = + = = ( ) ( ).. 95 (,, ),.,,, ( )., f/ x,.,,,, f/ x. 96, y,, x. 97, : df y=const. = f x dx, df y = f dx (0.24) x 16 c 2015 etsuya Kanagawa

20 . (0.23) ( 3) , 99. d(fg) = fdg + gdf (0.7) [ ] fg h 100, h, h(f, g)., z = f(x, y) y f/ y,, 1 y = f(x) f(x, y, z), y(x) dy/dx, x(y) 101 dx/dy 102., dy dx = 1 dx/dy (0.26),., 1 dy/dx, dx dy [!!!] (0.23), d, df(x, y) y = df dx (0.25) dx.,, dx, df., f 2 f(x, y)., y, y. 99, I, ( : mapping) f, y = f(x) x = f 1 (y). f. 102,,. 103 [ ] (,,, ).,,.,,. 17 c 2015 etsuya Kanagawa

21 , 2 f(x, y). II, f x 1 x/ f (0.27) 104., 2,,, x y, 105.,.. 1, 2,,, d dx f(x), x f(x, y), 2 f(x, y) (0.28) x2,, f , arcsin x, arccos x, arctan x. (0.26), I, C P, C P = dh d (0.29) 104. y. (chain rule). 105,, 2, [ ] x 2 (exponent) 2, x 2, ( x) 2. (1 ). : 2 ( ) 2 f x 2 = 2 x 2 f = 2 ( x) 2 f = f x 107 (inverse trigonometric function), sin 1 x, 1/ sin x = (sin x) 1.., (sine), (cosine), (tangent) : d dx arcsin x = 1, 1 x 2 d dx arccos x = 1, 1 x 2 d dx arctan x = x 2 18 c 2015 etsuya Kanagawa

22 . H 1 108,, (0.9), C P = ds + dp d (0.30). ( 3). I,, 3.2,, 2, 1.,, C P = H(, p) (0.31).,,.. H (0.3)., (i) dh H 109, (ii), / x, : 2 (2 ). (p,,, U, H, F, G, ), 2,.,. 2,, 108, 2,, H 1. Joule ( 3.2), U = U( ), H U + p = U( ) + mr = H( ) ( ). 109 [ ] ( ): C P = H(, p), : C P = H(, p) S + p ds + dp = U (U + p ) = + p ds + dp d 19 c 2015 etsuya Kanagawa

23 110, 111., (Boyle Charles ) p = mr = (κ 1)U (0.32) 112., p = mr/, 2 p = f(, ) (0.33), p = (κ 1)U/, 2 p = g(, U) (0.34) 113.,,, (0.33) (0.34) U., 2, (0.33)(0.34) 114., f g.,,.. p. f g, p(, ) p(, U) (0.35)., (d = 0) p/, (du = 0) p/ 115, ( )., p,., 110,, Boyle ( ) Charles ( ), 2 ( ), , [ ( ) ]., ( ),.,, p = (κ 1)U., Boyle Charles , ( ). 114, f g,.. 115,,. 20 c 2015 etsuya Kanagawa

24 (0.35) ( ),.,.,,, p(, ) ( ) p (0.36), 116.,, ( ) , : ( ) ( ) x y = 1 (0.37) y z x z ( ) ( ) ( ) x y z = 1 (0.38) y z z x x y ( ) ( ) ( ) ( ) y y y t = + (0.39) x z x t t x x z ( ) ( ) ( ) y y t = (0.40) z t z x x x 116, ( ) ( ),..,, z = f(x, y),,,., p(x, t), p t x,. 2,,.. 117, 2., ( A), ( B),,. ( ). 118,, : ( ) p(, ) p(, ),,,., ( ).,, ( 1) :, ( ), pp ( ). 21 c 2015 etsuya Kanagawa

25 , (x, y, z, t). (0.37). 2 z, 1 (0.26) 2,. (0.38), : 3 (x, y, z), 2, 1., 3., (x, y, z), (0.37)(0.38). (0.37)(0.38), (x, y, z),. x, y z., 2, 3, f(x, y, z) = 0 (0.41).,. (0.41),, (x, y, z), 122.,,,., (0.39)(0.40), 3,, 123., (0.39)(0.40), 4 (x, y, z, t),, 4 3. (0.37)(0.38),, 2,. 120 (denominator), (numerator), (subscript), (x, y, z) 1 (circulation),. 1 ( ) (0.26) , 2 [4 (0.37) (0.40),, ]. 123 (0.40), 2 (chain rule). 22 c 2015 etsuya Kanagawa

26 5. (0.37) (0.38) , 2, 127. ( 1) : (0.37), x = x(y, z) y = y(z, x) 128.,. dx(y, z) dy(z, x), ( ) x dx(y, z) = y ( ) y dy(z, x) = z z ( ) x dy + z ( ) y x dz + x y z dz (0.42) dx (0.43). (0.42) (0.43), dx(y, z) = ( ) x y z ( ) y dx + x z [ ( x ) y z ( ) y + z x ( ) ] x dz z y (0.44), dx dz 130,, 124,,,. 125,.,,,,.,,., (0.39)(0.40). 126 (0.38), II (Jacobi, Jacobian).. 127, 2, 3 : f(x, y, z) = 0..,., : (i), x, (y, z). (ii) x, 1, 2. (iii) (0.38), z = z(x, y),. 129, (0.43) (0.42). (0.42)(0.43). 130, dx dz (identity) : Adx + Bdz = Cdx + Ddz A = C B = D 23 c 2015 etsuya Kanagawa

27 dx, (0.37) : ( ) x y z ( ) y = 1 (0.37) x z, dz, : ( ) x y z ( ) y + z x ( ) x = 0 (0.45) z y, (0.38)., (0.45) ( z/ x) y : ( ) x y z ( ) y z x ( ) z + x y ( ) x z y, (0.37) ( ) x z y ( ) z = 0 (0.46) x y ( ) z = 1 (0.37) x y,, (0.38) : ( ) x y z ( ) y z x ( ) z = 1 (0.38) x y ( 2) : (0.37),, z ( )., (0.42), dz = 0 133, dx = ( ) x dy (0.47) y z 131 ( 1),,.,,. 132 : (0.37), x = x(y, z) y = y(x, z),, z, 1,, dx dy, 1 (0.26), 1. dy dx 133, z. 24 c 2015 etsuya Kanagawa

28 , dx ( 0) 134, : ( ) x dy y z dx = ( ) x y y ( ) y = 1 (0.48) x z 1, 135. (0.43), y,, (z, x) 2, (z, x) (, z) 136, ( )., (0.38) : (0.42) dx = 0 137, dz, 138 : ( ) x dy y z dz + ( ) x = z y ( ) x y z ( ) y + z x ( ) x = 0 (0.49) z y,, , (0.37), ( 1) : P (x, y)dx + Q(x, y)dy (0.50) 134 dx = 0 x, x, x, (0.37), ( ). 135,.,,, 2. ( 1) ( 2). 136 z, z. 137, x. (0.42), z y, x,. 138 [ ] d,,.,. 139,,, : y (x, z) 2,,,, dx = 0 x, x., y 2, 1, ( ) ( ). 25 c 2015 etsuya Kanagawa

29 , z(x, y), dz(x, y) = ( ) z dx + x y ( ) z dy = P (x, y)dx + Q(x, y)dy (0.51) y x., dx dy, : P (x, y) = ( ) z, Q(x, y) = x y ( ) z y x (0.52) 2, (0.52) , III, 143 : ( ) P = y x 6. (0.53). ( ) Q x y 7. (0.51) 144 (0.53) z(x, y) = C (0.54) (C ) (0.51) ( ). 142 (necessary condition), (sufficient condition), (necessary and sufficient condition).,. 143 (0.52) (0.53) (,, ). 26 c 2015 etsuya Kanagawa

30 1, U, H, F, G, (0.1)(0.2)(0.3), F, G, H,,, Legendre,,.,., : ( ) ,.,,.,,.,.,,., 2 ( ) 149, ( ). 2,,, 150. ( ).., ( ) ( ),, ,. 146,,. 147,, ,, ρ = m/, v = 1/ρ = /m, (m ) ( ),, 27 c 2015 etsuya Kanagawa

31 ,.,, ( ) (1), (0.19) 154 : du = ds pd (1.1), 2. (1.1), ds d., U 2, S, 155. :, (1.1), du(s, ) = ds pd (1.2)., du(s, ), du(s, ) = ( ) ( ) U U ds + d (1.3) S S (1.2) (1.3), [ du(s, )],.,,.,.,,,. 152,. 153,., Maxwell.,, ( ),,,. [ ],, ( 3). 154,.. 155,, U(S, ). ( ),.,, ,, ( ). 28 c 2015 etsuya Kanagawa

32 ds d ( ),., (1.2) (1.3), : ( ) U (S, ) = S ( ) U p(s, ) = S (1.4) (1.5) p, U , U U(, S), U(, S).,. (1.1) (thermodynamical identity), (1.1) U(, S) (thermodynamical potential) , (U,, S). 159,,.,., ( ),,. (1.4)(1.5).,,, (, I, ), (, ).,. 160 (thermodynamical characteristic function). 29 c 2015 etsuya Kanagawa

33 ,, [ (1.4)(1.5)].., 2, 2 ( ), 3, 4,. (1.4)(1.5),,, 163., , ( ), ( ).,, ( ).,,. 161,.., F Ω,, F = Ω/ x. ( ), ( ). 162 [ ], ( ) v ( ) Φ : v = gradφ.,,.,.,,, (,,,, ). 163,.,. 164,,.,.,,,,. 2,,.,,.,,.,,.,, ,, [ ( )].,.. 30 c 2015 etsuya Kanagawa

34 1.2 (2) [ (1.1)],, (4, 166 ) 167., 3, Legendre Legendre ,, ( ).., U(, S), (, S).,, S,,,,, 1.,. U(, S),., (1.4),. F (, ) 171, ( 1) U(, S) (1.4) : (, S) = ( ) U S = U = U F (1.6) S 0 ( ) U S + F = S + F (1.7) S 166, Maxwell, Joule, Mayer, Joule homson. 167,. 168, 2., 3,,,. 169 :, (, 2014). 170,, ( )., (analytical mechanics) Legendre. 171,. 31 c 2015 etsuya Kanagawa

35 (1.7) 2, F (0.1),, F U S (0.1). F, U S,. (1.7) 1 [ (1.6) ], 172, F S., S,, ( ) ( ) p, ( ), 1,.,, ds Sd, pd dp. ( ), Legendre. 8. (0.1) (0.4), Legendre (linear function)., (1.7) : ( ) U U = S y = ax + b = dy dx x + b S + = ( ) U S + F S (slope) a (= dy/dx) ( ), = ( U/ S). (intercept) b, F. 173 (1.6)(1.7),, F : ( ( )) =.. 175, U S U S U S 0 U S 0 ( ) ( ) ( ( )),, (U ), (S ). 32 c 2015 etsuya Kanagawa

36 1.2.2 F, F, (, )..,. F (0.1) ( 176 ) : df = du ds Sd (1.8) 1 2, (1.1), df = pd Sd (1.9)., 2 F (, ) 177. (1.9), (1.1),., (1.9), [ ].,.,,,, [, df, df(t, x) ].,,, du.,, du, du(, ), ,,..,,,. :... (1.9) : p, d, pd S, d, Sd pd Sd., df. 178 (1.9),,,,., (1.9), F, (1.1). ( ).,. 33 c 2015 etsuya Kanagawa

37 (1.9), F (p S ), (, ) 179., F (, ) df (, ) = ( ) ( ) F F d + d (1.10), (1.9) [ df (, ) ] 180, U, ( ) F p(, ) = ( ) F S(, ) =., F = F (, ). (1.11) (1.12) F (, ),, 181., S, F (, ) (1.12).,, ( )..,., (0.1), (1.11)(1.12),.,, F,, [ ] (1.9), F, p, S (, ).,, 2., (1.9), (, ), [ (1.10) ],, (1.11)(1.12).,,. 180, (1.9)(1.10) d d., ( ).,, (1.9) (1.10). 181 [ ] F (, ),., F (p, ) F (S, ) (. ) Legendre,,,..,., ( ),,. 34 c 2015 etsuya Kanagawa

38 (1.8) (1.9). (1.8).., 3, df = du ds Sd (1.8). F F (U, S, ), df (U, S, ), du, ds, d.,, 2, (1.8). F = U S. ( ), (1.10). F, H, G,,,. 1.3 (3) 3, 4, 185., 2. 2 F (, ), 1 U(, S), 3 U(, S)., F (, ),., ( ) 183,, 2,.,,., II 3 ( n ). 184 [, ] 3,, 1, 1 = ( F/ U),S., F = F (, S).. 185,, 2,.,,.,,.,,,,.,. 35 c 2015 etsuya Kanagawa

39 ,., ( ).,.,, ( 1) U(, S) p(, S) (1.5), H ( ) ( U U H p(, S) = S ) (1.13) H = U + p (0.3). H, (1.13), (0.3), H.. H, 3. H (0.3), 2 (1.1) 188, dh = du + pd + dp = ds + dp (1.14). 2., dh = ds + dp (1.15) 3., I,,, , ,, ( ). F,, (0.1) ( ). 188 ( 27 I [ A] 2 ). (1.15), (1.1).,.,,. 189,,, (1.15) 36 c 2015 etsuya Kanagawa

40 (1.15), H (S, p), dh(s, p)., H(S, p) dh(s, p) = ( ) H ds + S p ( ) H dp (1.16) p S. dh = dh(s, p) (1.15), (1.16).,,, H(S, p) : ( ) H (S, p) = S ( ) H (S, p) = p p S (1.17) (1.18), H, I , H(S, p)., (0.3),, (4) 3 U(, S), F (, ), H(S, p),., H(S, p), ( ) S.. ( ). 190 I,, ( ), ( )..,,,..,,,,.,,.,,. 191 [ 190 ], ( ).,.,,. 192, H(S, p),.,,. 37 c 2015 etsuya Kanagawa

41 , S. p,.,,., ( 3) H(S, p) (S, p) (1.17) : = ( ) H H G S p S 0 G, : (1.19) G = H S (0.2) G, (p, ). (0.2) G : dg = dh ds Sd = dp Sd (1.20) 1 1 2, 3 (1.15) 2., 4, : dg = dp Sd (1.21), G , (1.21), G = G(p, )., G(p, ) dg(p, ) = ( ) G dp + p ( ) G d (1.22) p,,, 193 (1.21),. 194,,,.,,,,,,. 38 c 2015 etsuya Kanagawa

42 S : ( ) G (p, ) = p ( ) G S(p, ) = p (1.23) (1.24),, p G(p, )., 4 G(p, ) Legendre, F, H, G ( ) 4 4, 4. : A. U, F U S, H U + p, G H S 4 197, : du = ds pd (1.1) df = pd Sd (1.9) dh = ds + dp (1.15) dg = dp Sd (1.21), G F [, G(p, ) F (, ) ].,, ( 4 ). 196.,,., ( ).,. 197,,. 198, ds pd,. [J]. 199, (1.25),, 39 c 2015 etsuya Kanagawa

43 B. U, F, H, G, ( ) 200., (1.1)(1.9)(1.15)(1.21) 2., U, F, H, G 201 : U(S, ), F (, ), H(S, p), G(, p) (1.25) (1.25). (0.1) (0.3)., (1.1)(1.9)(1.15)(1.21),,. C. (1.25), (1.25),, (1.4)(1.5)(1.11)(1.12)(1.17)(1.18)(1.23)(1.24)., 1, 2 (2 )., : ( ) ( ) U(S, ) H(S, p) = = S S p ( ) ( ) U(S, ) F (, ) p = = S ( ) ( ) H(S, p) G(p, ) = = p S p ( ) ( ) F (, ) G(p, ) S = = p (1.26) (1.27) (1.28) (1.29), (1.26), 1 (S, ), 2 (S, p). D. 2,., (1.26) (1.29),.,,,,,.,, ( ). 200,.. 201,., F (p, S),, F = U S.,. 40 c 2015 etsuya Kanagawa

44 p,,, S , 4 2,, ,, (S, ), (, ), (S, p), (, p), ,,. E. (1.26) (1.29), (1.26), 2 S,. F. (1.26) (1.29),, ( )., S,., (1.29) 1, , 1, 2.,, 207. G. ( ), ( ).,, ( ) , 0,, ( ),., p, S, , (combination), 4C 2 = 6, 4 ( ). 2 ( ) ,, (1.25), 1 1,. 206 (Otto ) (1.29) 1, (Diesel ) (1.29) 2,.,, 1., ,,,. 41 c 2015 etsuya Kanagawa

45 1.5.1, U, F, H, G 208.,,, : (i) ; (ii) (Legendre ), (i) ( ) ; (iii),, (ii) ; (iv) (i) G(p, ).,,.,..,,,, (1.26) (1.29), 1 ( ) 2 ( 2 )., [ (1.26)], ( ) U(S, ) (S, ) = S ( ) H(S, p) (S, p) = S p, 209.,.,,, (p, ) 210,, (1.26). 208, (Legendre ). F, H, G, ( ). p. 210, = p/(mr) = (p, ). 42 c 2015 etsuya Kanagawa

46 ,, 211,.,, ( 3 ) (1.26) (1.29), ( ).,, (1.26)(1.28), H(S, p).,, H(, ) H(p, ) 213.,. S p 2, H(S, p),. U, F, H, G, 214.,.,, U, F, H, G, 215.,,., ( ), 211.,.,,.. 212,.,, t x = (x, y, z), (kinematics),, (thermodynamics) ( ),. [ ] (mechanics) (kinematics) :,,., (statics) (dynamics) ( ),. 214,,. 215,,,., II,,,. 43 c 2015 etsuya Kanagawa

47 ( ).,, , (1.25) G(, p), p,, G 216.,, 217 ( )., ( ),..,, p = f(, ) (1.30) 218., 219, g(p,, ) = 0 (1.31). f g,., f g ,, f 216 G. 217,., Boyle, p = C/,,. 218, (1.30),. U S. 219 (1.31) :, 3, 3, 2,. (1.31), (implicit function representation). g = 0 p f.,,, f (explicit function). f, g, 3 ( ). [ ]. 220, p = p(, ),, p = f(, ) ( p f ).,.,,. 221 (ideal gas), f, I p = f(, ) mr/ 44 c 2015 etsuya Kanagawa

48 g, 222.,, 223,,., I 224,,.,,,,.., Maxwell. 6. F, H, G 225,, 4 (1.1)(1.9)(1.15)(1.21) , [U(S, ), F (, ), H(S, p), G(p, )] (1.26) (1.29) (m [kg], R [J/(kg K)]).,,,, mr. [ ] mr, Hooke Young, Newton ( ), Fourier ( ). 222,,,.,, 1.,. ( : real gas), van del Walls. 223, ( ). 224 Joule [U = U( )], ( ) Mayer, Joule homson. 225 U, II ( ). 227, I,,,, ( ) ( ).,. 228 (1.4)(1.5)(1.11)(1.12)(1.17)(1.18)(1.23)(1.24). 229 ( 6),.,,, U(S, ), F (, ), H(S, p), G(p, ) ( 199 ). 45 c 2015 etsuya Kanagawa

49 8. Gibbs Helmholtz 230. [ ( )] F (, ) U(, ) = 2 [ ( )] G(p, ) H(, p) = 2 p (1.32) (1.33) F (, ) G(, p), U(, ) H(, p) ( ) : x 2 ( y ) ( ) y = x y x x z x z 231 [ ( )], U(S, ) H(S, p), S ( ), S U(S, ) H(S, p)., F (, ) G(, p) (p,, ), F (, ) G(, p).,, F (, ) G(, p),, U(S, ) H(S, p)., U H,. 232 [ ],,,,.,,,., F G. 46 c 2015 etsuya Kanagawa

50 2 Maxwell (Maxwell s relation) , , P (x, y)dx + Q(x, y)dy (0.50), 239, 240 : ( ) P = y x ( ) Q x y (0.53), 4,, U(S, ), F (, ), H(S, p), 233 [ ] Maxwell,,. 234 [ ],,,,, ( ).,, ,. 236 [ ] ( ), ( 7,, 4 ),, ( 10, ), (,, ).,. Amazon., ( ). 237, (0.50). ( ). 238, P Q (x, y), P dx + Qdy, (, ). 239 [ ] z(x, y), : ( ) ( ) z z P (x, y)dx + Q(x, y)dy = dx + dy = dz(x, y) (0.51) x y y x, (0.53) ( III). 240 dx dy (differential)., (0.50) ( ). ( ),. 47 c 2015 etsuya Kanagawa

51 G(p, ) du(s, ) = (S, )ds p(s, )d (2.1) df (, ) = p(, )d S(, )d (2.2) dh(s, p) = (S, p)ds + (S, p)dp (2.3) dg(p, ) = (p, )dp S(p, )d (2.4) 242. (2.1) (2.4),, U(S, ), F (, ), H(S, p), G(p, ) 243,,.,, U(S, ), F (, ), H(S, p), G(p, ) 244.., (2.1) ds, U(S, ), = ( ) U S = (S, ) (1.4)., , 1. [ ],, (, ). 242, du, du(s, ). 243 [ ] (2.1) (2.4),.,. 244,.,,,. 245 (1.4), 7,. 48 c 2015 etsuya Kanagawa

52 2.2 Maxwell, (2.1) (2.4), (0.53) 246., (2.1),, du(s, ) = (S, )ds p(s, )d = ( ) ( ) U U ds + d (2.5) S S. (0.53), : ( ) ( ) p = S S (2.6), 3 (2.2) (2.4), (0.53), ( ) p ( ) p ( ) S p ( ) S = ( ) = S p ( ) S = p. (2.6) (2.9) Maxwell 247. (2.7) (2.8) (2.9), ( ) d, ( ) ( / ) p., ,,,.,,.,.,. 247 [ II ( )] Jacobian (Jacobi, ), (2.6) (2.9), ( ): (, S) J (p, ) / p / S/ p S/ = 1 [ ], J, : d ds = Jdpd 248 [ ] ( ),.,. : (i) 49 c 2015 etsuya Kanagawa

53 (2.7)(2.9), (2.6)(2.8) ( ). (2.6) (2.9), (i) [J] ( p S), (ii) 1 (p,,, S),, [ ]. (2.5),, ds d., ds d., (1.4)(1.5) : ( ) U = S ( ) U p = S (1.4) (1.5), (1.4), S, ( ) = S [( ) ] U = [( ) ] U S S S S = ( ) p S (2.10),, [ ( ), ( ) ]. (ii) d,,. (iii),, ( ). v = dx/dt. [ 1] 3, ( ),. [ 2],, (line integral). 50 c 2015 etsuya Kanagawa

54 ., , (1.5), Maxwell 1 (2.6) ,,. (1.26) (1.29), ( ) U, F, H, G 253, 4 ( p,,, S)., (2.6) (2.9), (, p,, ), F G,,, [ ( II)] 2 f(x, y), (i),, 2 f x y 2 f y x, (ii). (i) (ii), 2 : 2 f x y = 2 f y x,. 250, U, S,. 251 [ III],,. 252 [ ], ( ).,,.,.,,,,. 253 [ ], U, F, H, G,,. 254 [ ]. ( ), ( ). 255 p p, S S,., F U,,.,,. 51 c 2015 etsuya Kanagawa

55 (2.6) (2.9),, p,, S 4, 4.,, ( ) ( ) (closed set/system)., (2.6) (2.9) 258, (2.6) (2.9).,. (i) (2.6)(2.8), S,., S 260.,, : x + y + z = 0, x + y z = [ ( )],,.,, ( : computational mechanics).,, Newton Navier Stokes (2 ) (exact/analytical solution), ( )., (numerical/computational study), (approximate solution), (perturbation method) [ (weakly nonlinear phenomena) ].,. 258 [ ], Cauchy Riemann ( ), 2 ( ). 259 [ ] (partial differential equation)., ( ), ( ).,,., 1 ( ( III) ).,., ( 2 ) ( ),,, ( )., (diffusion equation), (wave equation), Laplace,, (parabolic), (hyperbolic), (elliptic) [2 (quadratic curve) (analogy)] ( ). 260 [ ],. d Q = ds., d Q < ds ( 4 ). 52 c 2015 etsuya Kanagawa

56 261.,,.,. (ii) (2.7) (2.9), p,,.,, 262., p,,, ( ),., (2.7), S(, ) = ( ) p d + S 0 (2.11) (S 0 )., p = f(, ) 263.,, (2.7) (2.9), (2.6) (2.8)., F H,, (0.1)(0.2). 3, Maxwell (2.7)(2.9),., Maxwell.,. 2. Maxwell, (2.8), : (2.7), : [ ] Boyle Charles,, p = f(, ), S = g(p, ), ( 3.2 ). 264 [ ], (speed of sound), (isothermal compressibility), (isothermal bulk modulus), (coefficient of thermal 53 c 2015 etsuya Kanagawa

57 9. Maxwell (2.6) (2.9) ,,, Mayer, Joule homson 3., (0.19),.,, 267.,, Maxwell (2.6) (2.9) 268,., expansion), (thermal pressure coefficient) : ( ) p : a (2.12) ρ S : κ 1 ( ) (2.13) p ( ) p : k = 1 (2.14) κ : α 1 ( ) (2.15) p ( ) p : β (2.16),,,,., Maxwell : β [ (2.7) ],, α [ (2.9) ]. [ ],,,.,.,,. 265,., ( )., (2.6) (2.9),, [ ],,. S. 268, (1.26) (1.29). 54 c 2015 etsuya Kanagawa

58 , , 1.5.4,.,, (i) Boyle Charles ( ) p = mr = f( ) (3.1). (ii), Boyle Charles, v ( /m = ρ), ρ, ( ): pv = R (3.2) p = Rρ (3.3),,. 11. ( ): p = f(, ) (1.30) g(p,, ) = 0 (1.31) (1.30), 2., 2, 1, f. 269,.,, I, Joule (Joule ) Mayer, Joule homson ( ),,. (general relation),. 270 ( 3.1), Mayer ( 3.2), Joule homson ( 3.3),,, 3.,, Maxwell,,,.,. 271 [ ( )] (i). (i), (ii) [ ]. 55 c 2015 etsuya Kanagawa

59 (1.31), , f g, Joule 3.1.1, (0.19) du = ds pd (0.19) 274. (0.19) U S,, U(, ) S(, ) d ( 0) 277 : ( ) U = ( ) S p (3.4), 278., 2 U S [ ] ( ).,., 2, 3 ( )., (implicit function). (, ). 273,. 274,,,.,,,,.,,,. 275 [ ].,,, [ ] du(, ) du(s, )!!. 277,, (,. ).,, d = 0,. 278 [ ] (3.4),, d du d = ds d p,, 1 2,. 56 c 2015 etsuya Kanagawa

60 279,., S.., Maxwell (2.7) ( ) U = ( ) p p (3.5), (, ). 1, d, Maxwell (2.7). 2,, (2.7) , Maxwell. (0.19),, (3.4),,., 284. (3.5) (,, ) 279 S/, , (2.7) ,,,.,, (, ). 281 [ ( )], 1 ( ). p, (0.19) H ( ).,,, (3.4)., U(, ξ),,, ξ. 282 [ 281 ] du = ds pd,. U, (S, ), (, )., U ( ),,. ( 3, 3 ),. 283 U = U(, U) ( ). 284, (0.19) (3.4), (, )., 2,,. 57 c 2015 etsuya Kanagawa

61 Joule,, (3.5).,. (3.1), (3.5), ( ) p ( ) mr/ = = mr = p ( ). (3.5), : ( ) U(, ) (3.6) = 0 (3.7), 1,, U = f( ) (3.8) 285 [ ] (0.19),, ( ) (3.5)., Maxwell (2.6) (2.9). 286, 285. I :,,,,.,,,,., ( ). 58 c 2015 etsuya Kanagawa

62 ., f( ) ( ) (3.8) Joule ( ) 291,, [ ( III )] (3.8),, (3.7).,. (3.7) (3.8),, [ 287 ] n, n., n, n ( ),.,,, ( ),,. 289 [ ],. du/d = 0, U = C (C ).,, [,,, ( )]., ( C),.,. 2,.,,.,,., ( ), F ( ),. 290 [ 1] (general solution), (particular solution), (singular solution),. (family of curves). [ 2]. [ 3]. [ 4],. ( ). 291, ( ),,. 292., ( I, ). 59 c 2015 etsuya Kanagawa

63 , Joule, (3.8) ,,, Joule., Maxwell ,, (3.5) , : (3.5) 1 ( ),, p = f(, ) f.,., (3.5) 293 [Joule ( ) ] A B (valve), A ( ), B (vacuum)., ( ), (insulation)., A B [ ],,, A + B,., ( ), : ( A B ),,,,., [ ],., Joule,,., U(, ), : U(, A ) = U(, A + B ) = U = f( ) (3.9) ( ), ( ),., Joule (3.8) ( ) U = 0 (3.8). [ ],, pp [ ] Joule 2., (1843) ( I). 297 Maxwell.. (3.4). 298., (3.4),.,,,,,,. 299 ( ( )), ( ). 60 c 2015 etsuya Kanagawa

64 , U ( )., (3.5) (p,, ) 300., U [ ] (3.5)[ (3.4)],, 301.,,. 1.1, U U(S, ), p 302., (1.3), S,, U 3., U(S, ) S,, S = S(, ξ) 303. S, 1 S U 300, Maxwell (2.7). 301 ( 0.4.1)., U, / ( 0.4.3) ,,. 302 [ ]. (0.19) ds d,., U = U(S, ), du(s, ), ) ) du(s, ) = ( U S ds + ( U S d (1.3)., (0.19) du = du(s, ), (1.3) (0.19)., ds d, : ( ) ( ) U U =, p = (1.4) S S 303 [ ] U(S, ) 2, S, S = S(, ξ),., = (S, ξ), (3.4)(3.5).,,, ( ) ( ) U = p (3.10) S ξ S ξ, ( S/ ) ξ, (0.37), (3.4) ( )., S,,. 61 c 2015 etsuya Kanagawa

65 , 2 ξ S(, ξ), ds(, ξ) = ( ) S d + ξ, (1.3) ds : [ ( U ) du(s(, ξ), ) = S + ( ) ( ) ] U S d + S ξ,, ( ) ( ) S dξ (3.11) ξ ( ) U S ( ) S dξ ξ (3.12). du(s, ) = du(s(, ξ), ) = du(, ξ) (3.13) (3.13), (3.12),, du(s, ), du(, ξ)., du(, ξ) du(, ξ) = ( ) U d + ξ ( ) U dξ (3.14) ξ (3.12) d dξ, ( ) U ( ) U ξ ( ) ( ) U U = + S S ( ) ( ) U S = S ( ) S ξ (3.15) (3.16) 2.,, 3 4 (0.39)(0.40),,. (1.4)(1.5), (3.15), ( ) ( ) U S = p (3.17) ξ ξ., ξ =, (3.4). 304, S 2, ξ = ξ = p (,, ). 305 [ ] ξ (, : xi), x. 62 c 2015 etsuya Kanagawa

66 (3.4)(3.5). (3.5), Joule (3.8) : f( )p = (3.18) (i), Joule (3.8). (ii) (3.18), (3.18).. [ (i)] (3.5) 1, (3.18), ( ).,, Joule (3.8). [ (ii)] f( ) =., f( ),, f ,. 12.,, (3.5).. (i) ( )(1.15) 308, : ( ) H p = + ( ) S p = ( ) p (3.19) [ ], 1,, Maxwell 309, (0.39) (3.15), U,, S, (quadratic function), (polynomial),,. 308 (2.3)., (2.3) (1.15) [ ] 4,., H(p, ), dp.,., H(p, S). 63 c 2015 etsuya Kanagawa

67 (ii), H [ ] (3.19),., : ( ) H p = 0 (3.21), H = g( ) [g( ) ]. 310 [ ] Joule (3.8), (3.19),., (0.3), Joule (3.8) (3.1) : H U + p = U( ) + mr = H( ) (3.20) 64 c 2015 etsuya Kanagawa

68 3.2 Mayer 3.2.1,,,., ( I)., C c C/m, (2 ),.,,, ( I).,,, 311. (2 ) C, C = C(, ) (3.22), 1. 1, 2 : (i) C P p 2, (ii) C 2 ( ): C P = C P (, p), C = C (, ) (3.23) C, d Q d : d Q = C(, )d (3.24) 311,,. 312 [ ],, C [, ( ) ]., d Q, C d,. 313, : C = d Q d,,, ( ).., ( 0.4.3), d /d.,, (,, 1 ).,, d, 1, 2 ( ).,,.,,., (,, ). 65 c 2015 etsuya Kanagawa

69 I,, C P C,, ( ) [ (Mayer s relation)] 314..,,. 315, Mayer : C P C = ( ) ( ) p p (3.25) 13., Mayer (3.25). [ ] (3.1) ( ) p = mr, ( ) = mr p p (3.26), (3.25), ( I) : C P C = mr (3.29) 314 [ ], Mayer, ( ) ( ).,,, Mayer (,, ). 315,,. 316 [ ] mr ( ). (3.25),,., (p,, ), (, ),., (3.1), p = f(, ),. 317 [ ] I, c P = C P /m c = C /m, (3.25).,, ( ) ( ) p v c P c = (3.27) (v )., pv = R, Mayer :, (3.25)(3.29) m,. v p c P c = R (3.28) 66 c 2015 etsuya Kanagawa

70 3.2.2, 318., 3. ( 1) 2 C : d Q = C(, )d (3.24) ( 2) 319 : d Q = du + pd (3.30) S.,. (3.24) d Q, d Q = ds 320. ( 3) U, (, ) 2. : (i) (3.24) d, ; (ii) (3.30) d 321, 322. d, 323., : du(, ) = ( ) U d + ( ) U d (3.32) 318,,,,.,. 319,. 320.,,.,,. d Q = Cd = ds (3.31) 321 [ ], U,,, U,. 322 [ ] : (i),, (ii). 323 [ ] d d., U(, ),. 67 c 2015 etsuya Kanagawa

71 . d d, (3.24)(3.30), ( )., (3.24)(3.30)(3.32), 324,. ( 1),, (3.24) : d Q = C d (3.33) ( 2) (3.30), 325 : d Q = du(, ) (3.34), (3.32) U(, ),. (d = 0), U [ ], ( ). : d 0 = U(, ) U( ),,. 325 I, U ( ). 68 c 2015 etsuya Kanagawa

72 ( 3) (3.32) : du(, ) = ( ) U d (3.35) (3.33) (3.35),, : ( ) U C = = C (, ) (3.36), C (, ). (3.36), 331., 326 [ ( )], d = 0, , : ( ) U du(, ) = du(, ) + du(, ),, du(, ) = d 327 [ ] U = U( ) 1, d : du = du d d /, U/,., U, U, U ( 0.4.2). [ ] ( 0.4.2),, ( U/ ),,,. 328 [ ] d Q...,. 329, ( ),,., (3.35),,. 330 (3.36),, : U = C, du = C d,, ( ). 331 [ ] (3.36),,,,. (3.36),.,,,. 69 c 2015 etsuya Kanagawa

73 C P : ( ) H C P (, p) = p (3.37) [ ]. ( 2) ( ) d Q = dh dp (3.38),, ( 3) H(p, ) 333 dh(p, ) = ( ) H dp + p ( ) H d (3.39) p 334.,,, (3.39) : C ( ) = du d, C P ( ) = dh d (3.40) (i) (3.36)(3.37),, (3.40), ,. 333 [ ]. (3.38), d dp.,,. 334, p.,,. 335 [ ], I,,,,., (3.40), 1., C [ ],, (1 ) (, )., U 1., (3.40),., (iii) (3.44) (,, I ).,, (3.40), U = U( ), 1,, C( ),. 70 c 2015 etsuya Kanagawa

74 (ii) (3.40), 337. U( ) = C ( )d + U( 0 ), H( ) = C P ( )d + H( 0 ) (3.42) 0 0 (iii) ( ), (1 ) : U( ) = C, H( ) = C P (3.44), 0 = 0 K. [ (i)] Joule (3.8), U = U( ) (3.36), 2 1, 341., (0.3), Joule, H U + p = U( ) + mr = H( ) (3.45),,. 337 [ ],, 0 C (θ)dθ (3.41)., 2, 0 1,. 338 [ ], ( ). 339 [ ],, c c P,, : u = c, h = c P (3.43) 340 [ ], U = f( ), U( ),., U f. 341 [Joule ], Joule (3.8), Joule, (, ). 71 c 2015 etsuya Kanagawa

75 [ (ii)] d, [ 0, ] 342 ( ) = 0 du d d = du = U( ) U( 0 ) = C ( )d = ( ) 0 0 (3.46),. H( ). [ (iii)] C, 0 = 0, U( 0 ) = 0 : U( ) = C d + 0 = C (3.47) 0 =0 (3.45), = 0 = 0, H( 0 ), H( 0 ) = U( 0 ) + mr 0 = 0 + mr 0 = 0 (3.48), U( 0 ).,. 12. (3.1),, U,, H 343 : p = κ 1 H = (κ 1)U (3.49) κ, κ c P /c = (C + R)/c = 1 + R/c [ ], 0,. 343 ( ).,,,,,. (3.1), (3.49). 344 [ ], S : p κ = A exp(s) S = Ã ln(p κ ) (3.50), A ( )., ( ). [ ], (p,, ) (p,, S)., (0.19), Boyle Charles (3.1).,, S.,., I. 345 [2 ] 2,,,., 72 c 2015 etsuya Kanagawa

76 [ ] (3.1), (3.44) 346 : U = C = mr κ 1, H = C P = mκr κ 1 (3.51) Mayer 347, Mayer (3.25). C P (, p) C (, ) (3.36)(3.37), (i) 4 (0.40) 348, (ii) [H(S, p) U(S, )] (S, p) (1.26) : ( ) H C P = ( ) U C = p ( ) H = S ( ) U = S p ( ) ( ) S S = p p ( ) ( ) S S = (3.52) (3.53), 349., : (i), p, ; = p mr = (p, ) (ii), (3.49) ; (iii), (3.50) ; (iv),.,,,,,,.,,,,,. 346,,,. ( I )., (ratio of specific heats), heat s. (2 ). 347 [ ],., d Q = ds,, Maxwell., Maxwell. 348 [ ],, 1 2. dy dx = dy dt dt dx 349 [ ] S [J], (1.26), H S,. 73 c 2015 etsuya Kanagawa

77 , S 350., : [ ( S ) C P C = p ( ) ] S (3.54). 1 S(, p), 2 S(, ), 351., ds(, p) ds(, ) 352 : ( ) S ds(, p) = ( ) S ds(, ) = d + p ( ) S dp (3.55) p ( ) S d + d (3.56) (3.54) Mayer (3.25)., S,, p, 4, d, dp, d 3 2. (3.55)(3.56), d 353, dp d., p = p(, ) 354 : dp(, ) = ( ) ( ) p p d + d (3.57) 350 [ ],,.., S., S. 351 [ ], S., S(, p) S(, ). 352 (3.55)(3.56),, S, (, ( ) ): ) ( S p ( ) S 353 [ ] (i) 3 ; (ii) 2, 1 ( ); (iii) d 2, ; (iv) dp d. dp, dp(, ),, d d,. 354 [ ] = (, p) (,. )., S, S. 74 c 2015 etsuya Kanagawa

78 (3.57) (3.55) dp, : ( ) S ds(, p) = [( ) S = p d + p ( p ( ) S p ) ] d + [( ) ( ) p p d + [ ( S ) ( ) S + p (3.58) 1,, ds(, p) = ds(, p(, )) = ds(, ) = p ] d ( p ) ] d (3.58) ( ) ( ) S S d + d (3.59), (, p) (, ) , (3.59). (3.58)(3.59),, ds(, ).,,, d d., d, 3 (0.39) 357 ( ) S = ( ) S + p ( ) S ( ) p p (3.60), d, 4 (0.40) ( ) S = ( ) S ( ) p p (3.61). ( 3.1.4), (0.39)(0.40), [ ] S p, p ( ).,, S [ ] S(,, p) (,,, ): ( ) y = x z ( ) y + x t ( ) y t x ( ) t x z (0.39) 358 [ ],, (0.39)(0.40).,,. (0.39)(0.40), (,,, ). 359, (3.60)(3.61) (0.39)(0.40).,. 75 c 2015 etsuya Kanagawa

79 (3.54). (3.60).., (3.54) : [ ( S ) C P C = p ( ) S p ( ) ( ) ] S p = p ( ) S ( ) p p (3.62) , Maxwell (2.9) , Mayer (3.25) : C P C = ( ) ( ) p p (3.25) (3.25) 2, mr,, , 366,, : C P > C (3.63), C [ (Maxwell )] ( S/ p)., ±( / ) p (, )., : (A) S (p, ), G(p, ). G (1.21). (B), ±Sd ± dp ( )., (p, ),, (, 4 ). 361 [ ],. 2, S. (2.9).,,. 362,. Maxwell ( ). 363 [ ] (2.9)., G = H S ( )., = (, p), (2.9) (2.7) ( )., F G,. 364,, mr > 0 ( ). 365 [ ],, (thermodynamical inequality).,,,. 366,, (c P > c ). 367 [ ].,. 76 c 2015 etsuya Kanagawa

80 , C P, (3.25), C., (3.25)., (i) C S (3.52)(3.53) 369. (ii) (3.60)(3.61),, (3.62). (iii) Maxwell, Mayer (3.25) (3.30), d Q = C d + [ ( ) ] ( ) U p p + d = C d + d (3.65) [ ] C (, ) (3.36), U(, )., : du(, ) = ( ) U d + ( ) ( ) U U d = d + C d (3.66) (0.39) ( ), : ( ) ( ) ( ) ] S S + p p [ ( ) S C P C = ( ) S = ( ) ] [ ( ) S S = ( ) ( ) ( p = p ) p (3.64) 4, Maxwell (2.7) [ (2.9),, ]. 2, 3 (0.39)., (0.39),.,,,. 369 [ ], Mayer, ,,.,,. C (. I ). 372,,,.,, 1 1,. 77 c 2015 etsuya Kanagawa

81 , (3.36)., (3.30), (3.65) 1., (3.5), d [ ], (3.65). [ ]Mayer, (3.65) ,. (i) C P C 374 : ( ) ( ) CP 2 = p 2 p ( ) ( ) C 2 p = 2 (3.70) (3.71) (ii) : ( C ) = 0 (3.72) 373 [ ],,,,, ( ). [ ], C (, )., C P (, p), C P, = (, p) [ (3.66) d, dp.,,, ].,, p ( ) : [ ( ) d (, p) p = d + p ( ) dp p ] p = ( ) d p (3.67) p, (3.66), (3.67), [ ( ) ( ) ] p d Q p = C + d p (3.68) p., C P, d Q p = C P (, p)d p (3.69) ( )., Mayer (3.25). 374 [ ],. 78 c 2015 etsuya Kanagawa

82 375 [ (3.72) ] p(, ) = f( ) + g( ) (3.73) (f g ) [ (i)] ( 1) (3.71) 378. (3.36), 379, (3.5) 380, : ( ) C ( ) = [ = ( p = [( ) ] U = [( ) ] U ) ] ( ) ( ) p 2 p p = + 2 ( ) p = ( ) (3.74) ( 2) 381 (3.53), 375 [ ],.,,.,,,.,. 376, ( ),. 377 [ ] n, n (arbitrary constant)., n n ( ).,.,,, ( ). 378 (3.70). ( 1) (3.19), ( 2) Maxwell (2.9) , 2, 2,,. 380 [ ] (3.5), Maxwell (2.7),,., F. [ ](3.70), (3.5), (2.9), G. 381,. 79 c 2015 etsuya Kanagawa

83 , Maxwell (2.7), : ( ) = = [ ( ) ] S ) ] [( S = = [( ) ] S [( ) ] p = ( ) (3.75) 2,, ( ) 382. [ (ii)], p, (3.71) (3.72), 0, ( ) 2 p 2 = 0 (3.76)..,, 1 : ( ) p = f( ) (3.77), ,, : p(, ) = f( )d + G( ) = f( ) d + G( ) = f( ) + g( ) (3.78), G g,, G g, G, g [ ],,,,,,.,,. 384,,. 2.,,.,. 385,,, C = K( ) (K ) [ ( III )] (general solution) 80 c 2015 etsuya Kanagawa

84 3.3 Joule homson [ ],,.,,,., Joule homson (Joule homson effect) 387,, Joule homson (, J ) 388 : µ ( ) p H., 389 : ( ) = 1 p H C P [ + ( ) ] S = 1 p C P [ ( ) ] p (3.80) (3.81) ( : particular solution).,, p =, p = C 1, p = C 2, (C ) (3.79), (3.76),., (3.79) (3.76) ( ), (3.76).,,. (3.79) (3.76),., (, ),,.,,,. 1, ,,,.,,, (, ),. 388 J ( ).,,., II,, µ,. 389 [ ] (i) ( S/ p), ±( / ) p ( ); (ii) (p, ), G(p, ) ; (iii) G. 81 c 2015 etsuya Kanagawa

85 ,, Maxwell (2.9) 390, 391. J (3.81). C P = ( H/ ) p [ (3.37)] J µ = ( / p) H 3 (H,, p). 392.,,, 2 (0.38) 393 : ( ) ( ) p p H H ( ) H = 1 (3.82) p 1, 3,, J,, : ( ) p µc P H = 1 (3.83) ( H/ p), 1 (0.37) 394, µ = 1 C P ( ) H p (3.85)., (3.19) , G (2.4). 391 [ ],,,. 392,,.,,, (0.26) 2 : ( ) ( ) dy dx y x 1 : = 1, 2 : = 1 (3.84) dx dy x z y z 395 [ 12 ] dh = ds + dp (1.15) dp ( ) H = p ( ) S + p (3.86) p. 2, 1 p, 2, ( ),,, =. [ ] 82 c 2015 etsuya Kanagawa

86 , J (3.81) [ ] J H (1.15) dh = ds + dp (1.15), S. S, (H,, p),, µ, H, ds(, p) : ds(, p) = ( ) S d + p (3.87) (1.15) 1 dh = ( ) [ S d + + p ( ) S dp (3.87) p ( ) ] [ S dp = C P d + + p ( ) ] S dp p (3.88) 398,, dh : 0 = { [ C P d + + ( ) ] } S dp p H (3.89), H dp, ( / p) H, (3.81) : ( ) = 1 p H C P [ + ( ) ] S p (3.90),, (,, ). 396,, (3.19),, ,,., C P µ, S. S. 398 (3.52). 83 c 2015 etsuya Kanagawa

87 19. Joule homson (3.81) Joule homson J (3.81),.,,,.,,. I, Joule, Joule homson, Joule homson , C P J µ. 3.,. 400 [ ], J [, ( ) ].,,, ( ). 401 [ ],,,,., J, (,, ).,,. 84 c 2015 etsuya Kanagawa

88 p., H., ( )., 402 [Joule homson (1) ] Joule ( 293),.., (heat bath),,,,.,,, ( )., [ 402 (2) (throttling) ( )],, ( : pore valve). A, B, B. A A.,,., A B,. A, A,, B,. A B,,. 404 [ 402 (3) ]., A < B.,, A ( ), B ( )., p A > p B.,, Joule.,., (, ) [ 402 (4) ],,. : (i),, A B ; (ii) U = U B U A ; (iii),, p A A, ( ) A( ), W A = A 0 p A d = p A A (3.91) (,, ). B, W B = B 0 p B d = p B B (3.92), W = W B W A,, U = W = W A W B = p A A p B B (3.93), : H B = U B + p B B = U A + p A A = H A (3.94), W, (U A > U B ). [ ],, p A A = p B B, U A = U B, Joule. 406 [ 402 (5) ],., 85 c 2015 etsuya Kanagawa

89 . J,,., J,, ( ) 407.,, J µ 408 : 1 ( ) > 1 p (3.95) J,,. J inv, : inv = ( ) p (3.96),. Joule homson. J, , µ = , (200 K) (100 K),,,.,., 1908 Kamerling Onnes., (superfluidity) (superconductivity). [ ], pp , ,,. 408,,. 409,. J,,. 410,,,. 86 c 2015 etsuya Kanagawa

90 4,.., 411.,,,.,.,.,...., , 1 3., ,. 2, 2, ,, ( I)., 2,..,, 416.,,.,,,, 411,,. 412 [ ], ( II ),,,. 413 [ ],.,, Le Charelier ( ). 414,,.,,. 415, 0. 0,,. 416, = 2 1 d. 87 c 2015 etsuya Kanagawa

91 417.,, ( 1 2 ), , C 419., C ( ),. C, A, B. A B. : (i), A B. (ii), A B. (iii), A B 420., A B,., A B C , A B ( ), C,.,., ,,,,,.,,. 418, [ ],,. 421 [ ],,. 422 A B, C.,, 2. : 1,.,., (heat bath).,,,,.,,,,.,,.,, [ ], C A B, A B. 424, 0 I. 88 c 2015 etsuya Kanagawa

92 4.1.2 C,,., A = B (4.1).,, p A = p B (4.2) ,, A B,, , (4.1)(4.2),.,, , 1 2,,, 430., (4.1)(4.2),. ( ), A B. ( ), C, 425 [ ], ( ). 426, 2,. 427 [ ] 2.,. 428 [ ],., ( 0 ).,,. 429 [ ] ( ).., ( ).,. (thermal equilibrium), (thermodynamic equilibrium).,,,, ( ). 89 c 2015 etsuya Kanagawa

93 (4.1)(4.2) C ( ),, 432 : du C = d Q d W = 0 (4.3), U C., U C 433 : du C = 0 = U C = const. (4.4) ,, U, S 434. C, A B, 435 : C = A + B = const. (4.5) U C = U A + U B = const. (4.6) S C = S A + S B (4.7) 431,,,., (intensive variable)., (extensive variable).,.,. 432, (isolated adiabatic sysytem), d W, d Q, : d Q = d W = ,,.,,. 434 [ ], U, S. (4.1)(4.2),,, p. [ ] (1.1),,, U, S A B, C, A B. A B,, A B.,, c 2015 etsuya Kanagawa

94 , A B, ( ) C 436., (4.4), U C. (4.5) (4.7),, 9, U C C, , ( ),,. (4.5) (4.7),, 2 438,, S A ( A, U A ), S B ( B, U B ) (4.8)., 4, (4.5)(4.6), S A ( A, U A ), S B ( C A, U C U A ) (4.9). C U C, ( A, U A ) 2., C S C, (4.7), S C = S A + S B = S A ( A, U A ) + S B ( C A, U C U A ) = S C ( A, U A ) (4.10) 439.,, [ ] : ds 0,,. 436 [ ].. 437, A, U A, S A, S B 4 ( A B, S A S C ). 438,, [ ],. 91 c 2015 etsuya Kanagawa

95 ( ) , : d Q = du + d W = du + pd ds (4.14) 1, 2, (4.13)., du ds pd (4.15) 442. ( ), ( ) (4.15), (1.1)., (4.5)(4.6) U, : ds 0 (4.16), ( ). ds > 0,.,,.,,. ds = 0, ( ) S = S max. 440 [ ]. 441 [ ] ds d Q = d Q = ds (4.11).,, ds > d Q = d Q < ds (4.12)., (,., ). (4.11), (4.12), : d Q ds (4.13) [ ] (4.13), Clausius,.,. I, ( ). 92 c 2015 etsuya Kanagawa

96 , [ ] 5, ds = 0.,, (4.15) 444 : ds = 1 du + p d (4.17), S = S(U, ) 445. ds(u, ) ( ) S U = 1 ( ) S, U = p (4.18) 446., S(U, ), ( 5 ), (U, ) p(u, ) 447. (4.17), S(U, ) ( 5 ) , C.,. C,, (4.16) 449. C 443. S, 2 : (i) (, ); (ii) [ ( )]., 1 ds = 0 S = S max, ( ) ds > 0. (ii), ( ),. 444 [ ]., C., C,.,,. 445 (4.10),. 446 [ ].,,, p(u, ) (U, ). 447 [ ] (U, ) ( ). 448 S(U, ) [J/K], 4 U(S, ), F (, ), H(S, p), G(p, ), ( )[J]. 449,,, c 2015 etsuya Kanagawa

97 S C ( A, U A ),, C., ds C = 0, : ( ) SC U A A = ( ) SC A U A = 0 (4.19), S C (U A, A ), U A, 452 : ( ) SC U A A = ( ) SA U A ( ) SA = U A A + A ( ) SB U A ( ) SB U B A B = 1 A 1 B (4.20), (4.10) 453., (4.19), 454. A = B (4.22) S C A, 450 S C ( A, U A ). S C / U C. 451 [ ] (4.18),.,, (,, ): (i) A B,, C ; (ii) C ; (iii),, ; (iv),, ; (v), ( S C / U A ) A = 1/ A. 452 [ ], (U A, A ),., 1.,., 4,,, (,, 3, ) ( ): ( ) SB U A ( S B (U C U B ) ) du B d(u C U B ) ( ) SB U B A = C B = B ( ) SB = (4.21) U B B 454,,. 94 c 2015 etsuya Kanagawa

98 ., ( ):, (4.22), ( ) SC = p A p A = 0 (4.23) A U A A B p A = p B (4.24) , C, A B. (4.22)(4.24),., [ (4.1)(4.2)].,, ( 1 2 ),,, ,, 459.,, 460 : d Q = du + d W ds (4.25) 455,. 456 [ ] S = S max ( ds = 0),,,., (4.22)(4.24),,. 457 [ ], 2,. 458 [ ] ( ), 2.,, ( 4.2.2).,,,,.,,,,. 459 [ ],, ( )., ( ),. 460,. 95 c 2015 etsuya Kanagawa

99 (4.13). : d W (du ds) (4.26), F, 461 : df = (du ds Sd ) = du ds (4.27) (4.26) (4.27), d W df (4.28)., 12 : W 12 (F 1 F 2 ) (4.29) W 12, ( )., F 1 F , 465, 461, du ds,,. 462 [ ],., ( ). 463 ( 4.2.2), F, F 1 F [ ], W 12 = , 60,, [ ],. : d W = (d Q du) = du = W 12 = U 1 U 2 (4.30),,.,. [ ],, (, ).,,. 96 c 2015 etsuya Kanagawa

100 : df 0 ( U) (4.15), F (1.9), 470., F. F U S df = d(u S) = du ds Sd (4.32)., 1 2, ( ) (4.15) 471, df + Sd = du ds pd (4.33), F : df pd Sd (4.34) 466 [ ] F, : U = F + S = ( ) + ( ) (4.31) U 2. U ( ) F.., (maximum theoretical work). 467 [ ] F, S,. S.. U = F + S,,.. S (bound energy),,., (0.1),. 468 [ ],,., d Q < ds. S, S.,,. 469 [ ] U = F + S, S, F ,,,, (,, ). 471,,. 97 c 2015 etsuya Kanagawa

101 ,,, : df 0 (4.35) (df = 0), F ( ), F., F,.,,.,.,, ,,, , C 473., C ,, C ,, A = B = const. C (4.36)., (p A = p B ). F, S. (4.34), F (, ), (4.36), 472 [ ]., ( ),,. 473 [ ] 4.1.1, A B.,, C. 474 C ( ). 475 [ ] C,. 98 c 2015 etsuya Kanagawa

102 F : F C = F A ( A ) + F B ( B ) = F A ( A ) + F B ( C A ) = F C ( A ) (4.37) (4.35), F ( df = 0 ),,., F C A, df C ( A ) d A = df A( A ) d A + df B( C A ) d A = p A + p B = 0 (4.38) 478, : p A = p B (4.39) ( ), A B, : dg 0 F, G (1.21). G F + p 479 dg = d(f + p ) = df + pd + dp (4.40) 476 [ ] (i) A B, C (F C = F A + F B ); (ii) C ; (ii) F A = F A ( A ) F B = F B ( B ); (iii) B = C A C. 477 [ ],,,.,,, 3,., 1, 2 ( ). 478 [ ] (4.34), F (1.9), p, ( ) F p = (1.11) ( ).,,. 479 G H S,,, F (4.34). 99 c 2015 etsuya Kanagawa

103 1 2, F (4.34) 480 dg dp Sd (4.41).,, dg 0 (4.42), G 481., G., G,, , 4.2.3,.,,. 482, 483..,,, A = B = const. C (4.45) 480, S, F, G.,. 481 [ ], (variational method) : δs = 0, δf = 0, δg = 0 (4.43) d ( ), δ ( ). (4.43),., 2.,, : δ 2 S < 0, δ 2 F > 0, δ 2 G > 0 (4.44), S,,,., 1 δ, 2 δ 2 S., ( ) c 2015 etsuya Kanagawa

104 p A = p B = const. p C (4.46).,, G ( ).,,.,, G (4.42) 484.,,., 485.,,,,,, ,, : 1., S. 2., 487, F. 3., G.,,, S ( F G ).,., 484,.,. 485,. 486 [ ] (chemical reaction),,. (combustion), (fuel cell), ( ).,, (Gibbs ) (chemical potential). 487,.,., 2, 3,. 101 c 2015 etsuya Kanagawa

105 ,,. F, G,,, F (, ), G(p, ) 488. F (, ), G(p, ), ( ).,., 489 :, (, 1980)., (, 1989)., (, 1989)., (, 1997). ( ( ), 2002)., (, 2014) ,. ( ) c 2015 etsuya Kanagawa

0 (Preliminary) F G T S pv (1)

0 (Preliminary) F G T S pv (1) 0 (Preliminary) 4 0.1 F G.............. 4 0.1.1 S p............... 4 0.1.2......................... 6 0.2............................. 7 0.2.1 (1) p, S............................. 12 0.2.2 (2) 13 0.3

More information

1.5.1 SI kg, m, s ,,

1.5.1 SI kg, m, s ,, 0 9 0.1............................ 9 0.2.............. 10 0.3.................................. 13 0.4 (A2).................... 14 1, 0, 16 1.0.1..... 16 1.1............................. 16 1.1.1 (system)...........................

More information

(A2) , 0,

(A2) , 0, 0 10 0.1............................ 10 0.2.............. 11 0.3.................................. 14 0.4 (A2).................... 15 1, 0, 17 1.0.1..... 17 1.1............................. 17 1.1.1 (system)...........................

More information

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1 6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) (e) Γ (6.2) : Γ B A R (reversible) 6-1 (e) = Clausius 0 = B A: Γ B A: Γ d Q A + d Q (e) B: R d Q + S(A) S(B) (6.3) (e) // 6.2 B A: Γ d Q S(B) S(A) = S (6.4) (e) Γ (6.5)

More information

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T 3 3.1 [ ]< 85, 86 > ( ) ds > 0. (1) dt ds dt =0, S = S max. (2) ( δq 1 = TdS 1 =0) (δw 1 < 0) (du 1 < 0) (δq 2 > 0) (ds = ds 2 = TδQ 2 > 0) 39 3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3)

More information

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2 3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1

More information

untitled

untitled 1 Physical Chemistry I (Basic Chemical Thermodynamics) [I] [II] [III] [IV] Introduction Energy(The First Law of Thermodynamics) Work Heat Capacity C p and C v Adiabatic Change Exact(=Perfect) Differential

More information

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1 5 0 1 2 3 (Carnot) (Clausius) 2 5. 1 ( ) ( ) ( ) ( ) 5. 1. 1 (system) 1) 70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain)

More information

Microsoft Word - ●ipho-text3目次

Microsoft Word - ●ipho-text3目次 国際物理オリンピック 研修用テキスト Ⅲ 熱物理 相対論 量子力学 特定非営利活動法人物理オリンピック日本委員会 1 1.1 1 1. 1.3 3 1.4 4 1.5 6 1.6 7 1.7 9 11.1 11. 0.3 1 6 3.1 6 3. -9 3.3 - -- 31 3.4 --33 39 4.1 39 4. 40 4.3 4 4.4 44 4.5 47 5 5.1 5 5. 5 5.3

More information

現代物理化学 2-1(9)16.ppt

現代物理化学 2-1(9)16.ppt --- S A, G U S S ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r S -- ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r d Q r e = P e = P ΔS d 'Q / e (d'q / e ) --3,e Q W Q (> 0),e e ΔU = Q + W = (Q + Q ) + W = 0

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1 September 25, 2017 1 1.1 1.2 p = nr = 273.15 + t : : K : 1.3 1.3.1 : e.g. 1.3.2 : 1 intensive variable e.g. extensive variable e.g. 1.3.3 Equation of State e.g. p = nr X = A 2 2.1 2.1.1 Quantity of Heat

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si I 8 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No. : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin.

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even. 08 No. : No. : No.3 : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No.0 : No. : sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even. I 0 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No.0 : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

i

i mailto: tomita@physhkyoto-uacjp 2000 3 2000 8 2001 7 2002 9 2003 9 2000 2002 9 i 1 1 11 { : : : : : : : : : : : : : : : : : : : : : : : : 1 12 : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) 2001 1 e-mail:s00x0427@ip.media.kyoto-u.ac.jp 1 1 Van der Pol 1 1 2 2 Bergers 2 KdV 2 1 5 1.1........................................

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

: 1g99p038-8

: 1g99p038-8 16 17 : 1g99p038-8 1 3 1.1....................................... 4 1................................... 5 1.3.................................. 5 6.1..................................... 7....................................

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du 2 2.1 1 [ 1 ]< 33, 34 > 1 (the first law of thermodynamics) U du = δw + δq (1) (internal energy)u (work)w δw rev = PdV (2) P (heat)q 1 1. U ( U ) 2. 1 (perpetuum mobile) 3. du 21 // //( ) (Helmholtz, Hermann

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2 1 1 2 2 2 1 1 P F ext 1: F ext P F ext (Count Rumford, 1753 1814) 0 100 H 2 O H 2 O 2 F ext F ext N 2 O 2 2 P F S F = P S (1) ( 1 ) F ext x W ext W ext = F ext x (2) F ext P S W ext = P S x (3) S x V V

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h filename=quantum-dim110705a.tex 1 1. 1, [1],[],[]. 1980 []..1 U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h i z (.1) Ĥ ( ) Ĥ = h m x + y + + U(x, y, z; t) (.) z (U(x, y, z; t)) (U(x,

More information

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3

u = u(t, x 1,..., x d ) : R R d C λ i = 1 := x 2 1 x 2 d d Euclid Laplace Schrödinger N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3 2 2 1 5 5 Schrödinger i u t + u = λ u 2 u. u = u(t, x 1,..., x d ) : R R d C λ i = 1 := 2 + + 2 x 2 1 x 2 d d Euclid Laplace Schrödinger 3 1 1.1 N := {1, 2, 3,... } Z := {..., 3, 2, 1,, 1, 2, 3,... } Q

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n = JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz

More information

2

2 p1 i 2 = 1 i 2 x, y x + iy 2 (x + iy) + (γ + iδ) = (x + γ) + i(y + δ) (x + iy)(γ + iδ) = (xγ yδ) + i(xδ + yγ) i 2 = 1 γ + iδ 0 x + iy γ + iδ xγ + yδ xδ = γ 2 + iyγ + δ2 γ 2 + δ 2 p7 = x 2 +y 2 z z p13

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

4 2016 3 8 2.,. 2. Arakawa Jacobin., 2 Adams-Bashforth. Re = 80, 90, 100.. h l, h/l, Kármán, h/l 0.28,, h/l.., (2010), 46.2., t = 100 t = 2000 46.2 < Re 46.5. 1 1 4 2 6 2.1............................

More information

II 2 ( )

II 2 ( ) II 2 ( 26 1 1 1 3 1.1....................................... 3 1.1.1.............................. 3 1.1.2.............................. 4 1.1.3..................... 5 1.2 : R 3...............................

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 基礎からの冷凍空調 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/067311 このサンプルページの内容は, 初版 1 刷発行当時のものです. http://www.morikita.co.jp/support. 03-3817-5670FAX 03-3815-8199 i () () Q&A

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

t (x(t), y(t)), a t b (x(a), y(a)) t ( ) ( ) dy s + dt dt dt [a, b] a a t < t 1 < < t n b {(x(t i ), y(t i ))} n i ( s(t) ds ) ( ) dy dt + dt dt ( ) d

t (x(t), y(t)), a t b (x(a), y(a)) t ( ) ( ) dy s + dt dt dt [a, b] a a t < t 1 < < t n b {(x(t i ), y(t i ))} n i ( s(t) ds ) ( ) dy dt + dt dt ( ) d 1 13 Fall Semester N. Yamada Version:13.9.3 Chapter. Preliminalies (1 3) Chapter 1. (4 16) Chapter. (17 9) Chapter 3. (3 49) Chapter 4. (5 63) Chapter 5. (64 7) Chapter 6. (71 8) 11, ISBN 978-4-535-618-4.

More information

all.dvi

all.dvi I 1 Density Matrix 1.1 ( (Observable) Ô :ensemble ensemble average) Ô en =Tr ˆρ en Ô ˆρ en Tr  n, n =, 1,, Tr  = n n  n Tr  I w j j ( j =, 1,, ) ˆρ en j w j j ˆρ en = j w j j j Ô en = j w j j Ô j emsemble

More information

2 2 ( ) 28 4 6, 216 4 (http://nalab.mind.meiji.ac.jp/~mk/lecture/tahensuu2/) 1 3 1.1............................................. 3 1.1.1.................................... 3 1.1.2....................................

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2

G (n) (x 1, x 2,..., x n ) = 1 Dφe is φ(x 1 )φ(x 2 ) φ(x n ) (5) N N = Dφe is (6) G (n) (generating functional) 1 Z[J] d 4 x 1 d 4 x n G (n) (x 1, x 2 6 Feynman (Green ) Feynman 6.1 Green generating functional Z[J] φ 4 L = 1 2 µφ µ φ m 2 φ2 λ 4! φ4 (1) ( 1 S[φ] = d 4 x 2 φkφ λ ) 4! φ4 (2) K = ( 2 + m 2 ) (3) n G (n) (x 1, x 2,..., x n ) = φ(x 1 )φ(x

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

Acrobat Distiller, Job 128

Acrobat Distiller, Job 128 (2 ) 2 < > ( ) f x (x, y) 2x 3+y f y (x, y) x 2y +2 f(3, 2) f x (3, 2) 5 f y (3, 2) L y 2 z 5x 5 ` x 3 z y 2 2 2 < > (2 ) f(, 2) 7 f x (x, y) 2x y f x (, 2),f y (x, y) x +4y,f y (, 2) 7 z (x ) + 7(y 2)

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x I 5 2 6 3 8 4 Riemnn 9 5 Tylor 8 6 26 7 3 8 34 f(x) x = A = h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t)

More information

0201

0201 2018 10 17 2019 9 19 SI J cal 1mL 1ºC 1999 cal nutrition facts label calories cal kcal 1 cal = 4.184 J heat capacity 1 K 1 J K 1 mol molar heat capacity J K mol (specific heat specific heat capacity) 1

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information