(A2) , 0,

Size: px
Start display at page:

Download "(A2) , 0,"

Transcription

1 (A2) , 0, (system) (surroundings) (boundary) (wall) (closed system) (isolated system) , (thermal equilibrium) (thermometer) , 0, (state) (quantity of state) (intensive variable) (extensive variable) (specific state quantity) (equation of state) , i c 2018 Tetsuya Kanagawa

2 1.5.1 SI kg, m, s ,, [ ] ( ) [ ] (quasi-static process) p dv p V p V (ideal gas) Boyle Charles ii c 2018 Tetsuya Kanagawa

3 3.2.1 Boyle ( ) Charles ( ) Boyle Charles [ ] C P C V c V c P κ (isothermal process) (adiabatic process) iii c 2018 Tetsuya Kanagawa

4 5.2.2 (Poisson ) S (specific entropy) (T, v) (p, v) (T, p) p, V, T, S T S ( : C ) (thermal efficiency) Carnot p V T S T S iv c 2018 Tetsuya Kanagawa

5 7.3.3 Clausius p V Carnot Clausius Carnot Carnot Clausius Carnot Clausius ( ) Clausius Clausius (1) Clausius (2) [ ] Carnot Kelvin Clausius Kelvin Clausius Kelvin Clausius Clausius, Kelvin v c 2018 Tetsuya Kanagawa

6 10.5.3Kelvin, Clausius Carnot, A (i) η A > η C (ii) η A = η C (iii) η A < η C [ ] (thermodynamic temperature) 173 vi c 2018 Tetsuya Kanagawa

7 2018 I : 1 2 3F305, 5254 kanagawa kz.tsukuba.ac.jp. 105, 60, ( ) 3. A B, 4 5 : ( A) : 1) [5 ](, ) 2) [ 40 ] = 8 ( ) 3) [60 ] ( B) : 1) [5 ](, ) 2) [100 ] 1. : 1 1) (5 8 = 40 ): 5/1, 8, 15, 22, 29, 6/5, 12, ,, 2017,.,, ABC 1, 2. 2,,,.,. 3 [ ], A B,.,,.,, B, A B,. 5, :,. 6, 2 (4 24 ). 7 I,,.., 11:25, 8:40. 8,,. 1 c 2018 Tetsuya Kanagawa

8 1 2) : 6 26 ( ) 8:40 11:25 ( AB ) 1 3) 8:40 = ( ) 9 1 4), 1 5) 20, ),, ) ( 12 ) ) , D, A+., ( ).,,. 9 [ ], 8:40, ( ). 10,,, (, ).,,. 11 [ ],,.,,. 12,.., 40 %, ( ). [ ],. 13,. 14 [ ] , ( ), ( ). 2017,. AB,,. 15 [ ],,.,,,.,,,,,.,, ( ).,,,,. 2 c 2018 Tetsuya Kanagawa

9 2. (5 ) 16 = manaba.. 3. (. ):,,,,.,, , (,, ), (3F305), 3F , 20 21, ( ): 4 1) (, II),, 23.,., 24,,. 4 2), %,. 4 5, manaba ( ) ,,.,.,. 19,.. 20.,.,, A+. 21,,. 22,.. 23 [ ],,,.,,, c 2018 Tetsuya Kanagawa

10 ,, 27,,,, ),. 29.,., 2 : i),,, ,,,,.,,, 50 %.,, 2 ( ),,. 26,,,. 27 [ ],,,. (i). (ii),, (,, ). (iii),,. (iv),. (v). (vi) (, ).,,,. 28.,,. 29 [ ( )] (i), (ii) ( ) 2. (i),. (ii),,.,,.,,.,.,,,.,, ( ). 30,., ( ),.. 4 c 2018 Tetsuya Kanagawa

11 ii) i), ), ( ) 32.,, ,,.,, ), ,, 38., ( ). 31,.,.,,.,,,,,,.,,,. 32,, (unknown) (known). 33, ( ), ( ),. 34,,.,,,.,,,.,. 35,,. 36, II, 2. I.,. 37 [ ],., (1 ). 38 [ ] ( ),.,,., ( ) ( ),.,,,. 5 c 2018 Tetsuya Kanagawa

12 , 41.,, , manaba 44.,, manaba PDF 46,,, , I II ( ). 39 ( ).,,. 40,. 41,,. 42 [ ],.,,.,,. ( ),,,.,.,,. 43 [ ],. 3,..,. [ ],,,. 44,. 45,,,. 46 PDF,. 47,, ( ) ( ). 48 [ ] I, ( ),,., II,, II, III. 6 c 2018 Tetsuya Kanagawa

13 8. 49.,,,., : 9 1) ( 5 ) :,., 53,.,, 49,,.,,,,,. 50 [ ],, 2.,, (,, ), 1,, 1.,, A B, A B.,,.,, (,, ). 51 2,, 6. [ ] II.,,.,. 52, 6.,, II,.,,,,., ( ). 53 [ ] 1, ( ), ( ).,,.,,.,,.,,. [ ],,.,,,,,, ( ). 7 c 2018 Tetsuya Kanagawa

14 54.,,, 55.,,. 9 2),, 56.,, 57.,,, 58.,,,,,.,, (entropy),,,.,,,,. 55 [ ],.,,.,,. 56 [ ] 21,,, (, 2000), (, 2007). [ ],. II.,. 57,, (,,, ). 56 (2000) (2007),. 58 [ ], ( ). [ ],.,,,.,. 59 [ ],..,,..,.,,. 8 c 2018 Tetsuya Kanagawa

15 , 60,,. 9 3) ( ), 61.,, ( )., 62,, ),.,, 64, , ( ). 61,,. 62,..,. [ ],,. 63 [ ],, ( ).,.,,,. 64 [ : ] (heat engine ( ) ),,,,. 65 [ ] (engineering thermodynamics), (mechanical engineering),., (strength of materials), (engineering mechanics), (fluid mechanics).,,. 66 [ ], 64 65,.,., I,., II,,. II, I,.,, I II,, I. 9 c 2018 Tetsuya Kanagawa

16 0,.,,.,., Newton (Newton s second law of motion), (the first law of thermodynamics) 67, (mechanics) 68,. ( ), ( ) 69.,, (equation of motion) 70.,, ( ).. ( ),.,,,.,. 67.,,,.,,,.,. 68 [ ],. (science/technical english). 2.,,,.,,,,. 69.,, ( ),.,,. 70,. 10 c 2018 Tetsuya Kanagawa

17 : (Q1). (Q2),,. (Q3),.,, 1 : (A1) Newton 2 ( ). (A2). (A3). (Q1).,, (conservation law of momentum) 72, (A1).,., (A3) (A2).. 75., [ ],,.,,..,,,.,,,. 72 [ ],. 73 [ ] (law),,,., ( ),..,, (definition).,. 74 [Hooke ] x F,,. [ ( Duffing )], F = kx + βx 3 (k, β ). 75 [ ],. 76,,,.,. 11 c 2018 Tetsuya Kanagawa

18 , Newton,, m d2 x dt 2 }{{} = F (t) }{{} (0.1) , v, m dv dt = F (t), dx, v dt lim x(t + t) x(t) t 0 t (0.2) 80., x(t) (position) 81, t (time), m (mass), F (t) (external force) t 82.,, (i) m 83. (ii) x(t), ( ) ( ). (iii) F (t) t,. m,., m, d(mv) dt = F (t) (0.3) 77 [ ], 1 (one-dimensional problem). ( ) 2 ( ) ( ) 78 [ ( )] d2 dt 2 = d2 d d d (dt) 2 = dd =,, dt dt dt ddt 2. dt 2, (dt) 2,.,,. 79 [ ], F (x, ẋ, t) ( ). 80 (definition). [:= =: ( ), def = ]. 81 [ ], (position vector).,,. 82 [ ] x (unknown variable) (dependent variable), t (independent variable)., F (inhomogeneous term). F = 0, (homogeneous equation). [ ], ( ). 83 [ ( )],, ( ). 12 c 2018 Tetsuya Kanagawa

19 84. dt, [t 0, t] 85 86, t (mv) = F (t)dt }{{} t 0 }{{} (0.4) ( ) 87.,, 88, (mv) = mv(t) mv(t 0 ) (0.5), (t 0, t ). (0.4) (momentum) (impluse),,.., : (A),.,,.,, (B), ,,. 85 [ ] (domain) (range), a t b, t ( ), [a, b] ( )., a < t < b (a, b). 86 [ ] dt,. (integration by substitution).. 87 [ ( )] (0.4),,, t,.,. t t 0 F (ξ)dξ 88 [ ] f = f 2 f 1 (difference).,.. [ ] (Greek letter) (delta) δ,. 89 [ ], ( )., ( ). 90 [ ] 100,, (i) 100,. (ii) 90, 10, 100. (iii) 90, 60, 150. (iv) 130,. 91 (0.4).,,. (mv) = c 2018 Tetsuya Kanagawa

20 ,.,, (A), (B) ( 2) , 94, ,,,..,,.,., (mass), (momentum), (energy) 3 96, 97.,, 98.,,, 92 [ ], ( ). 93 [ ] (mechanical energy), (kinetic energy) (potential energy). 94 [ ] m, k (Hooke ). x = 0.,,, x(t) 1 (2 ) : ( ) 2 1 dx 2 m + 1 dt 2 kx2 = const. 95,,, ( ( ) ).. 96 [ ],,.,,. 97 [ ],. (classical mechanics), 1,,, (, ), ( ). (quantum mechanics) I,,, c 2018 Tetsuya Kanagawa

21 ., ( ), (internal energy) , (A2), 102.,.., 103.,. (i), (ii), (iii),, (iv), 104. (iii) (iv),,., Newton ( ) ,,,,,. [ ] (elastic body) (plastic body),, ( ).,, ( II ). 100 [ ] 2 (i),.,,. (ii),,., ,,.,,. 102,, ( ). 103,,. 104 [ ],,,. 105 [ ],.,, ( )., ,. [ ],,. 15 c 2018 Tetsuya Kanagawa

22 , 106,,.,., ( 2).,, ( ).,.,,,.,,.,,,.,,,, = Newton ( ) = 106 [ ],. 107., (6 ).,. 108 [ ] 1 : ( ) 2 :.,.,. [ ], 1 : (Newton ) 2 : 3 :., Newton,,.,. [ ] 1,. 16 c 2018 Tetsuya Kanagawa

23 1, 0,,.,, ( )., ( ),,.., 110., 111.,,. 1.1, 112.,, (system) 113,, (matter). 109 [ ],,, 100 %. 1 1,. 110 A,. 111 [ ],,,,.,,. 112 [ ],,,,. [ ],.,,.,,..,,. 113 [ ], (thermodynamic system). 17 c 2018 Tetsuya Kanagawa

24 ,,.,., (degree of freedom),,. I, (surroundings) 115. (infinite).,.,., (heat source) (boundary),, (wall) 117, (box).,,, :.,, ( 5) [ ] II,,,. 115 [ ], (environment). 116 [ ] (heat bath). 117 [ ] II. I, [ ] (rigid body). (mass point), (elastic body). 18 c 2018 Tetsuya Kanagawa

25 1.1.5 (closed system) , ( ),.,,, ( ) (isolated system), ,,., (expansion)., ( ), ( ),.,,,,, 122.,, (i), (ii) ,, ( ) [ ] I, II (open system).,, ( ),. 120 [ ].. [ ], (turbine) (compressor) (throttling valve).,,., ( II), I,. 121,, ( II) ,,,,. 123 [ ],,. 19 c 2018 Tetsuya Kanagawa

26 1.2 0, 124.,, (thermal equilibrium) 20 C ( A), 100 C ( B).,,,., ( ) 1, ( A+B), 30 C,.,,.,.,,., ( ) 126 ( ),, [ ( )] (thermal equilibrium) (thermodynamic equilibrium).,,. I, II. 125 [ ],,.,,.,,,,, ( ). 126, ( 1.3). 127 [ ],. 128 [ 1],, (fluid mechanics, 2 ABC) (heat transfer, 3 AB). [ 2], T, T (p, V ) p V ( )., ( ) ( ),, T (x, t), x t.,,.,,. II. 129 [ 128 ] (2 ABC), ( ) T t = T κ 2 x 2,, T (x, t)., κ [m 2 /s], c 2018 Tetsuya Kanagawa

27 2, , 133, ( ) , 1 (law).,,,., : 0 (the zeroth law of thermodynamics) A B., B C., A C.,., ,,.,, Twitter (diffusion), ( ).,. [ ], T (x, t), T (p, V ) (p, V )., (,, ),.,.,, ( ). 130 [ ] ( 1.3 ).,. 131 [ ], (working fluid),,,. 132 [?],., 2, 2,, 2,.,. 133 [ ].,,, (,, ).,,. 134 [ ], 2,.. 2.,. 21 c 2018 Tetsuya Kanagawa

28 1.2.3 (thermometer),., : (i) A B. (ii) B C. (iii) C ( A),,. (i)(ii)(iii),,,,, ,,, ( ). 135 [ (1/2)],.,. (,,., ) A ( A) B ( B),,, AB AB ( AB A B ),., (i) (ii),, (ii) (iii).,,, A AB., AB C,, ABC ( ABC AB C )., 0, A C,. 136 [ (2/2)] 135 (a) A, B, (, ). (b) B, C,. (a), A B, AB, A., A B, B A.,, B, A.,, A C. (b), A C,, C A ( A)., C, A, A. [ ]..,,.,,.,, (,, ) , (a),, (b) ( ), (c),. (a)(b)(c),.,,,. (, ),,. 22 c 2018 Tetsuya Kanagawa

29 (i)(i)(iii),, 0..,,., 1, 1. 0., A B, 138. (thermometer), 0.,, (temperature),., , 0, 0, A, B, C, C 140.,,, ( 0), [ ]..,,. 139 [ (Twitter)] A C, B (A C ), A., ,..,,,.,,,,. 141 [ ],,. 2,,,.,, A B, ( ).,, 0,.,,,.,,,. 142 [ ], 2,,., 0, 1, 2, ,,,. II. 23 c 2018 Tetsuya Kanagawa

30 1.3,, 144., (state) ( ) 146, 147.,, ,.,,.,, 1 150,,.,,,. 144, ( ).,,,,,. ( ),,,. 145 [ ]. ( )., ( ),, ( ). 146 [ ],,, ( ). 147 [p V ] V, p, (starting point) (terminal point)., ( 2). 148 p V ( 2.5) T S ( ) 1., t = 3 x = (0, 2, 1) 1.,,. 149 [ ], 2 (plane), 3 (space). ( ), ( ) 2 ( II)., 3, 3 ( ) [z ], 2 [x y ]., I p V ( ),. 150 [ ], 25 C,.,. 24 c 2018 Tetsuya Kanagawa

31 1.3.2 (quantity of state),, 151.,.,.,,.,,,, ( 1.3.3) ,, 155.,,.,., ,,. (i) 1.2,,, (, ) t [ C], 151 [ ] I,.,,,. 152 [ ] 1. (state variable) ( II ). 153 [ ( )],, p V ( ).,,,,,.,. 154 [ ( )],,., ( ),.,,,. 155 [ ],,.,,.,,. 156 [ ( )],,. [ ],,., II,. [ ] 2 ( ) ( 2 ). 25 c 2018 Tetsuya Kanagawa

32 (absolute temperature) T [K] ( ) 157 : T [K] = t [ C] (1.1), 0 K 158.,, (ii) (pressure), p 161. Pascal ( ), Pa ,, (volume) 164, 3, 165., t x,,.,,., p T [ ], (thermodynamic temperature)., 6,, [ ] II (triple point),, ( ) ( ) ( ), 0.01 C, [ ],,. 160,. [ ] (rational number),. ( ). 161 [ ] p, p ressure. P. 162 [ ] Pa = N/m 2 = (kg m/s 2 )/m 2 = kg/(m s 2 ),,, ( ), atm. 1 atm = Pa.,.,,,. 164 [ ],,. 165 [ ], ( ), ( ), ( ),,.,. [ ] (kinematics), (velocity) ( (displacement) (acceleration) ), [ ], x t, p, T, V. 26 c 2018 Tetsuya Kanagawa

33 1.3.4 (intensive variable) (extensive variable) 167 2, ( ).,, ,,.,, ( 2.2), ( 2.6),.,,. ( ), ( : atmospheric pressure).,, ( ) (specific state quantity),, ( ) 171,. ( ) ( ),., ( ),., 172.,.,,. (specific 167. I 4 II,. 168 [ ],,.,. 169 [ ] 3, II. 170 [ ],.,. 171 [ ].,. [ ] ( ),,. 172 ( ),. 27 c 2018 Tetsuya Kanagawa

34 volume) v 173 v V m [m3 /kg] (1.2)., V [m 3 ], m [kg].,, v, ρ 175 : ρ m V = 1 v [kg/m3 ] (1.3) v [m 3 /kg],, ρ [kg/m 3 ],. I,, ( ) 176..,,,,. 2. V, v, ρ, m [ ],,.,,. [ ( )] ( ),,, ( ). 174 [ ],,.,,,,,,. 175 [ ], (density). 176 [ ],,..,,. 28 c 2018 Tetsuya Kanagawa

35 1.3.6 (equation of state) ,., p, T, V 3, : f(p, T, V ) = 0 (1.4), p (p = ) 179 : p = g(v, T ) (1.5) f g.,, f g 180. (1.5), 2. (1.4) 3,, 2., ,, 3. 1,, [ ] (Equation Of State) EOS. 179 [ ] (1.5) (explicit function), (1.4) (implicit function). 180 f g (, 1 ),. 181 [ ],, c 2018 Tetsuya Kanagawa

36 1.4, , , 184., ( 1.2)., ( ) , , 1.,. p V ( 2.5)., 1 1, , , 1 2, , 189,,. 182 [ ],, [ ], (change) (process) (, ).,.,,,.,,, (p 1, V 1, T 1 ) (p 2, V 2, T 2 ). 1 2,,., (path). 185 [ ], p V..,,. 186 [ ],, ( ). 187, ( ),. 188 (curve) (straight line). 189 p V. [ ]. 30 c 2018 Tetsuya Kanagawa

37 ,, ( ), ( ) ,,,., (explosion)., 193,.,. 194,.,.,, 195.,., 1 2.,. 190,. 191 [ ], 1 20, , 2 ( A) 30, ( B) , A B,.,. 192 [ ],.,.,. 193 [ ] (non-equilibrium) ( ). 194 [ ],. 195, ( 2.4). 31 c 2018 Tetsuya Kanagawa

38 1.5 SI (The International System of Units). SI (fundamental unit) SI (derived unit) 196 SI (prefix) SI,, (length): m (, meter) (time): s (, second) 198 (mass): kg (, kilogram) 199 ( ; mole number): mol (, mole) (absolute temperature): K ( ) 200 SI 19,, 4 : (pressure): Pa = N/m 2 (force): N = kg m/s 2 (work): J = N m (power): W = J/s 3. 4, SI. 4. Pa m 3 J, SI, kg m 2 /s SI. 197 [ ] (luminous intensity) cd (current) A, [ ] [J/s].,,. 199 [ ] g ( ). 200 Kelvin,. 32 c 2018 Tetsuya Kanagawa

39 1.5.2 kg, m, s 1 N... N J W,,.,.., Newton ( ) F g = m = 1 N 100 g (1.6) 9.8 m/s2,, kg, m, s., 201., (i), (ii), (iii), , N ( ).,,., (1.6). 203,,,,,. 201 [ ],.,.,,. 202 [ ],,,, [ ] K ( ), K.,,. 33 c 2018 Tetsuya Kanagawa

40 2, ,, ( 2.2 ).. 1 ( )., : 2,,., : 3,,.., : (the first law of thermodynamics), ( ),., [ ],, ( 0). 205 [ ] ( ), ( ).,,, ( ). 206 [ ], ( ),, ( 0). 207 [ ] 100, 80.,, 20.,., 100, 120,.,,. 34 c 2018 Tetsuya Kanagawa

41 2.1.1,,,,,, : 1). ( ), ).,, )., 210., : ( ) }{{} ( ) = ( ) }{{} (!!) ( ) }{{} ( ), 211.,, 212, ( )..,,.,.,,, [ ],,. 209 [ ], ( ). 6.,,. [ ],. 210 [ ],..,,,,,,.,,,. 211,. 212., ( ). 213 [ ],.,.,,, (,, ). 35 c 2018 Tetsuya Kanagawa

42 , [ ] 216,,,., Joule 217., (cal) 218 : 1 cal = J (2.1) , 1000.,, 219. ( ), ( ), ,,. 214,., ( ),. 215 [ ].,.,,,.,,. 216., ( ). 217 [ ( II )], (mixing)., (, ( 5)). 218 [ ] (mechanical equivalent of heat).. 219, (molecule), (atom), (quantum),,. 221,,. 36 c 2018 Tetsuya Kanagawa

43 2.2.2 (internal energy),, ,,,.,., ( ) ,, 227., [ ],. 223 [ ], 0 (, 0 ).. (analogy),,, ( ). 224 [ ],, (statistical mechanics)(!!). (kinetic theory of gases),.,,., ( ), (2 ). [ ] ( ).,. 225 [ ],, ( ).,,,, 3 (i),,,. (ii),. (iii),,, (,,., ). 226 [ ] ( ).,,. 227 [ ],., ( 0.3 ). 228 [ ],., (kinetic energy) ( (rotation), (translation), (vibration) ), (potential energy). 229 [ ] Joule ( II),, (i), (ii).,,.,. 37 c 2018 Tetsuya Kanagawa

44 2.3 1 ( 1) ( ) U 1 U , Q 1 2, W ,, U 2 U 1 = Q 1 2 W 1 2 (2.2)., 233 : U 2 = U 1 + (Q 1 2 W 1 2 ) (2.3) (2.3), : 2 ( ) = 1 ( ) + ( 1 2) (2.4) 2, 1, 1 2. (2.2), U U 2 U U = Q 1 2 W 1 2 (2.5) 235.,,, 230 [ ]..,.,.,, x p. 231 [ ] 1 2, W [ ] 1 2. U ( ) 1,, W Q, ( ), [ ],. 234 [ ], 1 2 ( 1 2)., [ ( )],. U = Q W.,,. ( ), ( ), ( 38 c 2018 Tetsuya Kanagawa

45 ,, (2.2) ( ), 2. W Q. 1 2 ( )., A B,.,, ( ), 237 : W ( 1 2), }{{} Q ( 1 2) }{{} (2.6) ( ) 238. ( ( )), ( ( ))., 239. ).,, (1 ),, ( ).,,, (i), (ii), (iii) (ii) 1 ( ). 236 [ ] ( 1) 50. ( ) 30, ( ) 20, ( 2), (2.3), U 2 = U 1 + Q 1 2 W 1 2 = = ( ).,. [ ],.,, ( ) 238 [ ] (2.6). (2.6), ( ). 239 [ ] ( ).,, ( ) ( ), 1.,,.., ( ) ( ), ( )., 39 c 2018 Tetsuya Kanagawa

46 , A, B., A B , 2 U 2. (2.2),.,,,., (2.2) U = U 2 U 1 ( ), Q 1 2 W 1 2 (, )., Q 1 2 W 1 2 U ,., ( )., 244,., 1/,,, ( ( )), ( ) ( ). 240 [ ] 1 2, A, B, C., : W 1 2A W 1 2B W 1 2C, Q 1 2A Q 1 2B Q 1 2C (2.7) 241 [ ] A, B,., W 1 2, (2.2), U 2. [ ] Q [ ] (2.2), U = 40, 40, U = Q 1 2 W 1 2 = }{{} A = }{{} B = 40 }{{} Q 1 2 W 1 2.,, [ ] 242, ( ),,.. U = 40 ( ). 244 [ ] (infinitesimal). 40 c 2018 Tetsuya Kanagawa

47 1., 245.,,. U 2 U 1 ( U 0) 246., , ( ), du = d Q d W (2.8) , d, 250. (2.2)(2.3) (2.8),., (2.8) (2.3),,. (2.8), (definite integral), 251 : 2 1 du = [U] 2 1 = U 2 U 1 (2.9) 245 [ ] ( ),.,,.,,. 246 [ ],., ( ).,,,. 247 [ ] U 0, 2 U 2, U 1 1 ( 1)., W 1 2 d W. Q 1 2 d Q. 248 [ ],,.. ( ). 249 [ ] du., d Q d W, ( ),.,.,, ( ). 250 [ ]. d.., 100.,, d δ., d. 251 [ ], U2 U 1 (1 2). du = [U] U2 U 1,, 41 c 2018 Tetsuya Kanagawa

48 ,. d W, 252., ( ) 1 2,, W 1 2 ( )., 253 : 2 1 d Q Q 1 2, 2 1 d W W 1 2 (2.10) (2.8) (2.9)(2.10), (2.2) ( ) 254., I, ( ) [ ],.,. 253 [ ], d,. 254 [ ] 2 1 d W = W 2 W 1.,., W 1, 1 ( 1).,. [ ] 1 2, ( ),., ( ), ( ). 255 [ 1/3 ( )] I,. ( ) : dy dx lim y(x + x) y(x) x 0 x (2.11),, ( ). ( )..,, df, y x,,.,. ( ),. 256 [ 2/3 ( )], df. df,.,, (, )., 2 (,, ), ( )., df f f. [ ],. 257 [ 3/3 ( )], df, II (total differential) df(x, Y ) (f, X, Y ). df(x, Y ) = f f dx + dy (2.12) X Y, ( II )., I,,., ( III). 42 c 2018 Tetsuya Kanagawa

49 1. (2.8), (2.2)(2.5) , (2.2)(2.5), (2.8) 258.,, (2.10) ( 1)., 259,,,.,.,,, ( ) [ ] V, dv., dv, ( ), 260.,,. (2.8),, ( ).., 261, U du,., (2.8),., (2.2), U. ( )., [ ],,,., ( ) [ ],, [ ] ( ), ( )., ( ). 261 [ ],,.. 43 c 2018 Tetsuya Kanagawa

50 , ( ) du (2 ) U 262. U, (Q 1 2 W 1 2 ). Q 1 2 W 1 2, (Q 1 2 W 1 2 ).. 2. ( 1.1.6) 263., 264. [ ],,, du = 0 (2.13)., 265 : U 1 = U 2 (2.14), [ ], du U.,. 263 [ ],,,..,. 264, ( ). 265 [ ],. 266 [ ] [ ].,,.,. 268 [ ] 267, (proposition)., ( I, 1 ),,,. 44 c 2018 Tetsuya Kanagawa

51 2.4 (quasi-static process),, ( 1.4).,, : (i),. (ii) p dv 270,.,.,,., , , ( ) W 1 2, W 1 2 F in x (2.15) 273., x x., F in,, F out ( ) 274., ( )., 269 [ ],,.,, ( ) ( ). 270 [ ],,.,,. [ ] (engine) (cylinder). 271 [ ] (deformation) (displacement). (continuum mechanics) ( (strength of materials) (fluid mechanics)). 272 [ ],,.,,. 273, ( ),, F in x ( ).,, [ ] F in, out. 45 c 2018 Tetsuya Kanagawa

52 x 0., (2.15), x dx, W 1 2 d W ( ) 275., d W = F in dx (2.16) 276.., F out = F in (2.17) 277. (2.17),,., F in F out,, 278.,,,., p, F in F in = pa (2.18) ( 1.3.3)., A (cross-sectional area). (2.18) (2.15), d W = padx = p dv (2.19)., V, (2.19) dv Adx (2.20) 275 [ ] ( )., d,,. 276 [ ] (2.15), (2.16).,. 277 [ ] (2.17), (,, )., Newton ( ). [ ],,,,. 278 [ ],,... F in F out.,,,. 46 c 2018 Tetsuya Kanagawa

53 . dv ( ) : (i), F p.,,., ( ) , , (ii) d W, p V,. d W. p V, dv ( )., p dv.,. 1 1,,.,, 279 [ ], dv = Adx. 280 [( ) ] (2.20)., Adx = ( ) ( ) A 1/ 1/ = ( ),.,, : }{{} A }{{} dx = dv }{{} 281 [ ],. 282 [ ],, [ ],,..,,.,. 47 c 2018 Tetsuya Kanagawa

54 284. (iii).,, ( )., ( II).,,.,,., ( ). (iv) (2.17),, ( 4).,, ,,,, , (2.19). 4., d W = p dv., (2.19), (2.16)( (2.15)) 287. [ ] (2.17), p. 2.5 p V, p V. 284 [ ], ( ( )),, [ ],. 286 [ ] d W = p dv,,.,,,.,.,,.,,.,,,,, ,. 48 c 2018 Tetsuya Kanagawa

55 , (2.19) 288. W 1 2 (2.10) (2.19), W 1 2 = 2 1 p dv (2.21) ,,. p V,, p,., ( ), (2.21)., p.,, ,, p V (2.21) W, p V, p = f(v ) V 292 : W = 2 1 p(v )dv (2.23) 288 [ ], (2.19). 289,, [V 1, V 2 ], V [1, 2]., [ 1, 2],, V,. 290,. 291 [ ],,,,,. 292 [ ] ( ):, S = x2 x 1 y(x)dx (2.22), x y x 1 x x 2, y = f(x) x (area). [ ] [x 1, x 2 ].,, [y 1, y 2 ] [y 2, y 1 ] (,, y 1 y 2 ). 49 c 2018 Tetsuya Kanagawa

56 p, V, p V ( ),,. 5. p V, p 0 ( ) 295. V 1 V 2,, p 0 (V 2 V 1 ). (i). (ii) 296. (iii) p V. [(i) 297 ] (2.21)., p ( ) p 0 298, (2.21) : W 1 2 = 2 pdv = 2 2 p 0 dv = p 0 dv = p 0 (V 2 V 1 ) (2.24) , [ ], x y, x, y., p V, p, V,., 5,. 294 [ ] p, (indicator diagram). 295 [ ], (isobaric process).,. 296 p V. 297 [ ],,,,. 298 [ ],,. 299 [ ],, p [ ],,. 301,,,,.,, ( ). 50 c 2018 Tetsuya Kanagawa

57 U pv 303, H : H U + pv (2.25) ( ).,. 7. pv U , 305. (enthalpy),, ( 7) ,. ( ), U., U, 302, [ ] p dv pv., U p dv,, U + p dv. pv p dv.,., pdv = p 1/ 1/ 0,. 304 [ ],.,,.,. 305 [ ] (2.25),,.,,.,,,.,,, I,., II,.,,. 306 [ ]., (entropy) [ ] (open system), (jet engine), (throttling valve), (turbine), (compressor), (pipe) (duct), (heat exchanger) ( ).. 51 c 2018 Tetsuya Kanagawa

58 , pv 308. pv 309., U. H 310 : ( ) }{{} H = ( ) }{{} U + ( ) }{{} pv,,, ,. I, df 312., f g fg, ( ) : d(fg) f dg + g df (2.27) 308 [ ] p dv pv. ( ) dv, ( ) V ( p ).,.,,, V ( ). ( ), p V., F x = pax = pv (2.26). F x ( ), pv ( ). 309 [ ] ( ),, (flow work) (eliminate work),., pv,., pv. 310 [ ] U ( ), pv ( ), H. [ ] p dv,. 311 [ ],,., ( : supersonic flow) ( ), (3 ). 312 [ ] (,, ), ( ). 52 c 2018 Tetsuya Kanagawa

59 , , (2.27), H ( (2.25)) ( ): dh = du + d(pv ) = du + p dv + V dp (2.29), H, du = d Q p dv (2.30). (2.30) du 315. (2.29), (2.30) du du }{{} = dh p dv V dp (2.31) 313 [ ] ( 314). [ ] (product), d(fg) dt = f dg dt + g df dt (2.28)., I, (2.27) (2.28). 314,. 314 [ ] pv, p V., pv (p, V ) (, pv f = f(p, V ) )., II (total differential) : d(pv ) = ( pv p ) dp + V =const. ( pv V ) dv = V dp + p dv p=const., 2 (. II ). 315 [ ], U ( ), U, H., H, U : }{{} U = H pv }{{} 1,. 53 c 2018 Tetsuya Kanagawa

60 316. (2.30), p dv, ( ): dh }{{} = d Q +V dp }{{} (2.32).,, 317., (2.32) 318.., (2.30) du = d Q p dv }{{} (2.30) : du = d Q p dv (2.33) dh = d Q + V dp 6. (2.30), (2.32). 7. : U = H 2 p dv V dp (2.34) [ ] (2.31), 1 2. (i), (ii) 316 [ ].,.,,,. 317 [ ] (2.31) (2.32),. ( ), ( ). ( 0). 318.,. 319 [ ].,,,. 54 c 2018 Tetsuya Kanagawa

61 320., , d Q = du + p dv = dh V dp }{{} (2.35), 2 : (i) [ ],, dp = 0., (2.35) : d Q }{{} p = dh (2.36) p=const.., : Q 1 2 = H(= H 2 H 1 ) (2.37) (ii) [ ] 323,, dv = 0, d Q V = du (2.38). 1 2, : Q 1 2 = U(= U 2 U 1 ) (2.39) 320. (2.31),.,,. 321 [ ],,. 322 [ ],,.,. 323 [ ],,,, ( ). 55 c 2018 Tetsuya Kanagawa

62 ., (i),. (ii),.,, H U. ( ),, 2.6 ( 1 )..,.. (2.37)(2.39), 324. (2.36)(2.38), , (2.37)(2.39). 324 [ ], (2.37)(2.39),, ( 4 ). 325 [ ] x, : f x=const. f x (2.40),,., = const.,. 326 [ ( II )] y ( ) f(x, y) f f(x, y), (x, y) x x y,,., y ( )., ( II ).,,.,. II,. 327 [ ]. y y = const..,. 328 [ ] ,,.,,,. 329 [ ],,., 0, (,, ). 56 c 2018 Tetsuya Kanagawa

63 (heat engine) (cycle) 331,,., 1 ( ) 2 ( ). p V, (closed curve) ,,., ( ), ( ) ( 333 ),., (perpetual motion machine of the first kind) 334.,., 335. (2.8). 9., ( ). 330,. 331 [ ]. Carnot ( ),, (. ), Otto (. ), Diesel (. ), Sabathé (, 2 ). (. ),, (Stirling)., Brayton (.,,,, ). Rankine,. ( ). 332 [ ],, (,,, ). 333 [ ],,, (power). 334 [ ]. 335 [ ],,,.,.,,. 57 c 2018 Tetsuya Kanagawa

64 [ ] (i). (ii),. (iii) (2.8),, W = 0 d W = 0 (2.41). (i) (ii). [ ] 336.,,,, (2.41). 2.9,,.,,, 337.,,.,.,,.,,..,,. J K, kg C.,.,.,,,. 336 [ ],, (2.8) (2.2).,. 337,,.,.,,,, ( ). 58 c 2018 Tetsuya Kanagawa

65 , p V, pv = const. (2.42),, U, U = const. (2.43) , p 1, V 1, p 2, 2. 1) 2.. 2) p 1 p 2.. 3) (2.42), p 1 V 1. 4) 1 2,. 5),.,,,.. 6) p 1 = 1 atm 340, V 1 = 1 l 341, p 2 = 3 atm, 4) 5). J., 1 atm = Pa, 1 l = 10 3 m 3, ln 3 = [ ] (isothermal process) ( 5). 339 [ ], (2.42) Boyle ( 3 ), (2.43) Joule ( II ) [ ] 1 1 atm, Pa.,.,. 341 [ ] 1 l = 1000 cm 3, [ ], ln Napier e, log 10.,, ln log,.,,. 59 c 2018 Tetsuya Kanagawa

66 p 0 [Pa], m [kg] 344, v 1 [m 3 /kg], Q 1 2 [J]., ( ) 1, ( ) ),. 2),, U, du = d Q mp dv (2.44) (m ).. 3), U,. U = Q 1 2 mp v (2.45) 4) U, H., H : H = U + mp v (2.46) 5) Q 1 2 = 2257 kj, m = 1 kg, p 0 = MPa, v 1 = m 3 /kg, v 2 = m 3 /kg, U H ) 1 H 1., 343 [ ]., ( ).,,. 344 [ ] SI, g kg.,,,. 345 [ ],. 346 [ ], ( 3). 347 [ ],, ( ).,. 348 [ ], ( ). 349 (2.44)(2.45) (2.34) [ ],.,,. 60 c 2018 Tetsuya Kanagawa

67 351., U 1 = 30 kj 352, 5). 7) 2 U 2 H (2.45) (2.46) 2, [ ],.., H = U + pv. 352,. 353 [ ]. 354 [ ], 1 2 ( ). 355 ( ). 61 c 2018 Tetsuya Kanagawa

68 , (ideal gas) I, , 359,., 2, 360 : (i) Boyle Charles (ii) Boyle Charles, m. 356 [ ],.,.,,. = =.,,. 357 [ ] (perfect gas). [ ] (fluid mechanics/dynamics/engineering),,,., (gas) (liquid) (,, ). 358 [ ] engineer ( ), engine ( ). 359 [ ]., (physics) (engineering),, (definition)., a.,. 360 [ ]..,, I,., (virial expansion). (real gas), (interaction), van del Walls ( ). ( ). 361, ( 4 ).,, (specific heat). 62 c 2018 Tetsuya Kanagawa

69 3.2.1 Boyle ( ), (isothermal process), Boyle : pv = const. (3.1) 9. (2.42). p V Charles ( ), (isobaric process), Charles : V T = const. (3.2), T [K]. 10. (3.2). p V Boyle Charles,,., Boyle (3.1) Charles (3.2) 364 : pv T = const. (3.3) 362 [ ],., (3.1).., (differential equation) (general solution) (arbitrary constant) ( III )., 1,, III. 363 [ ] 362, 1 ( ), 2., 2,., I, ( ),,. 364 [ ] ( ), Boyle Charles ( ),, ( ) Boyle Charles. 63 c 2018 Tetsuya Kanagawa

70 , Boyle Charles , 2 3,, i (i 1) i, p 1 V 1 T }{{ 1 } 1 = }{{} 1 2 p 2 V 2 T }{{ 2 } 2 = }{{} 2 3 = p iv i T i }{{} i (3.4)., 1 1, (3.3). : pv T (3.5) (3.4), p 2 2,, (3.3).,,., pv T = const. mr }{{} (3.6) 365 [ ] Charles, Boyle Charles,, (numerator) (denominator), T, K. ( ). 366, [ ], (experimental error), (, ). 368 [ ],,.,. 64 c 2018 Tetsuya Kanagawa

71 ,. pv/t,,.,, m, R, ,,, : pv = mrt (3.7),, 1.3.6, ( ) (1.4)(1.5) f g : p = mrt V = g(v, T ) f(p, V, T ) = 0 (3.8) 2, p, V, T ( ) 3, 2 (1 ). 11., (3.8), (3.6)(3.7), mr. m 369, ( ), R R [J/(kg K)], 372, [ ].,,. 370 [ ]...,. 371 [ ],.,, = m.,,,., [ /kg]., m, R,. 372 [ ], [ ]. 65 c 2018 Tetsuya Kanagawa

72 3.3.2 R [J/(kg K)] 374.,,,, 375, (3.7) R = pv mt (3.9),, : Pa m 3 kg K = N/m2 m 3 kg K = N m kg K = J/(kg K) (3.10), (3.10),,,,,, R ( ). 374 [ ],,. 375 [ ] 4.,,,,,. 376 [ ], ( ).,,,,. 377., ( ). 66 c 2018 Tetsuya Kanagawa

73 3.3.3 (3.7).. V , p }{{} V = mrt (3.7) m, v = V/m ( (1.2)), pv = RT (3.11)., ρ = v 1 = m/v, p = RρT (3.12) 380. (3.11)(3.12), (p, T, v, ρ). (3.7)(3.11)(3.12) ( ). 381, (3.7)(3.11)(3.12)., (3.7) (3.11)(3.12),, [ ],,., ( ),, ( ).,, ( 1.3.5). 379 [ ],..., ( ).,. 380 [ ], p = ρrt,,,., R,.,,. 381 [ ],. 382 [ ],, ( II). 383 [ ],,, 4., ( ),. 67 c 2018 Tetsuya Kanagawa

74 3.4,, ( ) , Boyle Charles (3.3), m pv T = const. nr 0 }{{} (3.13), n., pv = nr 0 T (3.14)., n [mol] ( ), R 0 [J/(mol K)] R, R 0, : R 0 = J/(mol K) (3.15), (3.3) R R 0., 384 [ ( )], pv = nrt, R. R, R 0,, ( ). R, ( ).,,. 385 [ ] (universal gas constant).,. 386 [ ], R 0.,,. 387 [ ],, (subscript) R [ ], R R 0,,.,,. 68 c 2018 Tetsuya Kanagawa

75 ,,.,.,. : Boyle Charles (3.3),.,. ( ),.,, 389., 390., ( ).,, , 394.,,,., 395, 389 [ ], [ ],,... ( ),. 391 [ ] ( ),.,, ( )., [ ], (3.14),, (3.15),. 393 [ ],, R 0,, R.,.,,,,,. 394 [ ], II. [ ],,,,. I,,, (3.7). 395 [ ],, pv = NkT 69 c 2018 Tetsuya Kanagawa

76 .,.,,,,. 12. (3.14), Boyle Charles m [kg], n [mol], M [g/mol] m = nm (3.16)., (3.16) k (kg g ). (3.16), (3.7) pv = mrt = nmrt nr 0 T }{{} (3.17)., R 0 R : R = R 0 M (3.18), R [J/(kg K)], M [g/mol] ( ) R 0 [J/(mol K)],., (i) R 0 ( ), (ii) M ( )., k Boltzmann, N ( ).,,, pv T. 396 [ ],,. 397 [ ( )], (molecular weight) (nondimensional number),,., ( ), g/mol,., k. 398 [ ],, kg, g/mol, kg g. 10 3,. 70 c 2018 Tetsuya Kanagawa

77 399.,. (3.18) (3.16), (3.17)(3.18)., (kg g) , 403.,,, , ) R [J/(kg K)]. M = 29 g/mol, ( ) (3.15) ) p = MPa, T = 25 C, V = 250 m 3 m [ ].,, (air), (oxygen), (nitrogen),. 400 [ ],,, (3.18).,. 401 [ ], (3.18). (physical property),,,,. 402 [ ]. 403.,,, (, ) ( ). 405 [ ],,,..,. 406 [ ],,. 407 [ ], (5 ) ( ) 3A304.,,,,. 71 c 2018 Tetsuya Kanagawa

78 17. V 1 = 47 l 408, p 1 = 14.7 MPa, T 1 = 20 C, 1., M = 32 g/mol, (3.15). 1) R. 2) m. 3) 1 2, p 2 = kpa, T 2 = 35 C, 2., V 2,. 4) 3),, Boyle Charles ,, 100 J, 70 J ( ). [ ], Q., ( A). ( B) p 0, V. 2, ) A B, ) A B, p V. 408 [ ] ( ),.,,.,,, ,,.,,,. [ ] 170 J A B. 413 [ ] ( A) Q. ( B) Q p 0 V. 72 c 2018 Tetsuya Kanagawa

79 4 1 K, (heat capacity).,,,, (specific heat)..,,, 414. I 415.,,, [ ], U H, ( 2.6): d Q = du + p dv }{{} = dh V dp }{{} (2.35),,, ,. d Q p=const. = dh (2.36) 414 [ ],, II. 415 [ ] II,, 9.,, ( II).,,. ( ). 416 (5/1/2018),. 417,. 418 [ ] [J],. 73 c 2018 Tetsuya Kanagawa

80 , 419 : d Q V =const. = du (2.38), 420., m ,, , 424.,, d Q, dt , 427 d Q dt (4.1) 428., (4.1)., C 419 [ ], V = const. V. 420,,,. 421 [ ] I ( ),. 422 [ ],.,,,. 423 [ ] ( 3.1),.,.,,. 424 [ ] (physical property). ( ),. [ ] google. 425 [ ] ( ), ( ). 426 [ ],,,. 427 [ ],.,,. 428 [ ] A B, A B. 74 c 2018 Tetsuya Kanagawa

81 : d Q }{{} CdT (4.2) C C [J/K] (4.2) 431. C, 432., d Q dt. C, C P (4.2) (2.36) : d Q P }{{} = dh }{{} C P dt (4.3) (2.36) (C P ) 1 (2.36) , C, P, C P. C P. 1, [ ] (4.2) C d Q/dT, C., ( ).,,,, ( )., d Q dt,,,. 430 [ ] (restoring force) Hooke ( ) F = kx k F/x ( ) k., (elastic body) (strain) (stress) Hooke ( ). 431 [ ],,.,, ( II)..,,. 432,,. 433 Q T, Q = C T [ ].,,. 75 c 2018 Tetsuya Kanagawa

82 ( ) 435.,., (4.3), Q 1 2 = H = C P T }{{} = (4.4)., H = H 2 H 1, T = T 2 T , C P 438.., (, ), 439., T, H, Q 1 2.,, C P 440, T., (4.4),,.,,., [ ], (4.3), d Q P = dh dh C P dt., ( ). 436.,. 437 [ ] H = H 1 H 2., 2 1.,, [ ] ( II).,,,. 439 [ ] II..,,.,,.,,. 440 [ ],, google.,,,,. 441 [ ].,, 76 c 2018 Tetsuya Kanagawa

83 ,. : dh = C P dt, H = C P T, H 2 = H 1 + C P (T 2 T 1 ) (4.5) C V, H U. (4.2), (2.38), d Q V = du C V dt (4.6) 1 (2.38), 2 C V ( )., 1 2 : Q 1 2 = U = C V T (4.7),, , (4.3) (4.7).,,, ,,, ( : ) 444.,, ( ),,. 442 [ ],,.,. 443 [ ],. 444 [ ].,. 77 c 2018 Tetsuya Kanagawa

84 ( 1.3.5)., c [J/(kg K)],, d q c dt (4.8)., q [J/kg], Q [J], C [J/K], m [kg] 445 : q = Q m, c = C m (4.9), ,, du = d q p dv (4.10) 446., ( ) u [J/kg], ( ) v [m 3 /kg], q [J/kg] u = U m, v = V m, q = Q m (4.11) 447., u, v,. 445 [ ],.,,,,. 446 [ ] pdv m, (p/m)dv, (p/m). pd(v/m) = pdv, v, m. 447 [ ] m,,., m,. 78 c 2018 Tetsuya Kanagawa

85 4.2.3 c V c P (4.10),, ( ): d q V = du (4.12), ( ( )) c V d q V = c V dt (4.13)., : 2 d q V = 2 du = , 449 : c V dt = q 1 2 = u = c V T (4.14) u 2 = u 1 + q 1 2 = u 1 + c V (T 2 T 1 ) (4.15) 21. (4.14) 2 (i) (4.10) ( ). (ii) (4.7). [(ii) 450 ] (4.7) m 451., q = Q m, u = U m, c V = C V m (4.16) 452, , (i) c P. 448 [ ],.,,. 449 [ ], u 1 T 1 ( ), u 2 ( ).. [ ].,. 450 (i),. 451 [ ].,,,. 452 [ ] c V T, T m., ( ).,,. 453 [ ], du = c V dt dh = c P dt. 79 c 2018 Tetsuya Kanagawa

86 (ii) c P h : dh = c P dt (4.17) (iii) T, h,, ( ) q : q 1 2 = h = c P T (4.18) 4.3 (4.3)(4.6), dt ( 0) 455,, 456 : C P = dh dt, C V = du dt (4.20) (4.20), C P C V : dh C P C V }{{} = dt du dt = d (H U) dt = }{{} H d dt pv = }{{} d mrt = mr (4.21) dt 1, (2 ) (2.25) ,, ( ). 455 [ ], 1.,. II,,. 456 [ ( II)],, : C V = ( ) U, C P = T V =const. ( ) H T p=const. (4.19) 457 [ ],.. 1.,, [ ] pv mrt., pv 80 c 2018 Tetsuya Kanagawa

87 (3.7) , R m. (4.21),, I, , (4.21) (4.21) 463,, c P c V = R (4.22)., 464., c P, c V, R, 465. [ ],, (. ) 466. T.,, mrt, T. 459 [ ],. 1, ( ). 460, II,.,. 461 [ ] (4.21),.,,,.,.,,. 462 [ ], d W = p dv,,.,,,. 463 (4.21) m,,. 464 [ ] Mayer ( ) ( II),.,, ( ).,,. 465 [ ] m.,. 466 [ ] ( ),. 81 c 2018 Tetsuya Kanagawa

88 4.4 κ (ratio of specific heats 467 ) κ 468, c P c V, ( ): κ c P c V (4.23), C [J/K] c [J/(kg K)], C = mc, κ = C P /m m/c V = C P /C V.,, (4.22). R c P c V,, c P = c V + R = c P > c V (4.24).,, 1 : κ c P c V = c V + R c V = 1 + R c V > 1 (4.25), (4.22)., (4.22) (4.25), ( ) κ > 1, (4.25) (4.22), c P = κc V, κc V c V = c V (κ 1) = R (4.26) 467 [ ] ( ), heat s. 468 [ ], (kappa) (gamma) γ.,,. 469 [ ].,,.,.,,. 82 c 2018 Tetsuya Kanagawa

89 .,, : c V = R κ 1, c P = κc V = κr κ 1 (4.28), ( ). Wikipedia,, κ R 472. (4.28), c P c V., m, 473, 474.,, ( ) ( (4.27) (4.28) ) (4.28). (4.22) ,, pv = mrt 470 [ ].,.,,. 471 [ ] (4.28) m, : C V = mr κ 1, C P = mκr κ 1 (4.27) 472 [ ], R, M R 0, (3.18) R = R 0 /M, : c V = R 0 M(κ 1), c κr 0 P = M(κ 1) (4.29) 473 [ ]., google, ( ). 474 [ ], (4.27) m,. 475 [ ], ( ) [ ], (4.22), ( ).,.,,.,,. 83 c 2018 Tetsuya Kanagawa

90 .,,.,, (real gas).,. 4.5 c P c V = R.,, 477.,,. 27. p, T, c V, m., Q..,. [ ] C 3 kg ( ), MPa, J/(kg K), 287 J/(kg K). 1). 2). 3). 477 [ ],,,. 478, ( ), [ ( )],., ( ),,,..,,.,. 480 [ ] k = 10 3, M = c 2018 Tetsuya Kanagawa

91 4)., ). 29., A, B, C, D, A. A B C D A ( 2.8). A,, (p A, V A, T A ),.,, p B = p A, p C = p D = p A /2, V B = V C = 3V A, V D = V A., A. A ) p V. 2) A B, B C, C D, D A,. 3),, (i), (ii) (i). [ ] ), [ ] m, R, 1 ( p 1, V 1 ), 2 ( p 2, V 2 ), 485 T , Q 1 2, 481,,,,,. 482,, ( ),.,,.,. 483 [ ], m, c V, 4,.,,,.,, p A V A., Boyle Charles,,. 484 ( ),.,,,,.,,,. 485, ( ) (isothermal process),. 85 c 2018 Tetsuya Kanagawa

92 W 1 2 Q 1 2 = W 1 2 = mrt 0 ln ( V2 V 1 ) = mrt 0 ln ( p1 p 2 ) (4.30).. [ ] Boyle (3.1). 31. [ ]., c P c V d Q = p c P R dv + V c V dp (4.31) R, R, p V, Q. [ ] , pv = mrt, c P c V = R, du = mc V dt. 86 c 2018 Tetsuya Kanagawa

93 5 4, ( 2.7),, (isothermal process),,.,,, 488., : du = d Q p dv (2.30),,.,, (2.30),,, dt = 0 T = const. (5.1) , U, C V c V ) ( du = C V dt = mc V dt (5.2) 487 [ ], 1. p, V, T, ( ) S,. 4., S. p T, V S,. 488 [ ],,,, [ ],,.,,.,. 87 c 2018 Tetsuya Kanagawa

94 ( (4.6))., (5.1) (dt = 0), du = 0 (U = const.) (5.3) 490.,, 491. (2.30), (5.3), d Q = p dv = d W (5.4)., 1 2, : Q 1 2 = 2 1 p dv = W 1 2 (5.5),, ( )., (5.2) : (i) (5.2), C V,,., (5.2), C V (d Q V =const. C V dt ),, (d Q V =const. = du). (5.2),,, d Q V =const (ii) (5.2) ( U = C V T ),., U = f(t ) (5.6) ,, 490 [ ] U = 0. [ ],, (absolute zero),.,. 491 [ ].,,,,. 492 [ ( )], dh = C P dt ( ). 493 [ ] (5.6) Joule, ( II ). 494 (5.6), C V = du/dt., du/dt = du(t )/dt = C V (T ) 88 c 2018 Tetsuya Kanagawa

95 ( )., 495. (iii). 496., (5.2),. 32.., (5.2)(5.5) W 1 2.,, p ( ) (p V ).,,, (3.7) : p = mrt V = f(v, T ) = f(v ) }{{} (5.7), 2 (V, T ),, T., 1 ( V ). (5.5) (5.7),,, : W 1 2 = 2 1 p dv = 2 1 mrt V 2 dv dv = mrt }{{} 1 V = mrt [ln V ]V 2 V 1 = mrt ln ( V2 V 1 ) (5.8)., U(T ), C V (T ).,,., I,. 495 U T,.,,,, (phenomenological). 496 [ ] ( ),.,. 89 c 2018 Tetsuya Kanagawa

96 , m R, T ( ) 497. V, p 498.,, ( ) : W 1 2 = mrt ln ( V2 V 1 ) = mrt ln ( p1 p 2 ) = p 1 V 1 ln ( p1 p 2 ) = (5.9) 33.,., ( ). (5.8), p V,.. [ ] Boyle : p = C V (5.10), C, 500., 1 501, C = p 1 V p = p 1V 1 V (5.11) 503., (5.8)(5.9). 497 [ ] ln (base), 10, Napier ( ) e = , log, (,,, ).,, log ln,,,. 498 Boyle (3.1).,, Boyle Boyle Charles, Boyle Charles,. 499 [ ] (logarithmic function) (antilogarithmic), 1., V 2 /V [ III]. (ordinary differential equation: ODE) (general solution) (arbitraty constant), (family of curves) ( ) ). 503 [ III] (5.11), ( ), c 2018 Tetsuya Kanagawa

97 36.,, p 1 < p 2. 1) ( ) 1 V 1 2 V [ ] Boyle 505,, p 1 < p 2 V 1 > V 2. ( ). 2) p V, 1, 2, 1 2 ( ). ( ) ) ( ),,.,.. [ ],,., U = 0.., (5.8)., ) ( ), p V ( ) [ ] Boyle Charles,,., Boyle, Boyle Charles,. 506 [ ( )], ( ).,, ( )., 1,,. 507 [ ( )].. 1 2, [ ], p 1 V 1 ln(p 2 /p 1 ) p 1 V 1 ln(v 1 /V 2 ). mrt ln(p 2 /p 1 ). m R T,. 91 c 2018 Tetsuya Kanagawa

98 5.2 (adiabatic process) 509, ,, : d Q = 0 ( Q 1 2 = 0) }{{} (5.12), ( )., 513., ( ) 514 : du = d Q p dv (2.30) (2.30) (5.12),,, : du = p dv (5.13), 515., (5.13)., 509,. ( ) (isentropic process) [ ]. 511 [ ],. 512 [ ] ( ), Diesel ( )., 30 atm, C., (heavy oil) (light oil) (fuel), (ignition), (combustion).,,, ( ). [ ], (, 1997);,, (, 2013)., (2 ABC). 513 [ ],, [ ],.,. 515 [ ]..,. 92 c 2018 Tetsuya Kanagawa

99 ., p = 1,,. 37. p 0, 1 2 (5.13).. [ ] U 2 + p 0 V 2 = U 1 + p 0 V 1 = C (C )., U + p 0 V = 0 (, 1 2 )., 1 1 ( ), (5.13), 516., p, 3 (U, p, V ) , (5.13) 519, 516 [ III],, ( )., ( II). 517 [ ( )], dy = z dx (5.14). ( ). z, (x, y).,,, dy = z(x, y)dx (5.15)., z(x, y)., z(x, y) = xy, dy = xy dx (5.16), (variable separable). [ ] ,,.,,,,.,. 519 [ III],.., ( ) ( ). [ ], (general solution), ( ; particular solution), (singular solution) 3., (initial value problem), (boundary value problem),,, ( ). [ ], ( ),,. 93 c 2018 Tetsuya Kanagawa

100 ., 520,, du = mc V dt (5.2) , U, T 523., p, p = mrt V = p(v, T ) (5.18)., (5.13), c V dt = RT V dv (5.19)., V T 2,, [ ],,.,,. 521 [ ] c V,.., d Q V, ( ). 522 [ ], mc V dt = p dv (5.17), 3 (p, V, T ),.,, p p(v, T ), [ ],.,., U = f(t ). 524 [ ], III. 94 c 2018 Tetsuya Kanagawa

101 5.2.2 (Poisson ) 1 2, : 2 1 dt T 2 = R dv 1 c V V (5.20) c V R,. ln T 2 T 1 + R c V ln V 2 V 1 = 0 (5.21) 527, : ln ( T2 ) ( ) R/cV V2 = 0 (5.22) T 1 V 1, c P c V = R 528, R/c V 529 : R c V = c P c V c V = κ 1 (5.23). R c V 2, κ (= c P /c V ) 1 ( ) [ ] (definite integral), (indefinite integral).,,.,, 2, 1.,, [ ] ( : arbitrary constant),. 1, 1. (V 2, T 2 ), (V 1, T 1 ). ( 525 ). 527 [ ] ln A + ln B = ln AB, ln A ln B = ln(a/b), a ln C = ln C a.,, ln e. 528 [ ] R = c P c V, ( ).,,.,. 529 [ ],. 530 [ ],,, κ.. 95 c 2018 Tetsuya Kanagawa

102 (5.23) (5.22), 531 : ( V2 V 1 ) κ 1 ( ) T2 = e 0 = 1 (5.24) T ( ), 532 : T 1 V1 κ 1 }{{} 1 = }{{} 1 2 T 2 V2 κ 1 }{{} 2 = = T V κ 1 = const. (5.25) ( 1) ( ), ( 2, 3,...) ( ) 533., (V, T )., 534., pv = mrt (= g(t )) 535, T V, : (i) (T, V ). T V κ 1 = const. (5.26) (ii) (p, T ) (5.26) V = mrt/p, V p : T κ p 1 κ = const. (5.27) (iii) (p, V ), T = pv/(mr) 531 [ ] Poisson ( ). 532, (5.24) [ ] 1 2, V 1 V , 2,.,,,. ( ),. 534,.,,,. [ ],.,. 535 [ ], Boyle Charles pv/t = const.. 96 c 2018 Tetsuya Kanagawa

103 : pv κ = const. (5.30) (5.26) (5.30), m R.,,., 3 (3 ), (5.26)(5.27)(5.30) 2,, :, pv T = const., pv κ = const.. 38., Boyle Charles ( ),, 3 (5.26)(5.27)(5.30). 39. : (i) T 1 V 1,, V 2,. (ii) p 1 V 1,, V 2,. [ ] (5.26)(5.30). p 1 V κ 1 = p 2 V κ ,., Boyle pv = const. = p 1 V 1 = p 2 V 2 = (5.28),, κ : pv κ = const. = p 1 V κ 1 = p 2 V κ 2 = (5.29) 537 mr ( ), T = pv ( ) Boyle Charles.,, mr., (5.27). 538 [ I, II], 2 (2 ), (5.26) (5.30) 1,, 1 1 (1 ).. 97 c 2018 Tetsuya Kanagawa

104 5.2.3,., (5.13) 541, W 1 2 = U = U 1 U 2 (5.31) 542,, W 1 2 W 1 2 = 2 1 p dv (5.33)., (5.31), , ( ) U = U 1 U 2, W W 1 2, (5.31) U 546,,.., 539,, ( )., (. ) [ ]..,. 541 [ ],.,,. 542 [ ( )], : U = (U 2 U 1 ) = 2 1 du = 1 2 du (5.32) [ ].,. 543,, [ ] [ ] (, ). 546, ( ). 98 c 2018 Tetsuya Kanagawa

105 , : W 1 2 = U 1 U 2 = mc V (T 1 T 2 ) = c V R (p 1V 1 p 2 V 2 ) = 1 κ 1 (p 1V 1 p 2 V 2 ) (5.34). 2, (5.2) , T = pv/(mr) 1 2,. m ( ) , R = c P c V κ, κ.. p 1 V 1, Poisson (5.30), : [ W 1 2 = p ( ) ] κ 1 1V 1 V1 1 = p ( 1V 1 1 T ) [ 2 = p ( ) ] (κ 1)/κ 1V 1 p2 1 κ 1 V 2 κ 1 T 1 κ 1 p }{{}}{{} 1 }{{} (5.35),., 2, 1/3, 550,. V 1 /V 2, T 1 /T 2, p 1 /p 2 3,, 551. (5.35) 3, 552,. 547 [ ] : U = mc V T. [ ],. 548 [ ].., ( ).,., ( ), m,.,,. 549,., 1 [ ( ) ] 1 κ p 1 V 1 V2 (κ > 1, ): 1 κ [ ],, (ratio), (nondimensional number).., ( ) [ ] ( ),. 552,, p 1 /p 2 = (V 2 /V 1 ) κ. V 1 99 c 2018 Tetsuya Kanagawa

106 (5.35) 1, ( ) V , 1 p 1 V (5.34)(5.35). 41. (5.35), (5.2), (5.30) 554. [!!],, W 1 2 = mrt p dv = 1 V dv = p(v, T )dv = 1 }{{}!! (5.36).,,, 555. [ ], (5.30)., : pv κ = p 1 V κ 1 (= const.) (5.37), p V 1 p(v ),., : W 1 2 = p dv = p(v )dv = p 1 V1 κ V κ dv = p 1 V1 κ [ = p 1V1 κ 1 κ [V 1 κ ] V 2 V 1 = p (V2 ) 1 κ 1V 1 1] 1 κ V V κ dv (5.35) (, ). (5.38) 553 κ ( ), p 1 V 1 1, 2,, V 2 ( 1 ). 554,,., (Boyle Charles (5.26)(5.27)(5.30) ), (5.35),. 555, 1 V., T V,. 556 (Boyle Charles ) pv/t = p 1 V 1 /T 1, pv κ = p 1 V1 κ., p V, p 1 V c 2018 Tetsuya Kanagawa

107 [ ], 557.,., U 2 U 1. (5.35). [ ], U = U 2 U 1 = W p V 558,, ,, Boyle. 559 : p(v ) = C V = CV 1 (5.39), C 560,, C = pv = p 1 V 1 }{{} = p 2 V 2 = (5.40) [ ],,.,. 558 [ ], V p.,, p V,., V p, p V,,. V p, ( ), p, V., p, V.,, p, V, V p, p V. 559 [ ( )]., C, p V ( ). 101 c 2018 Tetsuya Kanagawa

108 ,, : dp dv = d dv CV 1 = CV }{{ 2 = } p V C = pv (5.41),, , p(v ) = D V κ = DV κ (5.42), D C 564, D = pv κ = p 1 V κ 1 = p 2 V κ 2 = (5.43), : dp dv = DκV κ 1 = pv κ κv κ 1 = κp V (5.44), ( )., p V,, dp/dv. 561 Boyle Charles, pv/t, T., T C., Boyle Boyle Charles. 562 [ ],. ( ).,,., p V ( ) (p V ),. 563, [ ( )].,.,, pv = C pv κ = C. C D.,,.,,,.,,,, c 2018 Tetsuya Kanagawa

109 5.3.3 (5.41)(5.44) κ.,,,., p V,., p V 1,, 0 p 0 V 0. (5.41)(5.44), 565, p 0 V 0 }{{} < κp 0 V 0 }{{} (5.45).. (4.25) κ > , ( p 1, V 1 ), 2 ( V 2 ),, 2., 2, : (i) 2 p 2, (ii) W 1 2, (iii) U 2 U 1, (iv) Q 1 2. [ ] p V,., ( ), 1 1. [ ] (i) 568. (ii) (iii). 565,,.,. 566 [ ] κ > 1,., κ = c P /c V c P = c V + R, ( ). 567,, Carnot ( 7),. 568 p V,,. κ > ,. 570 [ ],, ( ),., Carnot ( 7),. 571 [ ]., Newton, c 2018 Tetsuya Kanagawa

110 (U 1 > U 2 ) 572. (iv)., d Q = CdT (5.46), dt = 0,, d Q = 0 (5.47).,..,,,. m/s,. Laplace,,, 340 m/s [ ], du = C V dt ( ). [ ]. 573 [ ].,., ( ), ( ),. 104 c 2018 Tetsuya Kanagawa

111 6, (the second law of thermodynamics).,,.,,., (entropy),,, 574., 575,,.,,,.,,. 6.1 (reversible process) 576, (irreversible process),,. 1) (friction),.,.,,,. 2), ( ) ,.,, ( ),,.,. 575.,. 576 [ ] (reversible). 577 [ ], (i).,.,,., (ii).,, 12,. 105 c 2018 Tetsuya Kanagawa

112 3).,, ( ) ) (i), 1,., (ii).,, , ( ).,,. ( ), , (i), (ii) 585., ( ),, 586., 578, (i) mẍ + kx = 0, (ii) mẍ + cẋ + kx = 0., x, m, k, c,. 581 [ ],, [ ( )].,,,.,,., 1 1,. [ (counterexample)] 2,, [ ],., (reversible) (quasi-static),,. 584,, (6.12),., I. 585,,. 586.,. 106 c 2018 Tetsuya Kanagawa

113 ,,,.,.,,,.,, 589.,,.,,.,,,.,, d Q = du + pdv }{{}}{{}!! (6.1),., d Q.,,..,,.,. [ ],.,. 587,,. 588 [ ( )].,. 589 [ ],,,. 107 c 2018 Tetsuya Kanagawa

114 6.3.1,. du,, du = mc V dt (6.2) dt., (3.7) p = mrt V (6.3). (6.2)(6.3) (6.1), : d Q = mc V dt + mrt dv V (6.4),.. T,., 590. T 0,, (6.4) T 591, d Q T = mc V dt T + mrdv V (6.7) : mc V ln T 2 T 1 + mr V 2 V 1 (6.8) 590 [ ] (6.4) 2,.. T dv (6.5) V. T V., dv dt 2,.,, T = pv/(mr), T V dv = pv dv mr V = 1 mr pdv =? (6.6)., p = mrt/v,,. [ ].,, [ T > 0] T 0.,,. 108 c 2018 Tetsuya Kanagawa

115 6.3.2, (6.7).. (6.7),,,.,., d, d. d Q T (6.9), 592., S., (6.9) ds. S, [J/K]., S,.,, : S ds d Q T (6.12).,, d Q/T ds 595., 592,,. 593 [ ] (6.12).. [ ] (i),, ( ).,. (ii), S,, : ds > d Q T (6.10) 594 [ ] : ds = d Q dt (6.11). ( ), ( ).. [ ] ( ). 595 S,, d,.,,,. 109 c 2018 Tetsuya Kanagawa

116 ,. : (i) d,. (ii) d,. (iii) T,,,. (iv),, S,. (6.12) 2 1 d Q T = 2. S, ds = [S] 2 1 = S 2 S 1 = S (6.13), S 1 S 2, (specific entropy) [J/K],.,, s 598 : s S m [J/(kg K)] (6.14) 596.,.,.,, [ ( )] S, (finite value)., d Q/T. [ ] dx, 1 x 3, 3 1 dx = ,. 110 c 2018 Tetsuya Kanagawa

117 6.3.5 (6.13), (i), T 0, T 0 S = 2 1 d Q T 0 = 1 T d Q = Q 1 2 T 0 (6.15)., Q 1 2 T 0, S 600. (ii) 601, d Q = 0, ds = 0., 602 : S = 0 S 1 = S 2 = const. (6.16). p, V, T 3, S , 3.,,,, 604.,,., s = S/m v = V/m, ,,. 600 [ ],,,.,,. 601 [ ], ( ). 602 [ ], (isentropic process) ( ). 603.,,,. 604,, ( ). 605, c 2018 Tetsuya Kanagawa

118 6.4.1 (T, v), (6.14),, ( ) (3.11) 606 : d q ds }{{} T du }{{} = T + pdv T dt }{{} = = c V T + Rdv v (6.17), dt ds = c V T + Rdv v, s = s 2 s 1 = c V ln ( T2 T 1 ) + R ln ( v2 v 1 ) (6.18) (6.19), s = s 2 s ,., (6.18),,., (p, v) 609 (6.18)(6.19) T, p. (3.11), T = pv R (6.20). ( ),, dt = d(pv) R pdv + vdp = R (6.21) 606 ds d q/t, du = d q pdv, du = c V dt, pv = RT. 607 [ I].,.,., (fundamental theorem of calculus). 608,, s 2 s 1., s = s 1 s ,,. 112 c 2018 Tetsuya Kanagawa

119 610. (6.20)(6.21) (6.18) : pdv + vdp R ds = c V R pv + Rdv v ( dp = c V p + dv ) + R dv v v = c V ( dp p ) + (c V + R) }{{} c P (Mayer) ( ) ( ) dp dv = c V + c P p v ( dv v ) (6.22), 3 4, (Mayer ) 611., : dp ds = c V p + c dv P v,, : s = c V ln ( p2 p 1 ) + c P ln ( v2 v 1 ) (6.23) (6.24) (T, p) 44.. dt ds = c P T Rdp p ( ) T2 s = c P ln + R ln T 1 ( p2 p 1 ) (6.25) (6.26) [ ]., (6.23) v, T [ ],., T = T (p, v), dt (p, v), (6.21). 611.,. c V R 2, c P 1...,,. 113 c 2018 Tetsuya Kanagawa

120 ., [J/K]. dt ds = C V T + mrdv V dp ds = C V p + C dv P V dt ds = C P T mrdp p (6.27) (6.28) (6.29) 6.5 pv = RT (3.11), (p, v, T ) ,,.,,.,, (3.11) T, s., 3 (p, v, s).,. (6.23) c V : s = ln c }{{} V ( p2 p 1 ) + c P ln c }{{} V κ ( v2 v 1 ) = ln ( p2 p 1 ) + κ ln ( v2 v 1 ) = ln ( p2 p 1 ) ( v2 v 1 ) κ (6.30) 612 v [m 3 /kg], V [m 3 ] ρ [kg/m 3 ]. 613 [ ],,, II,,, 3., ( ). 614,. 615 [ ] ln A + ln B = ln AB, ln A ln B = ln A/B, a ln A = ln A a, ln A = C A = exp(c). 114 c 2018 Tetsuya Kanagawa

121 , 616 : (v 1 /v 2 ) κ ( p2 p 1 p 2 p 1 = ) ( ) κ ( ) v2 s = exp v 1 c }{{ V } ( v1 v 2 ) κ ( ) s2 s 1 exp c V (6.31) (6.32)., s = s 2 s (6.32) v, ρ V : p 2 = p 1 p 2 = p 1 ( ρ2 ρ 1 ( V1 V 2 ) κ ( ) s2 s 1 exp c V ) κ ( ) S2 S 1 exp C V (6.34) (6.35) S (6.12) T, d Q, d Q = T ds (6.36) 616 [ ], exp(x) e x.,. 617 (3.11), (6.32),, ( ) s pv κ s0 = C exp c V (6.33)., 1 0 ( ), 2. [ ] C 1, [ ] (6.34), (3 ). ( ). 619 [ ], v V, s S, c V C V.,,. 115 c 2018 Tetsuya Kanagawa

122 620.,, du = T ds pdv (6.37)., d, d p, V, T, S,,.,,, (6.36)., p, V, T, S 4 : (i). p.,. V 621. (ii), T [ 1] (6.36). [ 2],, s S.,. 621 [ ( )].,,.,., ( ) ( ).,,, ( ).,. (i) ( ), (ii) ( ), (iii),., ( ) ( ),. [ ],. 622,., ( ), ( ). 623 [ ],, 20 C ( C ). 3 (i), (ii), (iii). 624 [ ],,.,.,,,.,.,,, 116 c 2018 Tetsuya Kanagawa

123 , S 625. ds,.,, ds dv.,, : d W = pdv (6.38) d Q = T ds (6.39), ( ) p ( ) dv., ( ) T ( ) ds 627., , 630.,.,,,.,.,, ( ) ( ).,. 625.,. 626 [ ]. 99 % ( ),,.,,,,. 627 (6.36),,., ( ) d Q,, ( ) T ds ( ). d d,,. [ ] d Q ds,,, S. 628 d Q = T d, S. S [J/K], 1 K. 629 V, S.,. d W = pdv, p V d Q T ds. 630 [ ], ( ), ( )..,, ( )., ( ).,,, ( ).,. 117 c 2018 Tetsuya Kanagawa

1.5.1 SI kg, m, s ,,

1.5.1 SI kg, m, s ,, 0 9 0.1............................ 9 0.2.............. 10 0.3.................................. 13 0.4 (A2).................... 14 1, 0, 16 1.0.1..... 16 1.1............................. 16 1.1.1 (system)...........................

More information

0 (Preliminary) T S pv

0 (Preliminary) T S pv 0 (Preliminary) 4 0.1.................. 4 0.1.1 S p................... 4 0.1.2......................... 5 0.2............................. 8 0.2.1 p S................ 11 0.3..............................

More information

0 (Preliminary) F G T S pv (1)

0 (Preliminary) F G T S pv (1) 0 (Preliminary) 4 0.1 F G.............. 4 0.1.1 S p............... 4 0.1.2......................... 6 0.2............................. 7 0.2.1 (1) p, S............................. 12 0.2.2 (2) 13 0.3

More information

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1 September 25, 2017 1 1.1 1.2 p = nr = 273.15 + t : : K : 1.3 1.3.1 : e.g. 1.3.2 : 1 intensive variable e.g. extensive variable e.g. 1.3.3 Equation of State e.g. p = nr X = A 2 2.1 2.1.1 Quantity of Heat

More information

Microsoft Word - ●ipho-text3目次

Microsoft Word - ●ipho-text3目次 国際物理オリンピック 研修用テキスト Ⅲ 熱物理 相対論 量子力学 特定非営利活動法人物理オリンピック日本委員会 1 1.1 1 1. 1.3 3 1.4 4 1.5 6 1.6 7 1.7 9 11.1 11. 0.3 1 6 3.1 6 3. -9 3.3 - -- 31 3.4 --33 39 4.1 39 4. 40 4.3 4 4.4 44 4.5 47 5 5.1 5 5. 5 5.3

More information

untitled

untitled 1 Physical Chemistry I (Basic Chemical Thermodynamics) [I] [II] [III] [IV] Introduction Energy(The First Law of Thermodynamics) Work Heat Capacity C p and C v Adiabatic Change Exact(=Perfect) Differential

More information

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1 5 0 1 2 3 (Carnot) (Clausius) 2 5. 1 ( ) ( ) ( ) ( ) 5. 1. 1 (system) 1) 70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain)

More information

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2 1 1 2 2 2 1 1 P F ext 1: F ext P F ext (Count Rumford, 1753 1814) 0 100 H 2 O H 2 O 2 F ext F ext N 2 O 2 2 P F S F = P S (1) ( 1 ) F ext x W ext W ext = F ext x (2) F ext P S W ext = P S x (3) S x V V

More information

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2 3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1

More information

現代物理化学 2-1(9)16.ppt

現代物理化学 2-1(9)16.ppt --- S A, G U S S ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r S -- ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r d Q r e = P e = P ΔS d 'Q / e (d'q / e ) --3,e Q W Q (> 0),e e ΔU = Q + W = (Q + Q ) + W = 0

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 基礎からの冷凍空調 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/067311 このサンプルページの内容は, 初版 1 刷発行当時のものです. http://www.morikita.co.jp/support. 03-3817-5670FAX 03-3815-8199 i () () Q&A

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

0201

0201 2018 10 17 2019 9 19 SI J cal 1mL 1ºC 1999 cal nutrition facts label calories cal kcal 1 cal = 4.184 J heat capacity 1 K 1 J K 1 mol molar heat capacity J K mol (specific heat specific heat capacity) 1

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

I ( ) 2019

I ( ) 2019 I ( ) 2019 i 1 I,, III,, 1,,,, III,,,, (1 ) (,,, ), :...,, : NHK... NHK, (YouTube ),!!, manaba http://pen.envr.tsukuba.ac.jp/lec/physics/,, Richard Feynman Lectures on Physics Addison-Wesley,,,, x χ,

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202D B202D B202D

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202D B202D B202D わかりやすい熱力学第 3 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/060013 このサンプルページの内容は, 第 3 版発行時のものです. i ii 49 7 iii 3 38 40 90 3 2012 9 iv 1 1 2 4 2.1 4 2.2 5 2.3 6 2.4 7 2.5

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du 2 2.1 1 [ 1 ]< 33, 34 > 1 (the first law of thermodynamics) U du = δw + δq (1) (internal energy)u (work)w δw rev = PdV (2) P (heat)q 1 1. U ( U ) 2. 1 (perpetuum mobile) 3. du 21 // //( ) (Helmholtz, Hermann

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T 3 3.1 [ ]< 85, 86 > ( ) ds > 0. (1) dt ds dt =0, S = S max. (2) ( δq 1 = TdS 1 =0) (δw 1 < 0) (du 1 < 0) (δq 2 > 0) (ds = ds 2 = TδQ 2 > 0) 39 3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3)

More information

現代物理化学 1-1(4)16.ppt

現代物理化学 1-1(4)16.ppt (pdf) pdf pdf http://www1.doshisha.ac.jp/~bukka/lecture/index.html http://www.doshisha.ac.jp/ Duet -1-1-1 2-a. 1-1-2 EU E = K E + P E + U ΔE K E = 0P E ΔE = ΔU U U = εn ΔU ΔU = Q + W, du = d 'Q + d 'W

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

C A B A = B (conservation of heat) (thermal equilibrium) Advanced m A [g], c A [J/(g K)] T A [K] A m B [g], c B [J/(g K)] T B [K] B T E [K] T

C A B A = B (conservation of heat) (thermal equilibrium) Advanced m A [g], c A [J/(g K)] T A [K] A m B [g], c B [J/(g K)] T B [K] B T E [K] T 27 (2015 ) 5 5.1 1 1 0 C 100 C 100 C 0.01 0.006 3 (phase diagram) (triple point) 1: Topic 0.64 88 C 1.5 57 1.5 115 C A B A = B (conservation of heat) (thermal equilibrium) Advanced m A [g], c A [J/(g K)]

More information

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi 4 4 9............................................... 3.3......................... 4.4................. 5.5............................ 7 9..................... 9.............................3................................4..........................5.............................6...........................

More information

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1 6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) (e) Γ (6.2) : Γ B A R (reversible) 6-1 (e) = Clausius 0 = B A: Γ B A: Γ d Q A + d Q (e) B: R d Q + S(A) S(B) (6.3) (e) // 6.2 B A: Γ d Q S(B) S(A) = S (6.4) (e) Γ (6.5)

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

1

1 I II II 1 dw = pd = 0 1 U = Q (4.10) 1K (heat capacity) (mole heat capacity) ( dq / d ) = ( du d C = / ) (4.11) du = C d U = C d (4.1) 1 1 du = dq + dw dw = pd dq = du + pd (4.13) p dq = d( U + p ) p (4.14)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

2007 5 iii 1 1 1.1.................... 1 2 5 2.1 (shear stress) (shear strain)...... 5 2.1.1...................... 6 2.1.2.................... 6 2.2....................... 7 2.2.1........................

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

KENZOU Karman) x

KENZOU Karman) x KENZO 8 8 31 8 1 3 4 5 6 Karman) 7 3 8 x 8 1 1.1.............................. 3 1............................................. 5 1.3................................... 5 1.4 /.........................

More information

1

1 4. 4.. (6.)lausius lapeyon ln p A (6.) A 6- (6.) Antoine ln p A (6.) ( + ) A 8 760 34 78 57 64 8 p o p o lausius lapeyonp o lnp o / 6. 6-4.0 atm4.00.0350 kpa A6.664043667.705 46.966p o [kpa][k] [] (6.)

More information

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m

nm (T = K, p = kP a (1atm( )), 1bar = 10 5 P a = atm) 1 ( ) m / m .1 1nm (T = 73.15K, p = 101.35kP a (1atm( )), 1bar = 10 5 P a = 0.9863atm) 1 ( ).413968 10 3 m 3 1 37. 1/3 3.34.414 10 3 m 3 6.0 10 3 = 3.7 (109 ) 3 (nm) 3 10 6 = 3.7 10 1 (nm) 3 = (3.34nm) 3 ( P = nrt,

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

( ) ± = 2018

( ) ± = 2018 30 ( 3 ) ( ) 2018 ( ) ± = 2018 (PDF ), PDF PDF. PDF, ( ), ( ),,,,., PDF,,. , 7., 14 (SSH).,,,.,,,.,., 1.. 2.,,. 3.,,. 4...,, 14 16, 17 21, 22 26, 27( ), 28 32 SSH,,,, ( 7 9 ), ( 14 16 SSH ), ( 17 21, 22

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

/02/18

/02/18 3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................

More information

2013 25 9 i 1 1 1.1................................... 1 1.2........................... 2 1.3..................................... 3 1.4..................................... 4 2 6 2.1.................................

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

I 1

I 1 I 1 1 1.1 1. 3 m = 3 1 7 µm. cm = 1 4 km 3. 1 m = 1 1 5 cm 4. 5 cm 3 = 5 1 15 km 3 5. 1 = 36 6. 1 = 8.64 1 4 7. 1 = 3.15 1 7 1 =3 1 7 1 3 π 1. 1. 1 m + 1 cm = 1.1 m. 1 hr + 64 sec = 1 4 sec 3. 3. 1 5 kg

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

gr09.dvi

gr09.dvi .1, θ, ϕ d = A, t dt + B, t dtd + C, t d + D, t dθ +in θdϕ.1.1 t { = f1,t t = f,t { D, t = B, t =.1. t A, tdt e φ,t dt, C, td e λ,t d.1.3,t, t d = e φ,t dt + e λ,t d + dθ +in θdϕ.1.4 { = f1,t t = f,t {

More information

flMŠÍ−w−î‚b

flMŠÍ−w−î‚b 23 6 30 i 2 1980 2001 1979 K. 1971 ii 1992 iii 1 1 2 5 2.1 : : : : : : : : : : : : : : : : : : : : : : : : : : 5 2.2 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8 2.3 : : : : : : : : :

More information

main.dvi

main.dvi SGC - 70 2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8 1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G 8 ( ) 8. 1 ( ) F F = F I (N I, T, V I ) + F II (N II, T, V II ) (8.1) F δf = δn I [ ( FI (N I ) N I 8. 1 111 ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0

More information

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional 19 σ = P/A o σ B Maximum tensile strength σ 0. 0.% 0.% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional limit ε p = 0.% ε e = σ 0. /E plastic strain ε = ε e

More information

Gravothermal Catastrophe & Quasi-equilibrium Structure in N-body Systems

Gravothermal Catastrophe & Quasi-equilibrium Structure  in N-body Systems 2004/3/1 3 N 1 Antonov Problem & Quasi-equilibrium State in N-body N Systems A. Taruya (RESCEU, Univ.Tokyo) M. Sakagami (Kyoto Univ.) 2 Antonov problem N-body study of quasi-attractivity M15 T Antonov

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

8 i, III,,,, III,, :!,,,, :!,,,,, 4:!,,,,,,!,,,, OK! 5:!,,,,,,,,,, OK 6:!, 0, 3:!,,,,! 7:!,,,,,, ii,,,,,, ( ),, :, ( ), ( ), :... : 3 ( )...,, () : ( )..., :,,, ( ), (,,, ),, (ϵ δ ), ( ), (ˆ ˆ;),,,,,,!,,,,.,,

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

H22環境地球化学4_化学平衡III_ ppt

H22環境地球化学4_化学平衡III_ ppt 1 2 3 2009年度 環境地球化学 大河内 温度上昇による炭酸水の発泡 気泡 温度が高くなると 溶けきれなくなった 二酸化炭素が気泡として出てくる 4 2009年度 環境地球化学 圧力上昇による炭酸水の発泡 栓を開けると 瓶の中の圧力が急激に 小さくなるので 発泡する 大河内 5 CO 2 K H CO 2 H 2 O K H + 1 HCO 3- K 2 H + CO 3 2- (M) [CO

More information

A 99% MS-Free Presentation

A 99% MS-Free Presentation A 99% MS-Free Presentation 2 Galactic Dynamics (Binney & Tremaine 1987, 2008) Dynamics of Galaxies (Bertin 2000) Dynamical Evolution of Globular Clusters (Spitzer 1987) The Gravitational Million-Body Problem

More information

建築構造力学 I ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

建築構造力学 I ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 建築構造力学 I ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/050043 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 1 38 2 15 2 1 2 2 1 2 2 1977 2007 2015 10 ii F P = mα g =

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0

1.1 ft t 2 ft = t 2 ft+ t = t+ t 2 1.1 d t 2 t + t 2 t 2 = lim t 0 t = lim t 0 = lim t 0 t 2 + 2t t + t 2 t 2 t + t 2 t 2t t + t 2 t 2t + t = lim t 0 A c 2008 by Kuniaki Nakamitsu 1 1.1 t 2 sin t, cos t t ft t t vt t xt t + t xt + t xt + t xt t vt = xt + t xt t t t vt xt + t xt vt = lim t 0 t lim t 0 t 0 vt = dxt ft dft dft ft + t ft = lim t 0 t 1.1

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

理想気体ideal gasの熱力学的基本関係式

理想気体ideal gasの熱力学的基本関係式 the equipartition law of energy ( )kt k Boltzmann constant 5 Longman Dictionary of Physics (/)kt q Bq (/)kt equipartition law of energy mol (3/)kT (3/)RT (3/)R (5/)R 3R kt - equipartition of energy The

More information

H21環境地球化学6_雲と雨_ ppt

H21環境地球化学6_雲と雨_ ppt 1 2 3 40 13 (0.001%) 71 24,000 (1.7%) 385 425 111 1,350,000 (97%) 125 (0.009%) 40 10,000 (0.7%) 25 (0.002%) 10 3 km 3 10 3 km 3 /y 4 +1.3 +5.8 (21) () ( ) 5 HNO 3, SO 2 etc 6 7 2009年度 環境地球化学 大河内 10種雲形と発生高度

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

( ) Loewner SLE 13 February

( ) Loewner SLE 13 February ( ) Loewner SLE 3 February 00 G. F. Lawler, Conformally Invariant Processes in the Plane, (American Mathematical Society, 005)., Summer School 009 (009 8 7-9 ) . d- (BES d ) d B t = (Bt, B t,, Bd t ) (d

More information

i

i mailto: tomita@physhkyoto-uacjp 2000 3 2000 8 2001 7 2002 9 2003 9 2000 2002 9 i 1 1 11 { : : : : : : : : : : : : : : : : : : : : : : : : 1 12 : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

More information

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III. Masafumi Udagawa Dept. of Physics, Gakushuin University Mar. 8, 16 @ in Gakushuin University Reference M. U., L. D. C. Jaubert, C. Castelnovo and R. Moessner, arxiv:1603.02872 Outline I. Introduction:

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

C:/KENAR/0p1.dvi

C:/KENAR/0p1.dvi 2{3. 53 2{3 [ ] 4 2 1 2 10,15 m 10,10 m 2 2 54 2 III 1{I U 2.4 U r (2.16 F U F =, du dt du dr > 0 du dr < 0 O r 0 r 2.4: 1 m =1:00 10 kg 1:20 10 kgf 8:0 kgf g =9:8 m=s 2 (a) x N mg 2.5: N 2{3. 55 (b) x

More information

! " # Engineering First

!  # Engineering First ! " # Engineering First C ! ' ( ( * + " # ' ( ) * +,. -. $ % / &! " # ' ( ) * 5 2 3 2 2 3 3 C3 Exercises on Complex Variables I Chauchy-Riemann Chauchy Chauchy Taylor Laurent TA E TA Exercises on Differential

More information

30 (11/04 )

30 (11/04 ) 30 (11/04 ) i, 1,, II I?,,,,,,,,, ( ),,, ϵ δ,,,,, (, ),,,,,, 5 : (1) ( ) () (,, ) (3) ( ) (4) (5) ( ) (1),, (),,, () (3), (),, (4), (1), (3), ( ), (5),,,,,,,, ii,,,,,,,, Richard P. Feynman, The best teaching

More information

L5(SHO) copy.ppt

L5(SHO) copy.ppt SIMPLE HARMONIC MOION: NEWON S LAW PRIOR READING: Main 1.1, 2.1 aylor 5.1, 5.2 http://www.yoops.org/twocw/it/nr/rdonlyres/physics/8-012fall-2005/7cce46ac-405d-4652-a724-64f831e70388/0/chp_physi_pndul.jpg

More information

43433 8 3 . Stochastic exponentials...................................... 3. Girsanov s theorem......................................... 4 On the martingale property of stochastic exponentials 5. Gronwall

More information

( ) ( )

( ) ( ) 20 21 2 8 1 2 2 3 21 3 22 3 23 4 24 5 25 5 26 6 27 8 28 ( ) 9 3 10 31 10 32 ( ) 12 4 13 41 0 13 42 14 43 0 15 44 17 5 18 6 18 1 1 2 2 1 2 1 0 2 0 3 0 4 0 2 2 21 t (x(t) y(t)) 2 x(t) y(t) γ(t) (x(t) y(t))

More information

OHP.dvi

OHP.dvi t 0, X X t x t 0 t u u = x X (1) t t 0 u X x O 1 1 t 0 =0 X X +dx t x(x,t) x(x +dx,t). dx dx = x(x +dx,t) x(x,t) (2) dx, dx = F dx (3). F (deformation gradient tensor) t F t 0 dx dx X x O 2 2 F. (det F

More information

2 g g = GM R 2 = 980 cm s ;1 M m potential energy E r E = ; GMm r (1.4) potential = E m = ;GM r (1.5) r F E F = ; de dr (1.6) g g = ; d dr (1.7) g g g

2 g g = GM R 2 = 980 cm s ;1 M m potential energy E r E = ; GMm r (1.4) potential = E m = ;GM r (1.5) r F E F = ; de dr (1.6) g g = ; d dr (1.7) g g g 1 1 (gravitation) 1.1 m F a ma = F (1.1) F a m F 1.1 m F a (1.1) m a F m F a m a F F a m 0 0 1.2 (universal gravitation) (potential) M m gravitational force F r F = ; GMm r 2 (1.2) G = 6:67 10 ;8 dyn cm

More information

B 1 B.1.......................... 1 B.1.1................. 1 B.1.2................. 2 B.2........................... 5 B.2.1.......................... 5 B.2.2.................. 6 B.2.3..................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

0 = m 2p 1 p = 1/2 p y = 1 m = 1 2 d ( + 1)2 d ( + 1) 2 = d d ( + 1)2 = = 2( + 1) 2 g() 2 f() f() = [g()] 2 = g()g() f f () = [g()g()]

0 = m 2p 1 p = 1/2 p y = 1 m = 1 2 d ( + 1)2 d ( + 1) 2 = d d ( + 1)2 = = 2( + 1) 2 g() 2 f() f() = [g()] 2 = g()g() f f () = [g()g()] 8. 2 1 2 1 2 ma,y u(, y) s.t. p + p y y = m u y y p p y y m u(, y) = y p + p y y = m y ( ) 1 y = (m p ) p y = m p y p p y 2 0 m/p U U() = m p y p p y 2 2 du() d = m p y 2p p y 1 0 = m 2p 1 p = 1/2 p y

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

( ) ,

( ) , II 2007 4 0. 0 1 0 2 ( ) 0 3 1 2 3 4, - 5 6 7 1 1 1 1 1) 2) 3) 4) ( ) () H 2.79 10 10 He 2.72 10 9 C 1.01 10 7 N 3.13 10 6 O 2.38 10 7 Ne 3.44 10 6 Mg 1.076 10 6 Si 1 10 6 S 5.15 10 5 Ar 1.01 10 5 Fe 9.00

More information

4/15 No.

4/15 No. 4/15 No. 1 4/15 No. 4/15 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = m ψ(r,t)+v(r)ψ(r,t) ψ(r,t) = ϕ(r)e iωt ψ(r,t) Wave function steady state m ϕ(r)+v(r)ϕ(r) = εϕ(r) Eigenvalue problem

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

02-量子力学の復習

02-量子力学の復習 4/17 No. 1 4/17 No. 2 4/17 No. 3 Particle of mass m moving in a potential V(r) V(r) m i ψ t = 2 2m 2 ψ(r,t)+v(r)ψ(r,t) ψ(r,t) Wave function ψ(r,t) = ϕ(r)e iωt steady state 2 2m 2 ϕ(r)+v(r)ϕ(r) = εϕ(r)

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) 2001 1 e-mail:s00x0427@ip.media.kyoto-u.ac.jp 1 1 Van der Pol 1 1 2 2 Bergers 2 KdV 2 1 5 1.1........................................

More information