0 (Preliminary) F G T S pv (1)

Size: px
Start display at page:

Download "0 (Preliminary) F G T S pv (1)"

Transcription

1 0 (Preliminary) F G S p (1) p, S (2) II (two variables function) (total differential) ( ) (1) U (2) Legendre p S F (3) (4) i c 2018 etsuya Kanagawa

2 Maxwell ( 0.4.7) Maxwell [ A] [ B] Maxwell [ ] Joule [ A] Joule [ B] [p.73 (18/10/26)] [ C ( )] Mayer Mayer Joule homson [ ] Joule homson [ ] J Joule homson (material) (molecule) (component) (phase) ,, ii c 2018 etsuya Kanagawa

3 4.1.5 (phase change) Avogadro Gibbs Duhem G ( ) µ G H, F, U Maxwell µdn G [ ] ds [ ] df dg iii c 2018 etsuya Kanagawa

4 iv c 2018 etsuya Kanagawa

5 2018 II : 3F305, kanagawa kz.tsukuba.ac.jp 1. : : 10 5 ( ) [10 14 ( ) 23:59 ]: : ( ) [1]: : ( ) [2]: 4 4 : ( ) [3]: 4 5 : ( ) 5 [4]: 5 6 : 11 9 ( ) [5]: 5 7 : ( ) [6]: 5 8 : ( ) [7]: 5 9 : 12 7 ( ) [8]: 5 10 : ( ) [9]: : ( ) : 60 7, (10:10 ) 8.,. 4 1, ( ) 11:30, manaba., manaba. 3 (manaba ) I. ( ). 4,, [1] ( ). 6, ,. 8 [ ],, ( ). 1 c 2018 etsuya Kanagawa

6 II ( ) manaba, , 2018 I., I,, 12., I,. 3..,,,. I,, , ,., 9,,.,,,.,,,,.,, ( )., ( ),. 10,, ( ).,,,. 11 [ ],,,,,, (, ) I (,, ),,. [ ], HP ( ): 13 I,,, II.,. 14 [ ] 75, ( I ),,, ,,.,,. 16 [ ],,,., ( ).,,., I,,.,,. 2 c 2018 etsuya Kanagawa

7 ,,,,., manaba, , 18. : ( 0), ( 1), Maxwell ( 2), ( Joule, Mayer, Joule homson )( 3) 19. ( 4), ( 5), ( 6) , ( ), , (, manaba, ). ( ),,.,,. 18 [ ],.,,. 1,.,, 2 ( ). 19 5,.,. II.,,.. 20,,.,, (Legendre transform). 21 [ ],.,., (mechanics). (mass point) ( I). ( ) (particle mechanics),. ( ), (rigid body). (deformation), (continuum) ( ).,,,., Newton [, (Newton ), ]. (mechanical engineering) [ ( ) ], 2, 2,,.,. 3 c 2018 etsuya Kanagawa

8 0 (Preliminary) 0.1 F G II 22, F, G F U S (0.1) G H S (0.2) , U H S, F G, S p I, H H U + p (0.3) 22 [ ] (state variable), (state quantity),. ( 1). [ ].. 23 [ ] (free energy), Helmholtz ( )., (free enthalpy), Gibbs ( ). [ ] (Gibbs ), Gibbs G, (Helmholtz ), H F ( ). 24 [ ], ( 4),,, (definition),. (formula) (theorem),., (0.1)(0.2).,,. 27 G. F (0.1) 1 U, H. 4 c 2018 etsuya Kanagawa

9 G (0.2), G H S = U + p S = } U {{ S } +p = F + p (0.4) F, F G. (0.4), (0.1)(0.2)., S. 28. (0.4) G = F + p, F, G, H (0.1)(0.2)(0.3). U p 29, U S, H F 30., F G,. (0.1)(0.2),, (0.4) [ ],., 100. (, )... G = H S S, G = F + p p. 29 [ ] p, pd.,., H = U +pd U (0.5) }{{}, U pd ( ),.,, 2,,.,,. [ ], d = 1/ ( ). 30, S p ( 1 )., I ( ), 1. 31, 1, F G. 5,, 1.,, F G (, ) c 2018 etsuya Kanagawa

10 0.1.2 (0.1) (0.3), 33. : (i) ( ), ( ) 34 35, p (ii),, U, H ( U + p ) 38, S 39., (0.1)(0.2) F G 2 40., 33 [ ] : (i) (pressure) p [Pa] (volume) [m 3 ], (mechanics). (ii) 0 (the zeroth law of thermodynamics), (temperature) [K] ( I 1). (iii) 1, (internal energy) U [J]. (iv) (enthalpy) H [J], (isobaric process) ( ). (v) 2, (entropy) S [J/K] ( 0.2 ). 34 [ ] (extensive variable),, (intensive variable).,. 35 [ ] ( ) p ( ),,, ( ).,. 36 [ ] ( ),. [ ( )] [ C], [K]. [ ( )], ( ). x, x,.,,.., 5,,.,,,. 37 [ ] 3, 4 (chemical potential)., (specific enthalpy) h = H/m [J/kg] (m ). [ ] ( I). 38 [ ] Gibbs., Gibbs ( 23). 39 [ ] (reversible process),, S 2.,. (finite value)., d Q/. [ ] dx 1 x 3, 2 ( ). 40 [ ] p, (, U, H, S, F, G) 1 d Q 6 c 2018 etsuya Kanagawa

11 , U, H, F, G, 4, 41., U, H, F, G. 42., p S [J] , ( ) = ( ) ( ) : (0.6) du = d Q d W (0.7)., P. 41 [ 1 ],.,. 4,, ( ) ( ). 42 A = B, (i) A B. (ii) A B (A B ).,.,. [ ] A B. 43, ds = d Q/., [ 1 ] (0.1) (0.4), S p ( p) (S ) (, S p )., S, (heat quantity) ds = d Q. 45 [ ] (system). (surroundings), (boundary). 46 [ ]. ( ), ( ( : infinitesimal), )... 7 c 2018 etsuya Kanagawa

12 , U, ( ) d Q ( ) d W ,, du., d d Q d W, d 49., 2 : (i) 50, 51, ( ) d p, d W = pd (0.8)., [ ] (heat quantity) (work),,., ( ), ( ) [ ].. I,,,,. 50 [ ].,. 51 [ ] (displacement), (force). 52 I, (0.8). (0.8). 8 c 2018 etsuya Kanagawa

13 (ii) 53 S ds d Q (0.13), d Q, d Q = ds (0.14) 53 [ ],, ( )., ( ), :,. 54 [ ] (irreversible process), S, ds d Q (0.9) (Q ).,.,, ( 5),. 55 [ ] : ds = d Q d. ( ), ( ).. [ ] ( ). 56 [ 49 ] ds S. (thermal equilibrium state) 1 2 (definite integral), : S 2 S 1 S = 2 1 d Q (0.10) [ 2 ] : (i) ( = 0 ), S = 2 1 d Q 0 = d Q = Q (0.11). 2 (integrand) (isothermal), 3 Q d Q., Q (ii), d Q 0, : ds = 0, S = 0, S 1 = S 2 (0.12) [ ( )],. 9 c 2018 etsuya Kanagawa

14 . (0.13), , ,. (i)(ii), (0.7) 59 60, 61 62, : du = ds pd (0.15) (0.15) 63.,,. d, d. 2., (0.8). 57 [ ], Clausius d Q/,.,,.,, , (0.14) ( 0.2.1). 59 [ ],, (0.7) (conservation law of energy)., (0.15), S,., (0.15), ( ).,,., (0.15), 3 ( ),. 60 [ 59 ] ds = d Q, (0.15).., ( ), (i),, (ii) (0.15),,, (0.15),. [ ], (0.15). 61 [ ]. ( ),. [ ],,. [ ],., 1 1,. [ (counterexample)] 2,, ( ). 62 [ ],., 4, (reversible) (quasi-static) ( ). 63,,., (0.15), I ( 4, ). 10 c 2018 etsuya Kanagawa

15 2. (0.15) ( ) F d = U d p d (0.16) 2 ( ) G d = H d + dp (0.17) 2 [ ] (0.1)(0.2), (0.18) 65, (0.15). (0.16) : ( ) ( ) F U ( ) = d = d S = Ud du ds ds pd = U d + }{{ 2 } 67 } {{ } ds = ( ) (0.21) 64 1., (0.8) (,. ). 65 ( 4), : d(fg) = f dg + g df (0.18) ( (derivative) (differential quotient)), (differential),. 66 (0.17) (0.16),, ( 1.3) dh = ds + dp (0.19).,, (1.22) 1, 1, ( 1 ), : d 1 d = 2 = d 1 = 1 d (0.20) 2 ( ), ( )., df ( ).,,. 11 c 2018 etsuya Kanagawa

16 0.2.1 (1) p, S, S [ (0.13) (0.14)] 68.,,, (0.14)., p,,, S 4 : (i). p (ii), , S 73. ds,.,, ds d. 68 (0.7) ( ), (0.8). 69 [ ].,,.,., ( ) ( ).,,, ( ).,. : (i) ( ), (ii) ( ), (iii),., ( ) ( ),. [ ],. 70,., ( ), ( ).,, (heat input),,, (heat output). 71 [ ],, 20 C ( C ). 3 : (i), (ii), (iii),. 72,,.,.,,,.,.,,,,.,,,.,.,, ( ) ( ).,. 73.,. 12 c 2018 etsuya Kanagawa

17 ,, 2 74 : d W = pd (0.8) d Q = ds (0.14), ( ) p ( ) d., ( ) ( ) ds 75., , (2),. d,, 74 [ ]. 99 % ( ),,.,,,,. 75 (0.14),,., ( ) d Q,, ( ) ds ( ). d d,, ( ). [ ] d Q ds,,, S. 76 d Q = d, S. S [J/K], 1 K. [ ] p S,, (p ), ( S). 77, S.,. d W = pd, p d Q ds. 78 [ ], ( ), ( ).. [ ],, ( )., ( ).,,, ( ).,. 13 c 2018 etsuya Kanagawa

18 79. (0.7) : d Q = du + d W (0.22) , 2 du = C d, d }{{} W = pd = mr }{{} d }{{} & (0.23) 82., (0.22) : d Q = C d + mr. d (0.24), 1 C d = C + const. (0.25) ( ) 83, 2 mr d = mr d (0.26)..,. 79 [ I].,.. (fundamental theorem of calculus). 80,. 81 [ ] d Q.,,. 82 [ ] C [J/K], m [kg], R [J/(kg K)]., c [J/(kg K)], C = mc., I. 83 [ ]. [ ] C, c, R., I m. [ ] 4,. 14 c 2018 etsuya Kanagawa

19 ,,., d Q =??? (0.27).. I 2 1 d Q Q 1 2 (0.28), 86.,. (0.26)., (0.24) ( 0), : d Q = C d + mrd (0.29) ( ) : d C + mr d = C ln + mr ln + const. (0.30),., d Q, d Q (0.31) 84, = p/(mr) = (p, ).,, p 2, (p, )/ d.. 85.,,,. 86,, Q [ ] Q ( ). 87 [ III] (variables separable). 88 [ ], ln, (base) Napier ( ) e = , 10 log,.,,. 15 c 2018 etsuya Kanagawa

20 , d. d Q/,, d., ( ).,, d Q ds (0.32), ds 89. : (i) d,. (ii) d,. (iii),,. (iv),, II, ( 3) 91.,,., ( 1),, Maxwell ( 2) 92. I,,, ,.,. [, ],. 90 [ ].,.,.,,.. 91, Boyle Charles. 92,.,. 93 d I, ( ). 16 c 2018 etsuya Kanagawa

21 0.4 I, II, III,,.,,., (two variables function) f x y, x y, f(x, y) 95., x y, f 96. f x y II , 94 [ ],.,,. [ ],,,. [ ] (differentiation), :, ( ), pp. 1 6, [ ] ( ) (independent variable), ( ) (dependent variable) ( (unknown variable) (unknown function)). 96, f, x y.,. (point). (curve).. 97 [ ] z = f(x, y)., f (x, y) z ( ), z.,. 98 [ I, II] 1 y = f(x), x, y, 1, 2,., 1 (inverse function), f, x = f 1 (y), x, y (x y ). [ ] 2,,., ( 0.4.6). 99 [ ] 1., Boyle, Charles, Poisson. 2 1,,,,. [ ],, [ ] 3 2, 4 3 ( n )., II, 1 2,, 2 3 n., 2 ( ), 1 ( ). 17 c 2018 etsuya Kanagawa

22 ., 101 : p = mr = p(, ), = mr p = (p, ), = p mr = (p, ) (0.33) p,, , 103,, (total differential) x y ( ) 105, f(x, y) 106., df(x, y), df(x, y) = df(x, y ) + df(y, x ) }{{}}{{} x y = f f dx + dy (0.34) x y 101 [ ] m [kg] (mass), R [J/(kg K)] (gas constant). 102 [ ], 2 ( 4 )., p ( ). 103 [ ], t, v(t)., x, δ(x) ( )., (t, x), u(t, x) p(t, x) (x = (x, y, z) ).,,,.,,, [ ],,,., (i) 1, 1. (ii), [ ], x y [ ] f(x, y), 3 : (i) x y, (ii) x, (iii) y.,, (i) = (ii) + (iii)., (0.34).. 18 c 2018 etsuya Kanagawa

23 (i) f/ x, y , f x lim x 0 f(x + x, y) f(x, y) x } {{ } y ( ) ( = lim x 0 ) f x (0.35) , f/ x 114, x f ( ). f/ x x dx, ( f/ x)dx, x f, 115. f/ x, ( f/ x)dx, y ( (0.34) 1 ) 116. (ii). x dx f ( f/ x)dx, y dy f 107,, (0.34) [ ] dx dy. 109 [ ] (0.34) 2,., (differentiability),. (proposition), ( II). [ ]. 110 [ ] y [ ] x f. 112 [ ], x, a., x,,.,,. [ ] aylor (higher-order terms), ( ). 113 ( ), f f(x + x, y) f(x, y). 114 [ ]., ( ), ( ), ( ),. [ ],,. 115 [ ] f/ x,., (i) f(x, y) x (verb),, (ii). 116 [ ] (0.34) 2 1, y. x y, (i) dx y, x., (ii) f/ x y (0.35). [ ] (0.34) 2, c 2018 etsuya Kanagawa

24 ( f/ y)dy, f ( ) df(x, y) : f x dx + }{{} x f f y dy }{{} y f df(x, y) }{{} f (0.36) (iii) df, dx, dy (, ) 119, ( ) (iv), (0.34)., y 122, dy = 0, df(x, y), df(x, y) y=const. = f dx (0.37) x , x y, 117 [ ] d, (infinitesimal)., 1 dy/dx, (finite value). (fractional number) ( d ). 118 [ ], 10 30, ,, 1/.,,,. 119 [ ], ( 1 ). 120 [ ( )] (product), (sum),., (0.34) 2 ( ) = + = + = = ( ) ( ).,. 121 (,, ),.,, ( ). [ ],, f/ x. 122 y x. 123 [ ], : df y=const. = f x dx, df y = f dx (0.38) x 124 [!!!] (0.37), d, df(x, y) y = df dx = (0.39) dx.,, dx, df., f 2 f(x, y). y 20 c 2018 etsuya Kanagawa

25 . (0.37) ( 3). 4., 125. d(fg) = f dg + g df (0.18) [ ] fg h 126, h, h(f, g)., 2 (0.34). 3., 2 z = f(x, y) y f/ y., 1 y = f(x) f(x, y, z) df(x, y, z), y(x) dy/dx, y(x) x(y) 127 dx/dy., : dy dx = 1 dx/dy (0.40),, dx dy dy dx = 1 (0.41) 128., 1 dy/dx, dx dy 129., y. [ ].. 125, I, [ ] ( : mapping) f, y = f(x) x = f 1 (y)., f. 128 [ I] (0.41) (composite function). 129 [ ] 100 % (, ).,,.,,. 21 c 2018 etsuya Kanagawa

26 , 2 f(x, y). II, f x 1 x/ f (0.42) 130., 2 131,, x y,.,.. 1, 2, 3, d dx f(x), f(x, y), x f(x, y, z) (0.43) x,, f , arcsin x, arccos x, arctan x 133. (0.40), y., (chain rule). [ ] x = r cos θ = x(r, θ) y = r sin θ = y(r, θ), ,, 2, 2 ( ) , f(x, y). x2 [ ] x 2 (exponent) 2, x 2, ( x) 2. (1 ). : 2 ( ) 2 f x 2 = 2 x 2 f = 2 ( x) 2 f = f (0.44) x , (sine), (cosine), (tangent) : d dx arcsin x = 1 1 x 2, d dx arccos x = 1, 1 x 2 d dx arctan x = x 2 [ ] (inverse trigonometric function), sin 1 x. 1/ sin x = (sin x) 1., 22 c 2018 etsuya Kanagawa

27 0.4.4, C P, ( I): dh = C P d, C P = dh d (0.45) H 1 135, dh, (0.19), C P = dh d = ds + dp d (0.46). 3. I, ( ),, 2, 1 ( 3.2 ).,, C P = H(, p) (0.47)., H (0.3)., (i) dh H 137, (ii) / x,. 135, H 2 ( 4 3 )., H 1,. [Joule ( 3.2 )] 1, U = f( ), H U + p = U( ) + mr = H( ) ( ) dh, H. 137 [ ] ( ): C P = H(, p), : C P = H(, p) S + p ds + dp = U (U + p ) = + p ds + dp d 23 c 2018 etsuya Kanagawa

28 (2 ) 138. (p,,, S, U, H, F, G, ) 2.,,. 2,, 139, 140., (Boyle Charles ) p = mr = (κ 1)U (0.48) 141., 1 p = mr/, 2 p = f(, ) (0.49), 2 p = (κ 1)U/, 2 p = g(, U) (0.50) 142.,, (0.49) (0.50) U., 2, (0.49)(0.50) 143. (0.49)(0.50), f g.,, , 3 n. 139 [ ] Boyle ( ) Charles ( ),, 2 ( ), , ( ( ) ). ( ).,. 141 p = (κ 1)U., Boyle Charles ( 3.2, ). [ ] κ c P /c, c P c. 142, ( ). 143, f g.. 24 c 2018 etsuya Kanagawa

29 . p. f g, p(, ) p(, U) } {{}} {{} U (0.51)., p/, p/, ( ) , p,., (0.51) ( ), 1.,.,, p(, ) ( ) p (0.52), ,, ,. 145 [ ], (,, ) ( ),,., (i), z = f(x, y),, ( ). (ii), p(x, t), p t x. (i)(ii),,.,. 146 [ ] , ( A), ( B). ( ). 148,, : p(, ) ( ) p(, ),,, 1,. ( ). ( 1).. 25 c 2018 etsuya Kanagawa

30 , : ( ) ( ) x y = 1 (0.53) y z x z ( ) ( ) ( ) x y z = 1 (0.54) y z z x x y ( ) ( ) ( ) ( ) y y y t = + (0.55) x z x t t x x z ( ) ( ) ( ) y y t = (0.56) z t z x (x, y, z, t), (p,,, S). x (0.53). 2 z, 1 (0.41) 2, ( ). (0.54). 3 (x, y, z) 2, 1., 3. ( (x, y, z) ) (0.53), (0.54) 1. (0.53)(0.54), (x, y, z). x, y z., 2., 2, 3. : x f(x, y, z) = 0 (0.57). (0.57),, (x, y, z), 149 [ ], ( ), pp ( ). 150 (denominator), (numerator), (subscript), (x, y, z) 1 (circulation),. 1 ( ) (0.41) c 2018 etsuya Kanagawa

31 (0.53) (0.56) 152.,,. (0.55)(0.56), 3, (0.53) (0.54) , ( 1) (0.53), x = x(y, z) y = y(z, x) 159.,. dx(y, z) dy(z, x), ( ) x dx(y, z) = y ( ) y dy(z, x) = z z ( ) x dy + z ( ) y x dz + x y z dz (0.58) dx (0.59) 152, 2. 4 (0.53) (0.56),,. 153 (0.56) (0.55)(0.56) 4 (x, y, z, t),, 4 3. (0.53)(0.54), 2,. [ ] 1, 1, ,., ( ).,,., (0.55)(0.56). 156 (0.54), II (Jacobian Jacobi ) ,,,. 158, 2 3 : f(x, y, z) = 0.., [ ] (i), x, (y, z). (ii) x, 1, 2. (iii) (0.54), z = z(x, y),. 27 c 2018 etsuya Kanagawa

32 . (0.58) 1 dy (0.59), 160 : 1 dx + 0 dz = ( ) x y z ( ) y dx + x z [ ( x ) y z ( ) y + z x ( ) ] x dz z y (0.60) dx dz 161,, dx, (0.53) : ( ) x y z ( ) y = 1 (0.53) x z, dz, : ( ) x y z ( ) y + z x ( ) x = 0 (0.61) z y 1, (0.54)., (0.61) ( z/ x) y : ( ) x y z ( ) y z x ( ) z + x y ( ) ( ) x z z y x y }{{} (0.53) 1,, (0.53) ( ) x z y = 0 (0.62) ( ) z = 1 (0.53) x y,, (0.54) : ( ) x y z ( ) y z x ( ) z = 1 (0.54) x y 160, (0.59) (0.58). (0.58)(0.59). 161 dx dz (identity) : Adx + Bdz = Cdx + Ddz A = C B = D 28 c 2018 etsuya Kanagawa

33 ( 2) (0.53), 2 z., (0.58), dz = dx = ( ) x dy (0.63) y z, dx ( 0) 165, : ( ) x dy y z dx = ( ) x y y ( ) y = 1 (0.64) x z 1, d 166. (0.59), y (z, x) 2., (z, x) ( z) 167, ( )., (0.54). (0.58), dx = 0 168, dz 169 : ( ) x dy y z dz + ( ) x = z y ( ) x y z ( ) y + z x ( ) x = 0 (0.65) z y, (0.53) 162 ( 1),.,. 163 : (0.53), x = x(y, z) y = y(x, z),, z, 1, dx dy, 1 (0.40), 1. dy dx 164, z. 165 dx = 0. dx = 0 ( x ), x, x, (0.53) ( ). 166,.,, 2. ( 1) ( 2). 167 z, z. 168 x. (0.58), z y, x. 169 [ ] d,,.. 170,, y (x, z) 2 29 c 2018 etsuya Kanagawa

34 , ( 1) P (x, y) Q(x, y) : P (x, y)dx + Q(x, y)dy (0.66),. z(x, y) dz(x, y) = P (x, y)dx + Q(x, y)dy (0.67) ( ) z dx + x y ( ) z dy = P (x, y)dx + Q(x, y)dy (0.68) y x., dx dy, : P (x, y) = ( ) z, Q(x, y) = x y ( ) z y x (0.69) 2, (0.69) , III, 174 : ( ) P = y x 6. (0.70). ( ) Q x y (0.70),, dx = 0 x, x., y 2, 1, ( ). 171 [ ] 2 ( ). 172 (0.67) ( ) (0.66). 173 [ ] (necessary condition), (sufficient condition), (necessary and sufficient condition).,. 174 [ ] (0.69) (0.70).. 30 c 2018 etsuya Kanagawa

35 7. (0.67) (0.68) 175,, dz(x, y) = ( ) z dx + x y ( ) z dy = P (x, y)dx + Q(x, y)dy = 0 (0.71) y x z(x, y) = C (0.72) 175 (,, ). 31 c 2018 etsuya Kanagawa

36 (C ) [ ] 1., , [ 176 ] n n ( ).,. ( ),.,, ( ) (. 3 ). 178 [ ] 177 ( ),. (i), ( ) 1 df dx = 0 (0.73) ( ).,, 1.,,,. (0.73), x, (C ): f(x) = C (0.74) (ii), 2 ( ) 1 f(x, y) x = 0 (0.75).,. x ( ), C y ( )., (0.75) f(x, y) = C(y) (0.76).,, ( )., C y,. 179 [ ], (0.75) C(y) C(x) C.,. ( ), x, (0.75) ( ).,., [ ] f(x, y) = C ( C ).., (0.75), ( ), (0.75). [ ],.,, ( III). 32 c 2018 etsuya Kanagawa

37 1 U, H, F, G, (0.1)(0.2)(0.3), F, G, H,, Legendre ( ),.,.,, ( ) , 185,,, 186.,,.,,.,.,., 2 187, [ 0] 4, ,.,. 183,. 184.,, 3.,. 185, (10 9 ), (10 6 ). 187 [ ] 2,, ρ = m/, v = 1/ρ = /m (m ) [ ],.,. 189 [ ],. 33 c 2018 etsuya Kanagawa

38 2,, 190. ( ). ( 20 C).,,, ,.,, ( ) (1), (0.15) 195 : du = }{{} ds p }{{} d (1.1) (1.1), ( ) ds d. U 2 S, [ ] ( ),.,,,. 192,,. ( ).,,.,,. 193 [ ],.,,, ( ). 194 [ ],., Maxwell ( 2)., ( ),,,. [ ], ( ). 195 [ 1],.. [ 2], d Q = ds,, ( 0). 196 [ 4 ( )] 3, c 2018 etsuya Kanagawa

39 197. (1.1), du(s, ) = ds pd (1.2) }{{}., du(s, ) : du(s, ) = ( ) ( ) U U ds + d (1.3) S S (1.2) (1.3) du(s, ),, : ds pd = ( ) ( ) U U ds + d (1.4) S S (1.4), ds d ( )., ds d, : ( ) U = = (S, ) (1.5) S ( ) U p = = p(s, ) (1.6) 2 p, U , U U(S, ) S 197 [!!!] U(S, ). ( ), [ ( 0.4.2)],. 199 [ ( )] 2, 1., ( ),, (subscript). 200 [ ] 2 ( ), U,, S. 201 [ ],.,,.., ( ),,. (1.5)(1.6).,,, ( I )., ( ).,. 35 c 2018 etsuya Kanagawa

40 ,, U(S, ) 202. S, U 203.,, (S, ), U. (1.1) (1.2) (thermodynamical identity), (1.2) U(S, ), 204., (1.2) : du(s, ) = (S, )ds p(s, )d (1.7) U U(S, ), U(p, ) 205.,. (i) ( 1.0.1),, U(p, ) 206. (ii) du(p, ). (iii), (1.1) 207, 208., U(p, ). U(S, ) (S, ) [ ( )]., (S, ) ( ). 203 [ ],.,. 204 [ ] (thermodynamical potential), (thermodynamical characteristic function). 205 [ ] U(S, ) U(p, ), U., ,,. 207 [ ] (1.2). (1.1) (1.2). 208 A dp + B d = C ds + D d.,,. 209,,.. 36 c 2018 etsuya Kanagawa

41 , U, p ( (1.5)(1.6)).. 2, 2 ( ), (1.5)(1.6),,, 214.,., ( ) ( ).,, ( ) ( 1.0.1).,,,. 210 [ ],.., F Ω, F = Ω/ x (x ). [ ] ( ), ( ). [ ] ( ) v Φ (v = gradφ).,,.,..,. [ ],,,. 211 [ ] ( ),..,,,,. 2,,.,.,.,.,, ,, ( )., [ ],,, ( ) (,, )..,,, ( 1 ), ( ).,. 214 ( ),,.,,. 37 c 2018 etsuya Kanagawa

42 1.2 (2) ( (1.1)),, (4, 215 ) , Legendre p S 218 Legendre ( ) 219,, ( ). p., U(S, ), (S, ).,, S.,, 1. S 220. U(S, ),., (1.5), 221., F (, ) 222, ( 215, Maxwell ( 2), Joule, Mayer, Joule homson ( 3). 216, II [ ], 2., 3, II,. 218, (, 2014). 219,, ( ). [ ] (analytical mechanics) Legendre. 220, , p., p. 222, (0.1).,. 38 c 2018 etsuya Kanagawa

43 1) U(S, ) (1.5) 223 : (S, ) = ( ) U S U S 0 U F } S {{ 0 } F (1.8) F. U : ( ) U U = S + F = (1.9) S }{{} S + F }{{} (1.9) 2, F (0.1),, F U S (0.1). F 224, U S. (1.9) 1 ((1.8) ), F S., S 223.,,. [ ] U, S,,, (1.8)(1.9), F (linear function)., (1.9) : ( ) U U = S y = ax + b = dy dx x + b (1.10) S + = ( ) U S + F (1.11) S (slope) a (= dy/dx), ( ), = ( U/ S). (intercept) b, F. 226,. : = ( ), 1., (S, ), U(S, )..,. 227 [ ] (i) ( ), (ii) (U ), (iii) 39 c 2018 etsuya Kanagawa

44 p ( ( ) ( ) ), ( ), 1., Legendre. 8. (0.1) (0.4), Legendre F, F (, )..,. F (0.1) ( 229 ) : df = d(u S) = du d( S) = } du {{ ds } Sd (1.13) (1.1) 1 2, (1.1), 230. df = Sd pd (1.14), 2 F (, )., ds Sd (S ): U S U S U S 0 U F S 0 (1.12) 228 Legendre., p S. 229 [ ].,.,., ( ),,., df, df(t, x).,, du. [ ], du, du(, ),. 230 [ ]. (1.13), (1.14).. ( )..,,,,,. 231 [ ( 1.3)] pd dp. 232 [ ( 0)]. 40 c 2018 etsuya Kanagawa

45 (1.14), (1.1),, 233. (1.14), F ( p S ), (, ) 234., F (, )., F (, ) df (, ) = ( ) ( ) F F d + d (1.15) (1.14) 235, U, ( ) F S(, ) = ( ) F p(, ) = (1.16) (1.17)., F = F (, ) 236., ( ).,,,. : i) ( 1/ ) ( 1) (1/ ). ii) (2/ ). iii) (1 + 1/ 1). (1.14), : i) S, d, Sd ii) p, d, pd iii) Sd pd., df [ ] (1.14),,,., (1.14), F (1.1). ( ).,. 234 [ ] (1.14), F ( p S ) (, ).,, 2., (1.14), (i) (, ), (ii) ((1.15) ), (iii) (1.16)(1.17).,. 235 (1.14), df, df (, ). 236 F (, ), (1.14) (1.15). 41 c 2018 etsuya Kanagawa

46 F (, ),, 237., S, F (, ) (1.16).,, ( )..,., (0.1) (1.16)(1.17). Legendre, F,, (1.13) (1.14). (1.13).. (i), 3 239, df = du ds Sd (1.13). F F (U, S, ), 3 df (U, S, ), du, ds, d.,, 2, (ii) (1.13). F = U S, d d., ( ).,. 237 [ ] F (, ),., F (, p) F (S, ) (.. ) Legendre.. (0.1)(0.2)(0.3),., ( ),, ( ),. 239 [ 4 ] 3.,, , 2,.,. 241 [, ] F 3,. 42 c 2018 etsuya Kanagawa

47 242. ( ), (1.15),. F, H, G, 4,,. 1.3 (3) 3, 4, 243., 2. 2 F (, ), 1 U(S, ), 3 U(S, ) 244. F (, ),., p ( ),., ( ) 245.,.,, , 1 = ( ) F U,S (1.18) 1. [ ] (C ): 242 [ ]. F (, S, U) = U + C(, S) (1.19) 243 [ ], 2,., ( ).,.,,,.,. 244, , ( ). F,, (0.1) , 2,. ( ). 43 c 2018 etsuya Kanagawa

48 ( 1) U(S, ) p(s, ) (1.6) 247 ( ) ( U U H p(s, ) = S H (F ), ) (1.20) H = U + p (0.3). (1.20) H., (0.3), H 248.,., H, 3. H (0.3), 2 (1.1) 249, : dh = }{{} du + pd }{{} (1.1) + dp = }{{} ds + dp (1.21), 3, 2., dh = ds + dp (1.22) 3., I,,, 250. (1.22), H (S, p) 247 [ ] U, S,, p 4. (1.6). [ ] H. H. 248 U + p. 249 (1.22) (1.1)..,. 250,,. (1.22) ( ). 44 c 2018 etsuya Kanagawa

49 , dh(s, p)., H(S, p) dh(s, p) = ( ) H ds + S p ( ) H dp (1.23) p S. (1.22) dh = dh(s, p)., (1.22) (1.23) 251.,, H(S, p) : ( ) H (S, p) = S ( ) H (S, p) = p p S (1.24) (1.25), H, I , H(S, p)., (0.3),, (4) 3 U(S, ), F (, ), H(S, p),., H(S, p), ( ) S. 251, 2, ds dp. 252 [ ( I)], ( ), ( )..,,..,,,.,,.,. 253 [ 252 ], ( ).,.,,. 254, H(S, p),.,, H. 45 c 2018 etsuya Kanagawa

50 255., S. p H.,.,., ( 3) H(S, p) (S, p) (1.24) : = ( ) H H G S p S G,, (0.2) : (1.26) G = H S (0.2) G (, p). (0.2) G 256 : dg }{{} = } dh {{ ds } Sd }{{} = dp Sd (1.27) (1.22), 4, : dg = Sd + dp (1.28) (1.28), G , (1.28), G = G(, p) 259., G(, p) dg(, p) = ( ) G d + p ( ) G dp (1.29) p 255 [ ] H(S, p) G(, p). [ ] H, S, p, [ ] 1 1 2, 3 ( ) (1.22), (1.28),,. 258 [ ],,,..,,. (, ). 259 [ ], (1.28) dg = dg(, p). 46 c 2018 etsuya Kanagawa

51 ,,, S : ( ) G S(, p) = ( ) G (, p) = p p (1.30) (1.31),, p G(, p)., 4 G(, p) Legendre, F, H, G ( ) 4 4, 4. : (i) U, F U S, H U + p, G H S 4 262, 260 G F G(, p) F (, ).,, ( 5 ). 261 [ ],.,., ( ). : (i),, (ii) [ ],., F (p, S).,, F,.,,. 47 c 2018 etsuya Kanagawa

52 4 263 : du = ds pd (1.1) df = Sd pd (1.14) dh = ds + dp (1.22) dg = Sd + dp (1.28), (ii) U, F, H, G, ( ) 265., (1.1)(1.14)(1.22)(1.28) 2. U, F, H, G : U(S, ), F (, ), H(S, p), G(, p) (1.32) (1.32). (0.1) (0.3). (1.1)(1.14)(1.22)(1.28), (0.1) (0.3),, 266. (iii) (1.32), (1.32), (1.1)(1.14)(1.22)(1.28), (1.5)(1.6)(1.16)(1.17)(1.24)(1.25)(1.30)(1.31)., 1 2 (2 263 [ (. )], ds pd,. (i). [J]. (ii). ( ),. 264 [ ], (1.32),,,. [ ],,. [ ], [ ] ( : ), ( : ).,. 266, (1.32). 48 c 2018 etsuya Kanagawa

53 ). : ( ) ( ) U(S, ) H(S, p) = = S S p ( ) ( ) U(S, ) F (, ) p = = S ( ) ( ) H(S, p) G(, p) = = p S p ( ) ( ) F (, ) G(, p) S = = p (1.33) (1.34) (1.35) (1.36), (1.33), 1 (S, ), 2 (S, p) 267. (iv) 2,., (1.33) (1.36), p,, S , 4 2, ( ),, (S, ), (, ), (S, p), (, p),, U(S, ), F (, ), H(S, p), G(, p) ,,. (v) (1.33), ( ) 2 S, ( ) 267 [ ].,., ,, ( ),., p, S, ( 0) , (combination), 4C 2 = 6, 4 ( ). 2 ( ) , (. ) (1.32). 49 c 2018 etsuya Kanagawa

54 (vi) (1.33) (1.36),. ( )., S,., (1.36) ( 1), ( 2) 274., 1 2., 275. (vii), F, H, G 277,, 4 (1.1)(1.14)(1.22)(1.28) (1.33) (1.36),...,. 273 [ ], 1, 1, ( ) ( ).,.,, ( ).,,,., 80, 10.,,,. 274 [ (combustion)] (Otto ( ) ) (1.36) 1, (Diesel ) (1.36) 2,.,, 1., 2. ( (3 ) (3 )). 275, ( II),. 276 ( Boyle Charles )..,. 277 [ ] U, F, H, G 4, 2 : (i), (ii) [J]. 278 U,. 279 [ ] I, ( ) ( ). 50 c 2018 etsuya Kanagawa

55 7., 4 U(S, ), F (, ), H(S, p), G(, p) (1.33) (1.36) , U, F, H, G 282.,, : (i). (ii) (Legendre ), (i) ( ). (iii), (ii). (iv) (i) G(, p).,,.,..,, (1.33) (1.36), 1 ( ) 2 ( 2 )., (1.33), ( ) ( ) U(S, ) H(S, p) (S, ) =, (S, p) = S S p }{{}}{{} (S, ) (S, p) (1.37). [ ], II ( ) ( ). 280 (1.5)(1.6)(1.16)(1.17)(1.24)(1.25)(1.30)(1.31). 281 ( 6),.,, U(S, ), F (, ), H(S, p), G(, p) ( 264 ). 282,. Legendre. F, H, G,.. 51 c 2018 etsuya Kanagawa

56 283.,.,, (p, ) 284.,, (1.33) ( ).,,, 285.,, ( 3 ) (1.33) (1.36), ( ).,, (1.33) (1.35), H(S, p).,, H(, ) H(, p) S p 2, H(S, p),. U, F, H, G, 288., 283 ( ). 2, p. 284, = p/(mr) = (p, ) ( 0.4.1). 285., [( ) ],. 1 ( ),, t.,. [ ( ) ] t x = (x 1, x 2, x 3 ) 2 ( 4 )., (kinematics),, (thermodynamics) ( )., (mechanics) (kinematics).,,., (statics) (dynamics) ( ), c 2018 etsuya Kanagawa

57 .,, U, F, H, G, 289.,,., ( ), ( ).,, , (1.32) G(, p), p,, G 290.,, ( ) 291., ( ),..,,, p = f(, ) (1.38) 292., 293, g(p,, ) = 0 (1.39). f g, 289,,,.,,,. 290 G. 291 [ ]., Boyle, p = C/, (C ). 292 [ I ], (1.38),. U S. 293 (1.39), 3 ( ), 3, 2. (1.39), (implicit function representation). g = 0 p f.,,, f (explicit function). f g, 3. [ ]. 53 c 2018 etsuya Kanagawa

58 ., f g , f g, 296.,, 297,., I,,.,,..., Maxwell ( 2) 8. Gibbs Helmholtz 298. ( ) [ ( )] F F U = F = 2 [= U(, )] (1.42) ( ) [ ( )] G G H = G = 2 [= H(, p)] (1.43) p p F (, ) G(, p),, 294, p = p(, ), p = f(, ) ( p f )..,,. 295 [ I] (ideal gas), f p = f(, ) mr/ (1.40) (m [kg], R [J/(kg K)]).,,,, mr. [ ( )] mr, Hooke Young, Newton ( ), Fourier ( ). 296,,,.,.,. ( ) (real gas), van del Walls ( ). 297, ( ). 298 ( ) : x 2 ( y ) ( ) y = x y (1.41) x x z x z 54 c 2018 etsuya Kanagawa

59 U(, ) H(, p) [ ] ( ) F (, ) G(, p), ( ) U(, ) H(, p). 300 [ ( )], U(S, ) H(S, p) 2, S ( )., S U(S, ) H(S, p) ( )., F (, ) G(, p) p,, ( ), F (, ) G(, p). [ ], F (, ) G(, p), U(, ) H(, p)., U H,.,. [ ] (1.5), (S, )., U(, ) = U( (S, ), ) = U(S, ). U(S, ), [ ( )],, c,.,,, ( 6 ). F G. 55 c 2018 etsuya Kanagawa

60 2 Maxwell (Maxwell s relation),. 2.1 ( 0.4.7) 302 (i) 303 dy dx = P (x) Q(y) (2.1) 304. dx P (x)dx + Q(y)dy = 0 (2.2) 305,. (ii), ( ), dy dx = P (x, y) Q(x, y) (2.3), P (x, y)dx + Q(x, y)dy = 0 (2.4) }{{}}{{} x y 306., (2.4),.,., (2.4). 302 [ ] ( 10, ), (, ( 5 ), ( 7 ), ( 10 )).,. Amazon. [ ]. 303 [ ( )] (, ),, dx., dy/dx. 304 [,, ] y(x) ( ), x, P (x) Q(y) x y ( ). 305, (2.1) dx,.,, ( ). 306 (2.2) (2.4), (variables separable) (exact), ( ),., 1. [ ] (2.1) (2.3),, (x) (x, y). 56 c 2018 etsuya Kanagawa

61 P (x, y)dx + Q(x, y)dy (0.66). (0.66), z(x, y) dz(x, y)., : P (x, y)dx + Q(x, y)dy = ( ) z dx + x y ( ) z dy = dz(x, y) (0.67) y x, , (0.67), 310 : P y = Q x (0.70) [ ]. (0.67) : P (x, y) = z x, z Q(x, y) = y (0.69) P y, 311, : P y = y ( ) z = x x ( ) z = Q y x (2.6) 307 [ ] (0.66). ( 232). 308 [ ], P Q (x, y), P dx + Qdy.,.,. 309, [ ] dx dy (differential)., (0.66) ( ). ( ),. 311 [ II] 2 z(x, y). (i), 2 z x y 2 z. (ii) 2 y x. (i) (ii),, 2 : 2 z x y = 2 z y x (2.5),,. 57 c 2018 etsuya Kanagawa

62 2.2 Maxwell ,, U(S, ), F (, ), H(S, p), G(, p) 4 ( ) : d U(S, ) = (S, ) ds p(s, ) d (2.7) }{{}}{{}}{{} df (, ) = S(, )d p(, )d (2.8) dh(s, p) = (S, p)ds + (S, p)dp (2.9) dg(, p) = S(, p)d + (, p)dp (2.10) (2.7) (2.10),, U(S, ), F (, ), H(S, p), G(, p) 317,,., (2.7) (2.10), U(S, ), F (, ), H(S, p), G(, p) 318.,,.,. 312 [ ] Maxwell,,,. 313 [ ] I,,, 1, ( ).,. 314, [ ] U, F, H, G,., 1. [ ],,.,. 316 [ ], du du(s, ).,. 317 [ ] (2.7) (2.10),. ( 1.5.3). 318,.,,. 58 c 2018 etsuya Kanagawa

63 , (2.7) ds, du(s, ), = ( ) U S ( ) U = (S, ), p = = p(s, ) }{{} }{{} S (2.11) , [ A] 2.2.1, (2.7) (2.10), (0.70) 322., (2.7), du(s, ) = }{{} (S, )ds p(s, )d = }{{} ( ) ( ) U U ds + d (2.12) S S. 2 (0.70), : ( ) ( ) p = S S, Maxwell 1. (2.13), 3 (2.8) (2.10) (0.70), 3 Maxwell. : 319 [ ],.,.,,. [ ] f(x, y) = xy + y 2 y, x + 2y., x. 320 [ ]. [ ], S, (S, ) 2 (S, ). 322,,.,.,.,. 59 c 2018 etsuya Kanagawa

64 Maxwell (1 ) ( ) ( ) p = S S ( ) ( ) p S = ( ) ( ) = p S S p ( ) ( ) S = p p (2.13) (2.14) (2.15) (2.16), ( ) d, ( ) ( / ) p.,, [ ] ( ), ( ) ( )., ( ). (i),,., ( ) ( ( ), ( ) ). (ii) d, ( 1/ ),. (iii), ( ). ( ) v = dx/dt,. [ 1] 3, ( ),. [ 2],, (line integral) ( II, ). 324 [ ] [ II ( )] Maxwell. Jacobian (Jacobi, ), (2.13) (2.16) ( ): J (, S) (p, ) / p S/ p / S/ = 1 (2.17) 325 [ 324 1] Jacobian., (determinant), (row) (column) ( ): J (, S) (p, ) / p / S/ p S/ = / p S/ p / S/ (2.18) 326 [ 324 2] J, (variable transform) : d ds = J dpd (2.19) 60 c 2018 etsuya Kanagawa

65 (2.14) (2.16), (2.13) (2.15) ( 3 ). (2.13) (2.16)., 3, : (i) ( ), [J] ( p [J] S [J]) (ii) 1 (p,,, S) (iii) 10. (2.13) (2.16), (i)(ii)(iii) [ B] 327 [ A],, 328., (2.12), 2 ds d., ds d., (1.5)(1.6) : ( ) U = S ( ) U p = S (1.5) (1.6), (1.5), S, ( ) S = }{{} (1.5) [( ) ] U = S S S [( ) U ] } {{ S } (!!) = }{{} (1.6) ( ) p S (2.20)., 329, (1.6), Maxwell 1 (2.13) [ III] (0.70) ( 2.1 ). [ ], ( ) [ B]. 329, U, S,. 330 ( ) [ B], ( ).,, [ A]. 61 c 2018 etsuya Kanagawa

66 2.3 Maxwell.,,, (1.33) (1.36), 4 ( ) U, F, H, G 331, 4 p,,, S., (2.13) (2.16), ( p, ), F G,,., 333. (2.13) (2.16) ( ), p,,, S 4, 334, 4.,, ( ), ( ) (closed set/system)., , [ B],. [ A] [ B],,,. 331 [ ], U, F, H, G.,. 332 [ ]. ( ), ( ). 333 p p, S S,., F U,,., ( ). 334 [ ] (2.13), p, S., (2.14), p S,., (2.13) (2.16), p,,, S 4,.,. 335 [ ] 1 : x + y + z = 0, x + y z = [ ],, ( ).,. (computational mechanics). 337 [ ],, Newton 62 c 2018 etsuya Kanagawa

67 (2.13) (2.16) (2.13) (2.16).. (i) (2.13) (2.15), S., S Navier Stokes (2 ) (exact/analytical solution),., 100., (numerical/computational study), (approximate solution)., (perturbation method), (weakly nonlinear phenomena). [ ],. 338 [ ], Cauchy Riemann ( ), 2., ( ). 339 [ ], ODE (ordinaty differential equation), PDE (partial differential equation). 340 [ ]., ( ), ( ).,,. ( III), 1,.,,., ( 2 ) ( ).,,., ( ) ( 337). 341 [ ( )] 2 (quadratic curve) ( : analogy), (diffusion equation), (wave equation), Laplace,, (parabolic), (hyperbolic), (elliptic).,. 63 c 2018 etsuya Kanagawa

68 ,, 345.,,,. (ii) (2.14) (2.16), p,.,, S 346.,, p, S., (2.14) S(, ) = ( ) p d + S 0 (2.21) (S 0 ) 347. (2.21) p = f(, ), [ ( )],. (i), S, d Q = ds ( ). (ii) (i), S ds = 0, d Q = 0 ( > 0 ).,.. (iii),, d Q < ds. (iv) (iii), ds = 0 d Q < 0. d Q = 0.,,,. (v) (ii), > 0 (, ). 343 [ 342 ], S, (2.13) (2.15).., 2.,.,. [ ],,,.,. 344 [ 343 ] 1,, d Q = ds.,,,. 345 (2.15) (2.14) [ ], ( : arbitrary constant) C. [ ] S 0 ( ) c 2018 etsuya Kanagawa

69 , (2.14) (2.16), (2.13) (2.15)., F G.,, (0.1) (0.2). 3,, Maxwell (2.14)(2.16),., Maxwell.,,. 2,. Maxwell, (2.21),. S = mr ln + C (2.27), C. [ ] Boyle Charles,, p = f(, ), S = g(p, ) (, g ). ( 3.2 ). 349 [ ( )].,,,., Maxwell, β ((2.14) ) α ( (2.16) ). [ ],,.,,.,,. 5 : (speed of sound), (isothermal compressibility), (isothermal bulk modulus), (coefficient of thermal expansion), (thermal pressure coefficient): ( ) p : a (2.22) ρ S ( ) : (2.23) κ 1 : k : α 1 ( ) p ( ) p : β p ( p ) = 1 κ (2.24) (2.25) (2.26) 65 c 2018 etsuya Kanagawa

70 10. Maxwell (2.13) (2.16) ( ) ( ) [ U p ( p ) ] = p = 2 ( ) ( ) [ ( )] H = + = 2 p p p (2.28) (2.29) 12. Maxwell (2.13) (2.16) [ ],,,.,., S. 3.2,,. Boyle Charles. 351 [ 1]. [ 2] 3 ( 0.2) ( 3 ). [ 3]. [ 4].,. 352,.., (2.13) (2.16),.., c 2018 etsuya Kanagawa

71 3,, Mayer, Joule homson ,.,,. (1.1),, S 356.,, Maxwell (2.14) (2.16) 357,.,, , ( II), ( ) [ ] (, ). 355 [ ], 3 (general relation), (, (, 1995)).,,.,. 356 [ ],,. S. 357, U(S, ), F (, ), H(S, p), G(, p) p,,, S (1.33) (1.36). 358 ( I)., Joule (Joule ) Mayer,. [ 1] I, Mayer. [ 2] Joule homson,, (real gas) ( 3.3). 359 ( 3.1), Mayer ( 3.2), Joule homson ( 3.3),, 3.,, Maxwell,,.,. 360 [ I, II, III ],,,,.,,,,,,,.,,. [ ] ( ).,.. 67 c 2018 etsuya Kanagawa

72 [ ], 1.5.4,.,, (i) Boyle Charles ( ) p = mr = f( ) }{{} (3.1),, (ii) [ ] (3.1), 362. pv = R (3.2) p = Rρ (3.3), v ( /m = 1/ρ) [m 3 /kg], ρ ( m/ = 1/v) [kg/m 3 ], m, R [ ] 364 ( ). p = f(, ) (1.38) g(p,, ) = 0 (1.39) [ ] (1.38) 2., 2, p, 2 f 365. (1.39), [ ( )] (i).,,. 362,, (Boyle Charles ). 363 [ 1] R 0 [J/(mol K)] M [g/mol],, R = R 0 /M [J/(kg K)] ( k = 10 3 ). [ 2] R 0, R. 364 I [ ] ( ), ( ). 68 c 2018 etsuya Kanagawa

73 ( ) 366., f g, [ ], ( )., 2, 3 ( ). [ ] (1.39) (implicit function).,,.. 367,.,. 69 c 2018 etsuya Kanagawa

74 3.1 Joule, Joule ( ). 368.,,, [ A],. F p (1.17) ( ) F p = (1.17) F,, ( ) F p = ( ) U = ( ) (U S) = ( ) ( ) ( S) U + = }{{} 371., : ( ) U = + ( ) S (3.4) ( ) S p (3.5), 2 U S 1, 1., U(, ), U(S, ) 368. (measurement apparatus), (error)., ( ). 369 [ ] p ( ) p [J], F (1.17).,. ( ) ( S) 371 2,,. 70 c 2018 etsuya Kanagawa

75 372. (3.5), (1.1). (3.5) d, (1.1) ,. (1.17),, (3.5), 1 S.., S, Maxwell 4 (2.13) (2.16)., (2.14) 377, : ( ) U ( ) p = p }{{} (3.7) 372 [ ],, U.. U (S, )., U,. 373 [!!], (3.5) d..,,.,. 374 [ 373 ( )] df/dx f/ x, d/dx / x., 1,, df/dx df dx,, ( ). df/dx dx, df ( ). 375 [ ( 1.2)] (1.17), F ( )., ( ).,,,. (1.17),,. 376 [ ] 375., (1.17),..,,, ( ) ( ). 377 [ ].,. Maxwell,, ( ) ( ) S p = (3.6).,,.,,., (i), (ii), = +. (ii),. 71 c 2018 etsuya Kanagawa

76 Joule, (3.7).,. (3.1), (3.7) 1 : ( ) p ( ) (mr/ ) = = mr ( ) = mr 1 = p (3.7),, : ( ) U(, ) (3.8) = 0 (3.9) , U = f( ) }{{} (3.10)., f( ) ( 1 ).,, f( ) 378 (2.14)......,,. 379 [ ],.,. 380 [ ( )] ( ) 1. [ ] ( ( ))., 2,, (elliptic), (parabolic), (hyperbolic) c 2018 etsuya Kanagawa

77 (3.10) Joule 385, 386., 381 [ ( )] (3.10),,, (3.9)..,,,,. [ ] (3.9) (3.10),, [ 381 ] n, n., n, n ( ),.,,, ( ),,. [ ].,. 383 [ ( )] du/d = 0, U = C (C )., (,,., ).,, ( C). [ ]. 2,.,.,,., U, f( ), f( ) = C (C ) [ III ( )] (i) (general solution), (particular solution), (singular solution),. (family of curves). (ii),. (iii),. (iv). (v) ( ). 385, ( ),. Joule,,. 386., ( I, ). 73 c 2018 etsuya Kanagawa

78 Joule, (3.10) ,, Joule.,, Maxwell 391,, , (3.7) , (3.7) 1 ( p ),, 387 [ ][Joule ( ) ] A B (valve), A ( ), B (vacuum)., ( ) (rigid insulation)., A B. 388 [ 387 ( )],,, A + B,., ( )., ( A B ),,,,.,,. 389 [ 387 ( )],., Joule,., U(, ), : U(, A ) = U(, A + B ) = U = f( ) (3.11) ( ), ( )., Joule (3.9) ( ) U = 0 (3.9). (3.11). (3.11) (3.9). [ ], (, 1989), pp [ 387 ( )] Joule 2., (1843 ) ( I). 391 Maxwell.. (3.5).,,. 392 [ ]. (3.5). [ ],,,,,. 393 ( ( )) ( ). 74 c 2018 etsuya Kanagawa

79 p = f(, ) f,., ( )., (3.7), U., (3.7) p,, 394., U [ B] [p.73 (18/10/26)],,, 395. (1.1) : du = ds pd (1.1), (1.1) U S, U(, ) S(, ) d ( 0) 398 : ( ) U =, 399. ( ) S p (3.5) 394,, Maxwell (2.14). 395,,., (3.7),,,.,,,. 396 ( ) [ A], du(, ) du(s, )!! 397 ( ) [ ],, (S, ), (, ). [ 1]. [ 2] (, ).,,,,. 398 [ II],,.,. [ ], d = 0,. d. (18 ). 399 [ ] (3.5),, d du d = ds d p (3.12) 75 c 2018 etsuya Kanagawa

80 , (, ). 1, d, Maxwell (2.14). 2, (2.14) , Maxwell (2.14)., 3.1.1, (3.7). (1.1),, (3.5),. (3.7) (,, ) , 405,.., 1 ( ) 2 ( ),. 400 [ ( )], 1 ( ),. p, (1.1) ( H) (, )., (3.5). [ ( )], U(, ξ),,, ξ. 401 [ 400 ] du = ds pd,. U, (S, ), (, )., U ( ),,.,. 3, [ ] U = f(, U).. ( ) [ ] (1.1),, ( ) (3.7). [ ] Maxwell (2.13) (2.16) , I,,,.,,,. [ ],, ( ).. 405, (1.1) (3.5), (, )., 2 ( 0.4.5).,,. 76 c 2018 etsuya Kanagawa

81 3.1.5 [ C ( )] 406 [ B] (3.7) ( (3.5)),, d 407.,,. 1.1, U U(S, ), p 408. (1.3), S,, U 3., U(S, ) S, 1, S = S(, ξ) 409. S, 1 S U 406,., (, ): Kanagawa,. and aira, H., Educational Efficacy of Derivation Method for Partial Differential Equations in hermodynamics, American Journal of Educational Research, ol. 5 (2017), pp ( ), ( 0.4.2), 3.1.4,., U, / ( 0.4.3)., [ B],,. 408 [ ]. (0.15) ds d,., U = U(S, ), du(s, ) : ) ) du(s, ) = ( U S ds + ( U S d (1.3), (1.1) du = du(s, ), (1.3) (1.1)., ds d, : ( ) ( ) U U =, p = (1.5) S S 409 [ ] U(S, ) 2, S S = S(, ξ),. = (S, ξ), (3.5)(3.7).,, ( ) ( ) U = p (3.13) S ξ S ξ. ( S/ ) ξ, (0.53), (3.5) ( )., S,. 77 c 2018 etsuya Kanagawa

82 , 2 ξ S(, ξ), ds(, ξ) = ( ) S d + ξ. (1.3) ds : [ ( U ) du(s(, ξ), ) = S + ( ) ( ) ] U S d + S ξ,, ( ) ( ) S dξ (3.14) ξ ( ) U S ( ) S dξ ξ (3.15) du(s, ) = du(s(, ξ), ) = du(, ξ) (3.16) }{{} ξ. (3.16), (3.15), du(s, ) du(, ξ)., du(, ξ) du(, ξ) = ( ) U d + ξ ( ) U dξ (3.17) ξ (3.15), d dξ, ( ) U ( ) U ξ ξ ( ) ( ) U U = + S S ( ) ( ) U S = S ξ ( ) S ξ (3.18) (3.19) 2.,, 3 4 (0.55)(0.56),. 410, S 2, ξ = ξ = p.,. 411 [ ] ξ (, : xi), x. 78 c 2018 etsuya Kanagawa

83 (1.5) (1.6) (3.18), ( ) ( ) U S = p + ξ ξ (3.20)., ξ =, (3.5)., (i) (3.5) (3.7). (ii), (3.7), Joule (3.9) (3.10) = f( )p (3.21), f( ) 1 ( ). (i) Joule (3.10). (ii) (3.21), (3.21).. [ (i)] (3.7) 1, (3.21), ( ).,, Joule (3.10). [ (ii)] f( ) =., f( ),, f , (0.55)( (3.18)), U,, S, (quadratic function), (polynomial),,. 79 c 2018 etsuya Kanagawa

84 15. ( ), (1.22), : ( ) H p = ( ) ( ) S + = + (3.22) p p ( ) 1, Maxwell S 416,. [ A], (1.31). 16., H. (i) (3.22). [ ], (3.22) 1,., : ( ) H p = 0 (3.23) p, H = g( ) 417., g( ) 1,. (ii) (3.22) 418. [ ] (0.3), Joule (3.10) (3.1) : H U + p = f( ) + mr = g( ) (3.24) }{{} 414,, (3.5)(3.7)..,. 415 [ ] H(S, p) (2.9)., (2.9) (1.22).. ( )., H(, p). 416 [ ] (2.14) (2.16) 2., H(, p)., H, H(S, p). [ B], dp. S. 417, H = g( ), H = H( ). 418 (3.22), Joule (3.10),,. 80 c 2018 etsuya Kanagawa

85 Mayer.,,, C c C/m 421.,,. 2 C, C = C(, ) (3.25), 1. 1, 2 : (i) C P p 2, (ii) C 2 ( ): C P = C P (, p), C = C (, ) (3.26)., C, d Q d d Q = C (, ) d (3.27) }{{}!! 419 [ ],, ( I).,,.,,. 420,,.,,. 421 I [ ],.,, C., ( )., d Q, d, C. 423 [ ( )] (3.27), : C = d Q d (3.28),, ( ), ,, 81 c 2018 etsuya Kanagawa

86 I ( 4.3),, C P C, ( ) ( (Mayer s relation)) ,. 425, Mayer : C P C = ( ) ( ) p p (3.29) C P C, ( 1) 2 C : d Q = C(, )d (3.27) ( 2) 427 : d Q = du + pd (3.30) S.,. (3.27), d /d., d Q d., 1. [ ], d, 1., 2. [ ],,,..,,. 424 [ ], Mayer, ( ) ( ),,, Mayer.,,. 425.,,. 426,,,.,. 427,, ( ). 82 c 2018 etsuya Kanagawa

87 d Q, d Q = ds (3.30), 428. ( 3) U, (, ) : (i) (3.27) d,. (ii) (3.30) 2 d, , d, 432., : du(, ) = ( ) ( ) U U d + d (3.32). d d, (3.27)(3.30), ( )., (3.27)(3.30)(3.32), 433, ,, d Q = Cd = ds = Cd = ds (3.31).,. 429 [ ]., d, d, du 3. 2., [ ] (i),, (ii). 431 [ ] (3.30) 1 U., U, U. 432 [ ] d d, U(, ).,, U(, ),. 433 [ ( )],.,. : d 0 = U(, ) U( ) }{{} (3.33),, ( ). 434 I. 83 c 2018 etsuya Kanagawa

88 ( 1), (3.27), C C : d Q = C d (3.34) ( 2) (3.30), 2 d 435 : d Q = du(, ) (3.35), (3.32) U(, ). (d = 0), U I ( 4), U ( ) ( 437). 437 [ ] ( f/ x) y, y, x., y x. y,., ( 3 ), ( 0.4.2): ( ) f x y f(x + x, y) f(x, y) lim x 0 } x {{} y, (0.35) 84 c 2018 etsuya Kanagawa

89 ( 3) U (3.32) : du(, ) = ( ) U d (3.36) (3.34) (3.36), : C = ( ) U = C (, ) (3.37) (3.26), C (, ). (3.37) 444., 438 [ ( )], d = 0, 2 : ( ) U du(, ) = du(, ) + du(, ),, du(, ) = d 439 [ ( 0.4.2)]. ( II, ),., [ ] U = U( ) 1., d : du = du d d /, U(, )/., U, U, U ( 0.4.2). [ ] ( 0.4.2),, ( U/ ),,,. 441 [ ] d Q..,,. 442, ( ),.,,., (3.37),. 443 (3.37), : U = C, du = C d,, ( 0.4.3). 444 (3.37),.,. (3.37)., 85 c 2018 etsuya Kanagawa

90 , Mayer (3.29). [ ] (3.1), 2 : ( ) p = mr, ( ) = mr p p (3.29), I : (3.38) C P C = mr (3.41) 18. C P. ( ) H C P (, p) = p (3.42) [ ]. ( 2), ( ) d Q = dh dp (3.43). 445,,. 446 mr ( ). (3.29),., (p,, ), ( ),., (3.1), p = f(, ),. 447 [ ] I, c P = C P /m c = C /m, (3.29).,, ( ) ( ) p v c P c = (3.39) (v, ). pv = R, Mayer :, (3.29) (3.41) m. v p c P c = R (3.40) 86 c 2018 etsuya Kanagawa

91 ,, ( 3) H(, p) 448 dh(, p) = ( ) H d + p ( ) H dp (3.44) p 449.,, (3.44) , C : C P C ( ) = du d, C P ( ) = dh d (3.45) (i) (3.37)(3.42),, (3.45), C P C 1.. (ii) (3.45), 452. U( ) = C ( )d + U 0, H( ) = C P ( )d + H 0 (3.47) [ ] (, p). (3.43) 2, d dp.,. 449 p., [ ] I,,.,,,., (3.45), 1.,, [ ],, (1 ).,. [ ] U 1., (3.45),., (iii) (3.50).., I. [ ], (3.45), U = U( ), 1., C( ),. 452 [ ],, 0 C (θ)dθ (3.46)., θ (dummy variable)., 2, 0 1,. 87 c 2018 etsuya Kanagawa

92 , U 0 H 0, U( 0 ) = U 0, H( 0 ) = H (iii) C C P ( ), U H (1 ) : U( ) = C + U 0, H( ) = C P H 0 (3.50) [ (i)] Joule (3.10), U = U( ) (3.37), 2 1, 457., (0.3), Joule, H U + p = U( ) + mr = H( ) (3.51) }{{},,. 453, 0 = 0 K,,., U( 0 ) = U 0 = 0. (3.51), = 0 = 0 K, H( 0 ) H( 0 ) = U( 0 ) + mr 0 = 0 + mr 0 = 0 (3.48), U( 0 ). 454 [ ], (3 )., U 0 = H 0 = [ ], c c P,,, : u = c + u 0, h = c P + h 0 (3.49) 456 [ ], U = f( ) U( ),., U f,. 457 [Joule ], Joule (3.10), Joule ( 3.1), ( 3.2).,. 88 c 2018 etsuya Kanagawa

93 [ (ii)] (3.45) d, [ 0, ] 458 ( ) = 0 du d d = }{{} = U( ) U 0 = 0 du = U( ) U( 0 ) 0 C ( )d = ( ) (3.52), (3.47). H( ). [ (iii)] C ( ): U( ) = C 0 =0 d + U 0 = C + U 0 (3.53) 20., S 459, F, G,.. S = C ln + mr ln + S 0 (3.54) F = C + U 0 (C ln + mr ln + S 0 ) (3.55) G = C P + H 0 (C ln + mr ln + S 0 ) (3.56), S 0, U 0, H (3.1), U H 462. p = κ 1 H = (κ 1)U (3.57) κ 458 [ ], 0,. 459 [ I ],. 460 [ ],, ( ), S, F, G ( ). [ ] (3.54) (, p) (p, ) [(3.54) ], (1.1), (3.1).,., I.,,. 462 ( ).,,,,,. (3.1) (3.57). 89 c 2018 etsuya Kanagawa

94 , κ c P /c = (c + R)/c = 1 + R/c [ ] (3.50) U 0 = H 0 = 0, (3.1) Mayer 466, Mayer (3.29). C (, ) C P (, p) (3.37)(3.42), (i) (0.56) 467, (ii) 463 [ ] 2,,,., : (i), p, = p mr = (p, ). (ii) U H, (3.57) (3.50). (iii) S, (3.54). (iv) F G, (3.55)(3.56)., p, U, H, S, F, G.,,,,. 464,,. ( I 4.4). [ ( )] (ratio of specific heats), heat s. (2 ). 465, U H, κ R, : U = C = mr κ 1, H = C P = mκr κ 1 (3.58) 466 [ ],., d Q = ds., Maxwell., Maxwell ( 2.2). 467 [ ] ( 4 ), ( (3.70))., 1 dy dx = dy dt dt dx (3.59) c 2018 etsuya Kanagawa

95 H(S, p) U(S, ) 468 (S, p) (1.33) : ( ) ( ) ( ) ( ) H H S S C P = = = p S p p p ( ) ( ) ( ) ( ) U U S S C = = = S }{{} }{{} (1.33) (3.60) (3.61)., (i), (ii) S,, C P C, : [ ( S ) C P C =. p ( ) ] S (3.62) 1 S(, p), 2 S(, ), , ds(, p) ds(, ) 468 [ ] H U. ( ) H 469 [ ] (1.33),, = S p,. H, U : (i) H., H, H. (ii),, H H(, p), H(S, p). (iii), S (, ) ( ) (. ), ( ) H H S H S. (iv) =, = p S p p S p., S [J]. (iv) U(S, ), p, ( 3 ) H(S, p). 470 [ ] (. ). [ ] U(S, ) H(S, p), p. [ ], S. H(S, p) U(S, ),, S., S.,. 471 [ ], S., S(, p) S(, ). 472 (3.62), S,, ( ), : ) ) ( S p ( S (3.63) 91 c 2018 etsuya Kanagawa

96 473 : ( ) S ds(, p) ( ) S ds(, ) d + p ( ) S dp (3.64) p ( ) S d + d (3.65) (3.62) Mayer (3.29)., S,, p, 4,., d, dp, d (3.64) (3.65), d 2 475, dp d., p = p(, ), 476 : dp(, ) ( ) ( ) p p d + d (3.66) (3.66) (3.64) 2 dp, (3.64), ( ) S ds(, p) = [ ( S ) = d + p p + ( ) S p ) ( S p [( ) ( ) p p d + ) ] [( ) S d + p ( p ] d ( p ) ] d (3.67) (3.62). [ ] ( ). 473 [ ],,,,. 474 [ ]., [ ] (i) 3. (ii) 2, 1.,,,. (iii) d, 2, d. (iv) dp d., dp. (v) dp(, ), dp d d. 476 [ ] = (, p). [ ],. [ ] S, S. 92 c 2018 etsuya Kanagawa

97 (3.67) 1,, ds(, p) = ds(, p(, )) }{{} (, ) = ds(, ) = }{{} ( ) ( ) S S d + d (3.68), (, p) (, ) , (3.68). (3.67)(3.68), ds(, ).,,, d d. (i) d, 3 (0.55) 479 : ( ) S = ( ) S + p ( ) S ( ) p p (ii) d, 4 (0.56) 480 : ( ) S = ( ) S ( ) p p (3.69) (3.70). (3.62), 477 [ ] (i) S, p (S(, p)), (ii) p, (p(, ))). (iii), S, (S(, p(, )) = S(, )).,. 478 [ ], S(,, p).. 3 ( ). 479 [ ],,,. : ( ) ( ) ( ) ( ) y y y t = + (0.55) x z x t t x x z 480 ( 3.1.5), (0.55)(0.56),. [ ],, (0.55)(0.56).,, ( ),. (0.55)(0.56),. [ ] ( ). [ ], (3.69)(3.70) (0.55)(0.56).. 93 c 2018 etsuya Kanagawa

98 (3.69)., (3.62), : { ( S ) (3.62) = p [ ( S ) p + ( ) ( ) ]} S p = p ( ) S ( ) p p (3.71) S , Maxwell (2.16) , Mayer (3.29) : C P C = ( ) ( ) p p (3.29) (3.29) 2, mr,, ,, : C P > C (3.72) 481 [ (Maxwell )] ( S/ p)., ±( / ) p.,, : (i) S, (, p)., G(, p). G (1.28). (ii), ±Sd ± dp ( )., (, p),, U, F, H, G [ ]., 2, S. (2.16).,,. 483,. Maxwell ( ). 484 [ ] (2.16)., G = H S., = (, p) ( ), (2.16) (2.14)., F G. 485, mr. 486 [ ],, (thermodynamical inequality). 487, (c P > c ). 488, C..,.., C P, (3.29), C., (3.29). 94 c 2018 etsuya Kanagawa

99 , (i) C S (3.60)(3.61) 490. (ii) (3.69)(3.70),, (3.71). (iii) Maxwell, Mayer (3.29) ( ) ( ) p p C P = C (3.74) S ( ) ( ) p + C = 0 (3.75) 24. (3.30), d Q = C d + S [ ( ) ] ( ) U p p + d = C d + d (3.76) (0.55) ( ), : [ ( ) S C P C = ( ) S = ( ) ] [ ( ) S S = ( ) ( ) ( p = p p ) + p ( ) ( ) S p ( ) ] S (3.73), Maxwell (2.14)., (2.16),,. 2, 3 (0.55)., (0.55),.,,. 490 [ ], Mayer ,,.,,. C (. I ). 493,,,.,, 1 1,. 95 c 2018 etsuya Kanagawa

100 [ ] C (, ) (3.37), U(, )., : du(, ) = ( ) U d + ( ) ( ) U U d = d + C d (3.77), (3.37)., (3.30), (3.76) 1., (3.7), d [ ], (3.76). [ ] (3.76) Mayer, ( ) p ds = C d + d (3.81) ( ) ds = C P d dp (3.82) p 26., [ ],,,,, ( ). [ ], (3.76) C (, )., C P (, p), C P, = (, p)., (3.76) d, dp.,,,.,, p ( ): [ ( ) ] d (, p) p = d + p ( ) dp p p = ( ) d p (3.78) p, (3.76), 1 (3.78), [ ( ) ( ) ] p d Q p = C + d p (3.79) p., C P, d Q p = C P (, p)d p (3.80) ( )., Mayer (3.29) c 2018 etsuya Kanagawa

101 (i) C P C 496. ( ) CP p ( ) C ( ) 2 = 2 ( ) 2 p = 2 p (3.83) (3.84) (ii) : ( C ) = 0 (3.85) 497, p(, ) = f( ) + g( ) (3.86), f g, ( ). [ (i)] [ 1] (3.84) 500. (3.37), 501, (3.7) 496 [ ] ( ),.,,,. 497 [ ] (3.85). [ ],.,.,.,. [ ],,.,. 498, ( ),. 499 [ ( )] n, n (arbitrary constant)., n n ( ). 1,,, (. ). 500 (3.83). ( 1) (3.22), ( 2) Maxwell (2.16). 501 [ 311] 2, 2,,. 97 c 2018 etsuya Kanagawa

102 502, : ( ) = ( C = ) = [( ) ] U = [( ) ] U }{{}}{{} [ ( ) p (3.37) ] p = ( p ( ) ) ( ) 2 p + 2 ( ) p = ( ) (3.87) [ 2] 503 (3.61),, Maxwell (2.14), : ( ) = = [ ( ) ] S ) ] [( S = = [( ) ] S [( ) ] p = ( ) (3.88) 2,, ( ) 504. [ (ii)], p, (3.84) (3.85), 0, 2 ( ) 2 p 2 = 0 (3.89)..,, 1 : ( ) p = f( ) (3.90), 502 [ ] (3.7), F (1.14) (1.17)., F Maxwell (2.14).,, F. [ ] (3.83), (3.7), (2.16), G. 503,. 504., ( ).. 98 c 2018 etsuya Kanagawa

103 505. 1,, : p(, ) = f( )d + G( ) = f( ) d + G( ) = f( ) + g( ) (3.91), f, g, G, G g, 1 G, g , [ ], ( ),,,.,,. 506,,. 2.,,.,. 507,,, C = K( ) (K ).,. 508 [ : ( III )] (general solution) ( : particular solution).,, p =, p = C 1, p = C 2, (C 1 C 2 ) (3.92) (3.89),., (3.92) (3.89) ( ), (3.89).,,. (3.92) (3.89),., ( ),,.,,,. 1, , 2., 2 1, 2 1 = c 2018 etsuya Kanagawa

104 3.3 Joule homson [ ],,.,,,., Joule homson (Joule homson effect) 510,, Joule homson (, J ) 511 : µ ( ) p H (3.93)., 512 : ( ) = 1 p H C P [ + ( ) ] S = 1 p C P [ ( ) ] p (3.94),, Maxwell (2.16) 513, 514. J (3.94). C P = ( H/ ) p [ (3.42)] J µ = ( / p) H 3 (H,, p). 515.,,, 2 510,,,.,,, (, ),. 511 J ( ).,,., 4,, µ,. 512 [ ] (i) ( S/ p), ±( / ) p ( ); (ii) (p, ), G(p, ) ; (iii) G. 513, G (2.10). 514 [ ],,,. 515,,., 100 c 2018 etsuya Kanagawa

105 (0.54) 516 : ( ) ( ) p p H H ( ) H = 1 (3.95) p 1, 3,, J,, : ( ) p µc P H = 1 (3.96) ( H/ p), 1 (0.53) 517, µ = 1 C P ( ) H p (3.98)., (3.22) 518, J (3.94) ,, (0.40) 2 : ( ) ( ) dy dx y x 1 : = 1, 2 : = 1 (3.97) dx dy x z y z 518 [ 15 ] dh = ds + dp (1.22) dp ( ) H = p ( ) S + p (3.99) p. 2, 1 p, 2, ( ),,, =. [ ],, (,, ). 519,, (3.22),, ,,., C P µ, S. S. 101 c 2018 etsuya Kanagawa

106 3.3.2 [ ] J H (1.22) dh = ds + dp (1.22), S. S, (H,, p),, µ, H, ds(, p) : ds(, p) = ( ) S d + p (3.100) (1.22) 1 dh = ( ) [ S d + + p ( ) S dp (3.100) p ( ) ] [ S dp = C P d + + p ( ) ] S dp p (3.101) 521,, dh : 0 = { [ C P d + + ( ) ] } S dp p H (3.102), H dp, ( / p) H, (3.94) : ( ) = 1 p H C P [ + ( ) ] S p 27. Joule homson (3.94) (3.103) Joule homson J (3.94),.,,,., 521 (3.60). 522, C P J µ. 3.,. 102 c 2018 etsuya Kanagawa

107 ,. I, Joule, Joule homson, Joule homson [ ], J [, ( ) ].,,, ( ). 524 [ ],,,,., J, (,, ).,,. 103 c 2018 etsuya Kanagawa

108 p., H., ( )., 525 [Joule homson (1) ] Joule ( 387),.., (heat bath),,,,.,,, ( )., [ 525 (2) (throttling) ( )],, ( : pore valve). A, B, B. A A.,,., A B,. A, A,, B,. A B,,. 527 [ 525 (3) ]., A < B.,, A ( ), B ( )., p A > p B.,, Joule.,., (, ) [ 525 (4) ],,. : (i),, A B ; (ii) U = U B U A ; (iii),, p A A, ( ) A( ), W A = A 0 p A d = p A A (3.104) (,, ). B, W B = B 0 p B d = p B B (3.105), W = W B W A,, U = W = W A W B = p A A p B B (3.106), : H B = U B + p B B = U A + p A A = H A (3.107), W, (U A > U B ). [ ],, p A A = p B B, U A = U B, Joule. 529 [ 525 (5) ],., 104 c 2018 etsuya Kanagawa

109 . J,,., J,, ( ) 530.,, J µ 531 : 1 ( ) > 1 p (3.108) J,,. J inv, : inv = ( ) p (3.109),. Joule homson. J, , µ = , (200 K) (100 K),,,.,., 1908 Kamerling Onnes., (superfluidity) (superconductivity). [ ], pp , ,,. 531,,. 532,. J,,. 533,,,. 105 c 2018 etsuya Kanagawa

110 4 534,,.,.,,., ( ).,, 535.,,,, ,,.,, I., 537.,, (material) (molecule) ( ),. 538, , ( ), ( O 2 ). 534 I. 535, I II. 536,.,.,. 537, 1, ( ). 538,, (molecule) (atom) (quantum).,,,. 539,,.,, ( ), ( I 2.2.1),,. 106 c 2018 etsuya Kanagawa

0 (Preliminary) T S pv

0 (Preliminary) T S pv 0 (Preliminary) 4 0.1.................. 4 0.1.1 S p................... 4 0.1.2......................... 5 0.2............................. 8 0.2.1 p S................ 11 0.3..............................

More information

(A2) , 0,

(A2) , 0, 0 10 0.1............................ 10 0.2.............. 11 0.3.................................. 14 0.4 (A2).................... 15 1, 0, 17 1.0.1..... 17 1.1............................. 17 1.1.1 (system)...........................

More information

1.5.1 SI kg, m, s ,,

1.5.1 SI kg, m, s ,, 0 9 0.1............................ 9 0.2.............. 10 0.3.................................. 13 0.4 (A2).................... 14 1, 0, 16 1.0.1..... 16 1.1............................. 16 1.1.1 (system)...........................

More information

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2

m d2 x = kx αẋ α > 0 (3.5 dt2 ( de dt = d dt ( 1 2 mẋ kx2 = mẍẋ + kxẋ = (mẍ + kxẋ = αẋẋ = αẋ 2 < 0 (3.6 Joule Joule 1843 Joule ( A B (> A ( 3-2 3 3.1 ( 1 m d2 x(t dt 2 = kx(t k = (3.1 d 2 x dt 2 = ω2 x, ω = x(t = 0, ẋ(0 = v 0 k m (3.2 x = v 0 ω sin ωt (ẋ = v 0 cos ωt (3.3 E = 1 2 mẋ2 + 1 2 kx2 = 1 2 mv2 0 cos 2 ωt + 1 2 k v2 0 ω 2 sin2 ωt = 1

More information

untitled

untitled 1 Physical Chemistry I (Basic Chemical Thermodynamics) [I] [II] [III] [IV] Introduction Energy(The First Law of Thermodynamics) Work Heat Capacity C p and C v Adiabatic Change Exact(=Perfect) Differential

More information

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1 5 0 1 2 3 (Carnot) (Clausius) 2 5. 1 ( ) ( ) ( ) ( ) 5. 1. 1 (system) 1) 70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain)

More information

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1 6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) (e) Γ (6.2) : Γ B A R (reversible) 6-1 (e) = Clausius 0 = B A: Γ B A: Γ d Q A + d Q (e) B: R d Q + S(A) S(B) (6.3) (e) // 6.2 B A: Γ d Q S(B) S(A) = S (6.4) (e) Γ (6.5)

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T 3 3.1 [ ]< 85, 86 > ( ) ds > 0. (1) dt ds dt =0, S = S max. (2) ( δq 1 = TdS 1 =0) (δw 1 < 0) (du 1 < 0) (δq 2 > 0) (ds = ds 2 = TδQ 2 > 0) 39 3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3)

More information

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1 September 25, 2017 1 1.1 1.2 p = nr = 273.15 + t : : K : 1.3 1.3.1 : e.g. 1.3.2 : 1 intensive variable e.g. extensive variable e.g. 1.3.3 Equation of State e.g. p = nr X = A 2 2.1 2.1.1 Quantity of Heat

More information

Microsoft Word - ●ipho-text3目次

Microsoft Word - ●ipho-text3目次 国際物理オリンピック 研修用テキスト Ⅲ 熱物理 相対論 量子力学 特定非営利活動法人物理オリンピック日本委員会 1 1.1 1 1. 1.3 3 1.4 4 1.5 6 1.6 7 1.7 9 11.1 11. 0.3 1 6 3.1 6 3. -9 3.3 - -- 31 3.4 --33 39 4.1 39 4. 40 4.3 4 4.4 44 4.5 47 5 5.1 5 5. 5 5.3

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si I 8 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No. : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin.

More information

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even. 08 No. : No. : No.3 : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No.0 : No. : sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even. I 0 No. : No. : No. : No.4 : No.5 : No.6 : No.7 : No.8 : No.9 : No.0 : I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd

More information

mugensho.dvi

mugensho.dvi 1 1 f (t) lim t a f (t) = 0 f (t) t a 1.1 (1) lim(t 1) 2 = 0 t 1 (t 1) 2 t 1 (2) lim(t 1) 3 = 0 t 1 (t 1) 3 t 1 2 f (t), g(t) t a lim t a f (t) g(t) g(t) f (t) = o(g(t)) (t a) = 0 f (t) (t 1) 3 1.2 lim

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

現代物理化学 2-1(9)16.ppt

現代物理化学 2-1(9)16.ppt --- S A, G U S S ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r S -- ds = d 'Q r / ΔS = S S = ds =,r,r d 'Q r r d Q r e = P e = P ΔS d 'Q / e (d'q / e ) --3,e Q W Q (> 0),e e ΔU = Q + W = (Q + Q ) + W = 0

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

応力とひずみ.ppt

応力とひずみ.ppt in yukawa@numse.nagoya-u.ac.jp 2 3 4 5 x 2 6 Continuum) 7 8 9 F F 10 F L L F L 1 L F L F L F 11 F L F F L F L L L 1 L 2 12 F L F! A A! S! = F S 13 F L L F F n = F " cos# F t = F " sin# S $ = S cos# S S

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

i

i mailto: tomita@physhkyoto-uacjp 2000 3 2000 8 2001 7 2002 9 2003 9 2000 2002 9 i 1 1 11 { : : : : : : : : : : : : : : : : : : : : : : : : 1 12 : : : : : : : : : : : : : : : : : : : : : : : : : : : : 3

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2 1 1 2 2 2 1 1 P F ext 1: F ext P F ext (Count Rumford, 1753 1814) 0 100 H 2 O H 2 O 2 F ext F ext N 2 O 2 2 P F S F = P S (1) ( 1 ) F ext x W ext W ext = F ext x (2) F ext P S W ext = P S x (3) S x V V

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

v er.1/ c /(21)

v er.1/ c /(21) 12 -- 1 1 2009 1 17 1-1 1-2 1-3 1-4 2 2 2 1-5 1 1-6 1 1-7 1-1 1-2 1-3 1-4 1-5 1-6 1-7 c 2011 1/(21) 12 -- 1 -- 1 1--1 1--1--1 1 2009 1 n n α { n } α α { n } lim n = α, n α n n ε n > N n α < ε N {1, 1,

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b) 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h 0 f(a + h, b) f(a, b) h............................................................... ( ) f(x, y) (a, b) x A (a, b) x

More information

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0, .1.1 Y K L Y = K 1 3 L 3 L K K (K + ) 1 1 3 L 3 K 3 L 3 K 0 (K + K) 1 3 L 3 K 1 3 L 3 lim K 0 K = L (K + K) 1 3 K 1 3 3 lim K 0 K = 1 3 K 3 L 3 z = f(x, y) x y z x-y-z.1 z = e x +xy y 3 x-y ( ) z 0 f(x,

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math)) 2001 1 e-mail:s00x0427@ip.media.kyoto-u.ac.jp 1 1 Van der Pol 1 1 2 2 Bergers 2 KdV 2 1 5 1.1........................................

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

基礎数学I

基礎数学I I & II ii ii........... 22................. 25 12............... 28.................. 28.................... 31............. 32.................. 34 3 1 9.................... 1....................... 1............

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

2 p T, Q

2 p T, Q 270 C, 6000 C, 2 p T, Q p: : p = N/ m 2 N/ m 2 Pa : pdv p S F Q 1 g 1 1 g 1 14.5 C 15.5 1 1 cal = 4.1855 J du = Q pdv U ( ) Q pdv 2 : z = f(x, y). z = f(x, y) (x 0, y 0 ) y y = y 0 z = f(x, y 0 ) x x =

More information

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E 2, S 1 N 1 = S 2 N 2 2 (chemical potential) µ S N

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b)

CALCULUS II (Hiroshi SUZUKI ) f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) CALCULUS II (Hiroshi SUZUKI ) 16 1 1 1.1 1.1 f(x, y) A(a, b) 1. P (x, y) A(a, b) A(a, b) f(x, y) c f(x, y) A(a, b) c f(x, y) c f(x, y) c (x a, y b) lim f(x, y) = lim f(x, y) = lim f(x, y) = c. x a, y b

More information

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du 2 2.1 1 [ 1 ]< 33, 34 > 1 (the first law of thermodynamics) U du = δw + δq (1) (internal energy)u (work)w δw rev = PdV (2) P (heat)q 1 1. U ( U ) 2. 1 (perpetuum mobile) 3. du 21 // //( ) (Helmholtz, Hermann

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

genron-3

genron-3 " ( K p( pasals! ( kg / m 3 " ( K! v M V! M / V v V / M! 3 ( kg / m v ( v "! v p v # v v pd v ( J / kg p ( $ 3! % S $ ( pv" 3 ( ( 5 pv" pv R" p R!" R " ( K ( 6 ( 7 " pv pv % p % w ' p% S & $ p% v ( J /

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( ) 2 9 2 5 2.2.3 grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = g () g () (3) grad φ(p ) p grad φ φ (P, φ(p )) y (, y) = (ξ(t), η(t)) ( ) ξ (t) (t) := η (t) grad f(ξ(t), η(t)) (t) g(t) := f(ξ(t), η(t))

More information

: 1g99p038-8

: 1g99p038-8 16 17 : 1g99p038-8 1 3 1.1....................................... 4 1................................... 5 1.3.................................. 5 6.1..................................... 7....................................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r) ( : December 27, 215 CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x f (x y f(x x ϕ(r (gradient ϕ(r (gradϕ(r ( ϕ(r r ϕ r xi + yj + zk ϕ(r ϕ(r x i + ϕ(r y j + ϕ(r z k (1.1 ϕ(r ϕ(r i

More information

2009 June 8 toki/thermodynamics.pdf ) 1

2009 June 8   toki/thermodynamics.pdf ) 1 2009 June 8 http://www.rcnp.osaka-u.ac.jp/ toki/thermodynamics.pdf 1 6 10 23 ) 1 H download 2 http://www.rcnp.osaka-u.ac.jp/ toki/thermodynamics.pdf 2 2.1 [1] [2] [3] Q = mc (1) C gr Q C = 1cal/gr deg

More information

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

1   nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC 1 http://www.gem.aoyama.ac.jp/ nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC r 1 A B B C C A (1),(2),, (8) A, B, C A,B,C 2 1 ABC

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

1

1 1 1 7 1.1.................................. 11 2 13 2.1............................ 13 2.2............................ 17 2.3.................................. 19 3 21 3.1.............................

More information

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x

k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i σ ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m σ A σ σ σ σ f i x k m m d2 x i dt 2 = f i = kx i (i = 1, 2, 3 or x, y, z) f i ij x i e ij = 2.1 Hooke s law and elastic constants (a) x i (2.1) k m A f i x i B e e e e 0 e* e e (2.1) e (b) A e = 0 B = 0 (c) (2.1) (d) e

More information

KENZOU Karman) x

KENZOU Karman) x KENZO 8 8 31 8 1 3 4 5 6 Karman) 7 3 8 x 8 1 1.1.............................. 3 1............................................. 5 1.3................................... 5 1.4 /.........................

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2. (x,y) (1,0) x 2 + y 2 5x 2 y x 2 + y 2. xy x2 + y 2. 2x + y 3 x 2 + y 2 + 5. sin(x 2 + y 2 ). x 2 + y 2 sin(x 2 y + xy 2 ). xy (i) (ii) (iii) 2xy x 2 +

More information

A

A A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 基礎からの冷凍空調 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/067311 このサンプルページの内容は, 初版 1 刷発行当時のものです. http://www.morikita.co.jp/support. 03-3817-5670FAX 03-3815-8199 i () () Q&A

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x

y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t) =(x(t),y(t),z(t)) ( dp dx dt = dt, dy dt, dz ) dt f () > f x I 5 2 6 3 8 4 Riemnn 9 5 Tylor 8 6 26 7 3 8 34 f(x) x = A = h f( + h) f() h A (differentil coefficient) f f () y = f(x) y = f( + h) f(), x = h dy dx f () f (derivtive) (differentition) (velocity) p(t)

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10 1 2007.4.13. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 0. 1. 1. 2. 3. 2. ɛ-δ 1. ɛ-n

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63> 常微分方程式の局所漸近解析 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/007651 このサンプルページの内容は, 初版 1 刷発行当時のものです. i Leibniz ydy = y 2 /2 1675 11 11 [6] 100 Bernoulli Riccati 19 Fuchs

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n = JKR 17 9 15 1 Point loading of an elastic half-space Pressure applied to a circular region 4.1 Boussinesq, n = 1.............................. 4. Hertz, n = 1.................................. 6 4 Hertz

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q( 1 1 y = y() y, y,..., y (n) : n y F (, y, y,..., y (n) ) = 0 n F (, y, y ) = 0 1 y() 1.1 1 y y = G(, y) 1.1.1 1 y, y y + p()y = q() 1 p() q() (q() = 0) y + p()y = 0 y y + py = 0 y y = p (log y) = p log

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

II 2 ( )

II 2 ( ) II 2 ( 26 1 1 1 3 1.1....................................... 3 1.1.1.............................. 3 1.1.2.............................. 4 1.1.3..................... 5 1.2 : R 3...............................

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h

3 filename=quantum-3dim110705a.tex ,2 [1],[2],[3] [3] U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h filename=quantum-dim110705a.tex 1 1. 1, [1],[],[]. 1980 []..1 U(x, y, z; t), p x ˆp x = h i x, p y ˆp y = h i y, p z ˆp z = h i z (.1) Ĥ ( ) Ĥ = h m x + y + + U(x, y, z; t) (.) z (U(x, y, z; t)) (U(x,

More information

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 - M3............................................................................................ 3.3................................................... 3 6........................................... 6..........................................

More information

ver.1 / c /(13)

ver.1 / c /(13) 1 -- 11 1 c 2010 1/(13) 1 -- 11 -- 1 1--1 1--1--1 2009 3 t R x R n 1 ẋ = f(t, x) f = ( f 1,, f n ) f x(t) = ϕ(x 0, t) x(0) = x 0 n f f t 1--1--2 2009 3 q = (q 1,..., q m ), p = (p 1,..., p m ) x = (q,

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

4 2016 3 8 2.,. 2. Arakawa Jacobin., 2 Adams-Bashforth. Re = 80, 90, 100.. h l, h/l, Kármán, h/l 0.28,, h/l.., (2010), 46.2., t = 100 t = 2000 46.2 < Re 46.5. 1 1 4 2 6 2.1............................

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information