CryptoGame201712

Size: px
Start display at page:

Download "CryptoGame201712"

Transcription

1 (CRISMATH 2017)

2 n l l 2

3 n A B n l à l à l à A \ B (, ) (, ) (, ) (, ) 3

4 n n n l n l A \ B ( -1, -1 ) ( -10, 0 ) ( 0, -10 ) ( -3, -3 ) 4

5 n l vs pk b m 0, m 1 b R {0,1} c c = Enc pk (m b ) n l l 5

6 (1/2) n l l [HT04, ADGH06, GK06, KN08a, KN08b, MS09, OPRV09, FKN10, NS12, KOTY17, etc.] l [Gra10, BCZ12, ADH13, AGLS14, HV16] l [Y16, YY17] l l [GKTZ12] l [GKMTZ13, GKTZ15] l [FK17] 6

7 (2/2) n l [DHR00, LMS05, ILM05, ILM08] l [BPR15, GPS16, RSS17] l [BC+10,HPS14a, HPS14b] n l [HP10, GLV10, PS11, HPS16] l [ACH11, GK12, HTYY12] n l [Nak08, Ros11, LJG15, CK+16, SB+16, FPS17] l [AM13, GHRV14, CG15, GHRV16, IY17] l [AD+14, BK14, KB14, KK+16, KB16] 7

8 n n n 8

9 n n [Y16] Yasunaga. Public-key encryption with lazy parties. IEICE Trans. Fund. (2016) [YY17] Yasunaga, Yuzawa. Repeated games for generating randomness in encryption. Cryptology eprint Archive: 2017/218 [IY17] Inasawa, Yasunaga. Rational proofs against rational verifiers. IEICE Trans. Fund. (2017)

10 IoT n à l l Enc( pk, m ; r ) 10

11 IoT n Enc( pk, m ; r ) 11

12 n S R (1) M S, M R (2) l 1. Good 2. Bad n S, R, A l S R l m M S M R 12

13 m 0, m 1 3. b ß R {0,1} 2. (m 0, m 1, st) ß A 1 (pk) m b c pk 5. b ß A 2 (st, c) 4. c ß Enc pk (m b ; r S ) pk c 1. (pk, sk) ß Gen(1 k ; r R ) 13

14 m 0, m 1 4. b ß {0,1} 3. (m 0, m 1, st) ß A 1 (pk) m b 6. G / B r S ß {0,1} k (if G) r S = 0 k (if B) 7. c ß Enc pk (m b ; r S ) c 5. m b ( m b M R? ) pk c pk 8. b ß A 2 (st, c) 1. G / B r R ß {0,1} k (if G) r R = 0 k (if B) 2. (pk, sk) ß Gen(1 k ; r R ) 14

15 n l Gen l Enc l m b n Gen, Enc G/B n Out = (Win, Val S, Val R, Num S, Num R ) l Win {0,1}, Win = 1 ó b = b l Val w {0,1}, Val w = 1 ó m M w l Num w : w {S, R} Good 15

16 n Out = (Win, Val S, Val R, Num S, Num R ) u w (Out) = u w sec ( Win) Val w + ( c w rand ) Num w l u sec w, c rand w > 0 l u sec w /2 > q w c rand w q w : Num w l Good u w sec /2 n (σ S, σ R ) U w (σ S, σ R ) = min E[u w (Out)] l min, M S, M R 16

17 n R m M R R l R S n 3 Π 3 l l Good Good l l Good 17

18 3 Π 3 (pk S, sk S ) ß Gen(1 k ; r 1S ) pk R pk S (pk R, sk R ) ß Gen(1 k ; r 1R ) r 2R ß Dec(sk S, c 1 ) c 1 r 2S ß R U r = r R 2 r 2S (= r L r R ) c 2, c 3 c 2 ß Enc(pk R, r 2S ; r 3S ) r 2R ß R U c 1 ß Enc(pk S, r 2R ; r 3R ) r 2S ß Dec(sk R, c 2 ) r = r R 2 r 2S (= r L r R ) c 3 ß Enc(pk R, m; r L ) m ß Dec(sk R, c 3 ) c 4 c 4 ß Enc(pk S, m; r R ) 18

19 Π 3 1 (1) Π 3 m M S M R (2) Π 3 n (1) (2) (3) (4) S R S R Good Good Good - Good Good - Good - Bad - - x Bad x l (1), (2) l (3) m M R \ M S c 2, c 3 l (4) m M S \ M R c 4 19

20 n l l n A \ B ( -1, -1 ) ( -10, 0 ) ( 0, -10 ) ( -3, -3 ) 20

21 n n δ (0,1) : u w (Out) = ( c w rand ) Num w Gen + i=1,2, δ i-1 u w [i] u w [i] = u w sec ( Win) Val w i + ( c w rand ) Num w i U w (σ S, σ R ) = min E[u w (Out)] 21

22 n 2 Π 2 Repeat l Π 3 : Enc S R Good l S, R Good à l Good Bad Bad l Bad 22

23 2 Π 2 Repeat S (pk S, sk S ) ß Gen(1 k ; r 1S ) pk R pk S R (pk R, sk R ) ß Gen(1 k ; r 1R ) r 2R ß Dec(sk S, c 1 ) r 2S ß R U r = r 2R r S 2 c 2 ß Enc(pk R, r 2S ; r 3S ) c 3 ß m r c 1 c 2, c 3 r 2R ß R U c 1 ß Enc(pk S, r 2R ; r 3R ) r 2S ß Dec(sk R, c 2 ) r = r 2R r S 2 m ß c 3 r 23

24 2 Π 2 Repeat 2 (a) Pr[ m M S ] > c Enc S / (δ u Sec S ) (b) Pr[ m M R ] > c Enc R / (δ u Sec R ) (1) Π Repeat 2 m M S M R (2) Π Repeat 2 c Enc S : S Good u Sec S : S δ :, c Enc R, u Sec R 24

25 n n 2 l (1) (2) n 25

26 n l Ω =, l P l Q l S P = 0.6 P = 0.4 Q = S(Q, ω) Brier S 8 Q, ω = 2Q ω - Q(ω ) < 1 ω P / > 1 = - T ω Q(ω ) < /C 1 Q P - P ω S(P, ω) > - P ω S(Q, ω) / 1 / 1 P Q T ω 1 if ωc = ω 0 otherwise 26

27 n f f f(x) x f(x) n è << f(x) 27

28 [Azar, Micali (2013), Guo (2014)] n R(T, x) f T x f(x) n è 28

29 x n t l g x 1 x M + + x P t 0 x M + + x P < t n t C = {i: x Y = 1} r {1,2,, n} l Q l x T è P Pr P = 1 = {Y:[ \]M} P l Q = P à l O(log n) g x M x < x P = S 8 Q, x T Q 0,1 Pr Q = 1 = t n t t 1, 0 29

30 Guo (2014) y M = f(x) g M d g < g f y < y f y M = f(x) g < y < g i g f y f x M x < x Y x YbM x PcM x P x {0,1} P d, S f O( d polylog(s) ) 30

31 Guo [IY17] n l l t < n/2 à 1 t n/2 à 0 n l l polylog(n) 3 l 31

32 n n l d, S f O( d polylog(s) ) n n 32

33 [HTYY17] Higo, Tanaka, Yamada, Yasunaga. Game-theoretic security for two-party protocols. Cryptology eprint Archive: 2016/1072

34 ?? A B?? n n 34

35 A B x?? A B?? y n n n l x, y, output( (A(x), B(y)) ) = ( 1( x > y ), 1( x > y ) ) B A A A l x 0, x 1, y s.t. 1( x 0 > y ) = 1( x 1 > y ), PPT B*, D B, Pr[ D B ( view B* ( A(x a ), B*(y) ) ) = 1 ] 1/2 a R {0,1} A B B B l x, y 0, y 1 s.t. 1( x > y 0 ) = 1( x > y 1 ), PPT A*, D A, Pr[ D A ( view A* ( A*(x), B(y b ) ) ) = 1 ] 1/2 b R {0,1} 35

36 n l x 0, x 1, y 0, y 1 s.t. 1( x 0 > y 0 ) = 1( x 1 > y 0 ) = 1( x 0 > y 1 ) = 1( x 1 > x 1 ) l a, b {0,1} (x a, y b ) D A b D B a l (suc A, suc B, guess A, guess B ) l l l l suc A = 1 ó A 1( x a > y b ) or suc B = 1 ó B 1( x a > y b ) or guess A = 1 ó D A b guess B = 1 ó D B a 36

37 n l A (1) 1( x a > y b ) (2) B y b (3) x a B l B l u A ( (A, D A ), (B, D B ) ) = suc A + guess A guess B l u B ( (A, D A ), (B, D B ) ) = suc B + guess B guess A 37

38 3 (A, B) ó (A, B) ó PPT A*, D A, D B, x 0, x 1, y 0, y 1 E[ u A ( (A*, D A ), (B, D B ) ) ] E[ u A ( (A, D A ), (B, D B ) ) ] PPT B*, D A, D B, x 0, x 1, y 0, y 1 E[ u B ( (A, D A ), (B*, D B ) ) ] E[ u B ( (A, D A ), (B, D B ) ) ] (A, B) ó A*, E[ u A ( A*, B ) ] E[ u A ( A, B ) ] B*, E[ u B ( A, B* ) ] E[ u B ( A, B ) ] 38

39 n à l l u A A à A* l l l suc A (A, B) guess A A or A* à B guess B B or B* à A l u B n à l D A = D B = D rand A à A abort u A l B A D B D A = D rand A à A abort u A l B* B A B*, D B D A = D rand B B* abort u B l B 39

40 (A, B) ó PPT A*, D A, D B, x 0, x 1, y 0, y 1 s.t. E[ u A ( (A*, D A ), (B, D B ) ) ] > E[ u A ( (A, D A ), (B, D B ) ) ] PPT B*, D A, D B, x 0, x 1, y 0, y 1 s.t. E[ u B ( (A, D A ), (B*, D B ) ) ] > E[ u B ( (A, D A ), (B, D B ) ) ] n A D B è D B B n D A, D B è D rand 40

41 (A, B) ó PPT A*, D A, x 0, x 1, y 0, y 1 s.t. PPT D B E[ u A ( (A*, D A ), (B, D B ) ) ] > E[ u A ( (A, D rand ), (B, D B ) ) ] PPT B*, D B, x 0, x 1, y 0, y 1 s.t. PPT D A E[ u B ( (A, D A ), (B*, D B ) ) ] > E[ u B ( (A, D A ), (B, D rand ) ) ] (A, B) D B ó PPT A*, D A, x 0, x 1, y 0, y 1 PPT D B s.t. E[ u A ( (A*, D A ), (B, D B ) ) ] E[ u A ( (A, D rand ), (B, D B ) ) ] PPT B*, D B, x 0, x 1, y 0, y 1 PPT D A s.t. E[ u B ( (A, D A ), (B*, D B ) ) ] E[ u B ( (A, D A ), (B, D rand ) ) ] 41

42 (A, B) ó PPT A*, D A, x 0, x 1, y 0, y 1 PPT D B s.t. E[ u A ( (A*, D A ), (B, D B ) ) ] E[ u A ( (A, D rand ), (B, D B ) ) ] PPT B*, D B, x 0, x 1, y 0, y 1 PPT D A s.t. E[ u B ( (A, D A ), (B*, D B ) ) ] E[ u B ( (A, D A ), (B, D rand ) ) ] n n A D B à a {0,1} 42

43 n n n n l x, y, output( (A(x), B(y)) ) = ( 1( x > y ), 1( x > y ) ) B A l x 0, x 1, y, PPT D B, Pr[ D B ( view B ( A(x a ), B(y) ) ) = 1 ] 1/2, a R {0,1} B A l x 0, x 1, y 0, y 1, PPT B*, D B s.t. (1) PPT D A, Pr[ D A (view A (A(x a ), B*(y b ))) = 1 ] 1/2 (2) Pr[ output((a(x a ), B(x b )) = ( 1( x > y ), 1( x > y ) ) abort] = Pr[ output(a(x a ), B*(x b )) = ( 1( x > y ), 1( x > y ) ) abort] Pr[ D B ( view B* ( A(x a ), B*(y b ) ) ) = 1 ] 1/2 vs A B b B* n A B 43

44 4 (A, B) (A, B) n l A à A abort D B u A l B A D B (B, D rand ) à (B, D B ) D A u B l B A B*, D B (B, D rand ) à (B*, D B ) D A u B l B 44

45 n n l n l l l 45

46 n l l l à à l l à n l l 46

/ ( ) 1 1.1 323 206 23 ( 23 529 529 323 206 ) 23 1.2 33 1.3 323 61 61 3721 3721 323 168 168 323 23 61 61 23 1403 323 111 111 168 206 323 47 111 323 47 2 23 2 2.1 34 2 2.2 2 a, b N a b N a b (mod N) mod

More information

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n . X {x, x 2, x 3,... x n } X X {, 2, 3, 4, 5, 6} X x i P i. 0 P i 2. n P i = 3. P (i ω) = i ω P i P 3 {x, x 2, x 3,... x n } ω P i = 6 X f(x) f(x) X n n f(x i )P i n x n i P i X n 2 G(k) e ikx = (ik) n

More information

untitled

untitled š ( ) 200,000 100,000 180,000 60,000 100,000 60,000 120,000 100,000 240,000 120,000 120,000 240,000 100,000 120,000 72,000 300,000 72,000 100,000 100,000 60,000 120,000 60,000 100,000 100,000 60,000 200,000

More information

…_…C…L…fi…J…o†[fiü“ePDF/−mflF™ƒ

…_…C…L…fi…J…o†[fiü“ePDF/−mflF™ƒ 80 80 80 3 3 5 8 10 12 14 14 17 22 24 27 33 35 35 37 38 41 43 46 47 50 50 52 54 56 56 59 62 65 67 71 74 74 76 80 83 83 84 87 91 91 92 95 96 98 98 101 104 107 107 109 110 111 111 113 115

More information

untitled

untitled š ( œ ) 4,000,000 52. 9.30 j 19,373,160 13. 4. 1 j 1,400,000 15. 9.24 i 2,000,000 20. 4. 1 22. 5.31 18,914,932 6,667,668 12,247,264 13,835,519 565,000 565,000 11,677,790 11,449,790 228,000 4,474 4,474

More information

untitled

untitled Ÿ Ÿ ( œ ) 120,000 60,000 120,000 120,000 80,000 72,000 100,000 180,000 60,000 100,000 60,000 120,000 100,000 240,000 120,000 240,000 1,150,000 100,000 120,000 72,000 300,000 72,000 100,000 100,000 60,000

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

untitled

untitled yoshi@image.med.osaka-u.ac.jp http://www.image.med.osaka-u.ac.jp/member/yoshi/ II Excel, Mathematica Mathematica Osaka Electro-Communication University (2007 Apr) 09849-31503-64015-30704-18799-390 http://www.image.med.osaka-u.ac.jp/member/yoshi/

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

PR

PR 1-4 29 1-13 41 1-23 43 1-39 29 PR 1-42 28 1-46 52 1-49 47 1-51 40 1-64 52 1-66 58 1-72 28 1-74 48 1-81 29 1-93 27 1-95 30 1-97 39 1-98 40 1-100 34 2-1 41 2-5 47 2-105 38 2-108 44 2-110 55 2-111 44 2-114

More information

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law I (Radom Walks ad Percolatios) 3 4 7 ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.) (Basic of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................

More information

報告書

報告書 1 2 3 4 5 6 7 or 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 2.65 2.45 2.31 2.30 2.29 1.95 1.79 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 60 55 60 75 25 23 6064 65 60 1015

More information

( š ) œ 525, , , , ,000 85, , ,810 70,294 4,542,050 18,804,052 () 178,710 1,385, , ,792 72,547 80,366

( š ) œ 525, , , , ,000 85, , ,810 70,294 4,542,050 18,804,052 () 178,710 1,385, , ,792 72,547 80,366 ( š ) 557,319,095 2,606,960 31,296,746,858 7,615,089,278 2,093,641,212 6,544,698,759 936,080 3,164,967,811 20. 3.28 178,639,037 48,288,439 170,045,571 123,059,601 46,985,970 55,580,709 56,883,178 19. 4.20

More information

š ( š ) ,148,770 3,147,082 1, ,260 1,688 1,688 10,850 10, , ,

š ( š ) ,148,770 3,147,082 1, ,260 1,688 1,688 10,850 10, , , š ( š ) 60,000 240,000 120,000 60,000 120,000 360,000 72,000 1,128,000 56,380,000 14. 2.20 35,492,337 17,401,486 18,090,851 32,141,906 11,070,000 3,570,000 7,500,000 7,020,000 7,020,000 851 851 9,778,644

More information

š ( š ) 2,973,655 3,774,545 4,719,254 1,594,319 3,011,432 1,517,982 1,493, ,503 2,591, , , , , ,000 f21 500,000 24

š ( š ) 2,973,655 3,774,545 4,719,254 1,594,319 3,011,432 1,517,982 1,493, ,503 2,591, , , , , ,000 f21 500,000 24 š ( š ) 812,488 8,633,171 390,374,410 324,279,452 9,953,269 17,329,976 2,944,796 2,944,796 6,866,917 341,279,452 12,000,000 12,000,000 2,000,000 2,000,000 1,000,000 1,000,000 500,000 600,000 I 1,000,000

More information

( ) œ ,475, ,037 4,230,000 4,224,310 4,230,000 4,230,000 3,362,580 2,300, , , , , , ,730 64,250 74

( ) œ ,475, ,037 4,230,000 4,224,310 4,230,000 4,230,000 3,362,580 2,300, , , , , , ,730 64,250 74 Ÿ ( ) œ 1,000,000 120,000 1,000,000 1,000,000 120,000 108,000 60,000 120,000 120,000 60,000 240,000 120,000 390,000 1,000,000 56,380,000 15. 2.13 36,350,605 3,350,431 33,000,174 20,847,460 6,910,000 2,910,000

More information

untitled

untitled 24 591324 25 0101 0002 0101 0005 0101 0009 0101 0012 0101 0013 0101 0015 0101 0029 0101 0031 0101 0036 0101 0040 0101 0041 0101 0053 0101 0055 0101 0061 0101 0062 0101 0004 0101 0006 0101 0008 0101 0012

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

( ) g 900,000 2,000,000 5,000,000 2,200,000 1,000,000 1,500, ,000 2,500,000 1,000, , , , , , ,000 2,000,000

( ) g 900,000 2,000,000 5,000,000 2,200,000 1,000,000 1,500, ,000 2,500,000 1,000, , , , , , ,000 2,000,000 ( ) 73 10,905,238 3,853,235 295,309 1,415,972 5,340,722 2,390,603 890,603 1,500,000 1,000,000 300,000 1,500,000 49 19. 3. 1 17,172,842 3,917,488 13,255,354 10,760,078 (550) 555,000 600,000 600,000 12,100,000

More information

官報(号外第196号)

官報(号外第196号) ( ) ( ) š J lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll ¾ 12 13. 3.30 23,850,358,060 7,943,090,274 15,907,267,786 17,481,184,592 (354,006) 1,120,988,000 4,350,000 100,000 930,000 3,320,000

More information

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y 5 5. 2 D xy D (x, y z = f(x, y f D (2 (x, y, z f R 2 5.. z = x 2 y 2 {(x, y; x 2 +y 2 } x 2 +y 2 +z 2 = z 5.2. (x, y R 2 z = x 2 y + 3 (2,,, (, 3,, 3 (,, 5.3 (. (3 ( (a, b, c A : (x, y, z P : (x, y, x

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

š ( š ) (6) 11,310, (3) 34,146, (2) 3,284, (1) 1,583, (1) 6,924, (1) 1,549, (3) 15,2

š ( š ) (6) 11,310, (3) 34,146, (2) 3,284, (1) 1,583, (1) 6,924, (1) 1,549, (3) 15,2 š ( š ) ( ) J lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll ¾ 13 14. 3.29 23,586,164,307 6,369,173,468 17,216,990,839 17,557,554,780 (352,062) 1,095,615,450 11,297,761,775 8,547,169,269

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

FR-N9TX(Co)(SN ).indd

FR-N9TX(Co)(SN ).indd FR-N9TX X-N9TX X-N7TX 3 4 5 6 7 8 = 9 3 4 5 6 7 8 FR-N9TX 9 0! @ # $ %^&*( ) fi 0 3 4 5 å 6 7 Ωƒ 8 9 0! " # $ % & ' ( ) * Ωƒ fi å 3 4 5 6 7 8 9 0! L 0-4 -0-0 -40 - db R MUTING S.BASS AUTO TIMER 3 4 SLEEP

More information

( ) (, ) ( )

( ) (, ) ( ) ( ) (, ) ( ) 1 2 2 2 2.1......................... 2 2.2.............................. 3 2.3............................... 4 2.4.............................. 5 2.5.............................. 6 2.6..........................

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

Ÿ ( Ÿ ) Ÿ šœš 100,000 10,000,000 10,000,000 3,250,000 1,000,000 24,350,000 5,000,000 2,500,000 1,200,000 1,000,000 2,960,000 7,000,000 1,500,000 2,200

Ÿ ( Ÿ ) Ÿ šœš 100,000 10,000,000 10,000,000 3,250,000 1,000,000 24,350,000 5,000,000 2,500,000 1,200,000 1,000,000 2,960,000 7,000,000 1,500,000 2,200 šœ Ÿ ( Ÿ ) Ÿ 3,658,819,708 612,940,933 1,441,054,976 1,536,693,282 369,033,491 1,167,659,791 68,105,057 25,460 7,803,540,263 1,713,934,550 541,531,413 702,848,302 11,827 1,552,629,488 23,421,737,374 2,572,144,704

More information

lecture

lecture 5 3 3. 9. 4. x, x. 4, f(x, ) :=x x + =4,x,.. 4 (, 3) (, 5) (3, 5), (4, 9) 95 9 (g) 4 6 8 (cm).9 3.8 6. 8. 9.9 Phsics 85 8 75 7 65 7 75 8 85 9 95 Mathematics = ax + b 6 3 (, 3) 3 ( a + b). f(a, b) ={3 (a

More information

untitled

untitled ( œ ) œ 2,000,000 20. 4. 1 25. 3.27 44,886,350 39,933,174 4,953,176 9,393,543 4,953,012 153,012 4,800,000 164 164 4,001,324 2,899,583 254,074 847,667 5,392,219 584,884 7,335 4,800,000 153,012 4,800,000

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

A S-   hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A % A S- http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html r A S- 3.4.5. 9 phone: 9-8-444, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office

More information

橡00扉.PDF

橡00扉.PDF SQ2.1 SQ2.2 ( ) 19971998 1981-97

More information

Ÿ Ÿ ( ) Ÿ , , , , , , ,000 39,120 31,050 30,000 1,050 52,649, ,932,131 16,182,115 94,75

Ÿ Ÿ ( ) Ÿ , , , , , , ,000 39,120 31,050 30,000 1,050 52,649, ,932,131 16,182,115 94,75 Ÿ ( ) Ÿ 100,000 200,000 60,000 60,000 600,000 100,000 120,000 60,000 120,000 60,000 120,000 120,000 120,000 120,000 120,000 1,200,000 240,000 60,000 60,000 240,000 60,000 120,000 60,000 300,000 120,000

More information

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A

A, B, C. (1) A = A. (2) A = B B = A. (3) A = B, B = C A = C. A = B. (3)., f : A B g : B C. g f : A C, A = C. 7.1, A, B,. A = B, A, A A., A, A 91 7,.,, ( ).,,.,.,. 7.1 A B, A B, A = B. 1), 1,.,. 7.1 A, B, 3. (i) A B. (ii) f : A B. (iii) A B. (i) (ii)., 6.9, (ii) (iii).,,,. 1), Ā = B.. A, Ā, Ā,. 92 7 7.2 A, B, C. (1) A = A. (2) A = B B = A. (3)

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

untitled

untitled 23 59 13 23 24 0101 0001 0101 0002 0101 0001 0101 0002 0101 0007 0101 0009 0101 0012 0101 0026 0101 0031 0101 0033 0101 0056 0101 0059 0101 0075 0101 0076 0101 5001 0101 0002 0101 0003 0101 0008 0101 0010

More information

1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 5 3. 4. 5. A0 (1) A, B A B f K K A ϕ 1, ϕ 2 f ϕ 1 = f ϕ 2 ϕ 1 = ϕ 2 (2) N A 1, A 2, A 3,... N A n X N n X N, A n N n=1 1 A1 d (d 2) A (, k A k = O), A O. f

More information

13 0 1 1 4 11 4 12 5 13 6 2 10 21 10 22 14 3 20 31 20 32 25 33 28 4 31 41 32 42 34 43 38 5 41 51 41 52 43 53 54 6 57 61 57 62 60 70 0 Gauss a, b, c x, y f(x, y) = ax 2 + bxy + cy 2 = x y a b/2 b/2 c x

More information

FR-N9X/X-N9/N7( Co)(SN )

FR-N9X/X-N9/N7( Co)(SN ) FR-N9X X-N9X X-N7X 06.3.3, 3:50 PM 06.3.3, 3:5 PM 3 3 06.3.0, 3:4 PM 4 4 06.3.0, 3:43 PM 5 5 06.3.3, :0 PM 6 6 06.3.0, 3:43 PM 7 7 06.3.3, :0 PM 8 8 06.3.0, 3:43 PM ± 9 9 06.3.0, 3:43 PM 3 4 5 6 7 8 9

More information

1 270 1 2 15cm 3 2m 2

1 270 1 2 15cm 3 2m 2 NPO...2...2...2...2...2...3...3...3...7...10 2...11 3...12...12...12...13...13...13...14...15...15...15...16...16 1 1 270 1 2 15cm 3 2m 2 4 5 1 1 6 1 1 1 13 14 7 1 10 1 2 8 1 9 1 3 10 11 5 12 13 26 4 1

More information

yy yy ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ;;; ; ; ; ;; ;; ;; ;;; ;;; ;;; ;; ;; ;; ;; ;; ; ; ; ; ; ; ;

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

ii

ii ii iii 1 1 1.1..................................... 1 1.2................................... 3 1.3........................... 4 2 9 2.1.................................. 9 2.2...............................

More information

FX ) 2

FX ) 2 (FX) 1 1 2009 12 12 13 2009 1 FX ) 2 1 (FX) 2 1 2 1 2 3 2010 8 FX 1998 1 FX FX 4 1 1 (FX) () () 1998 4 1 100 120 1 100 120 120 100 20 FX 100 100 100 1 100 100 100 1 100 1 100 100 1 100 101 101 100 100

More information

弾性論(Chen)

弾性論(Chen) Phase-field by T.Koyama Phase-field da da a( ) a + { } a d + d δ (-) δ (-) eigen a a a ε ε δ δ (-) da ε (-4) a d ε ε + δε ( ) (-5) δε d (-6) V u ul δεl + l (-7) eigen el ε ε ε (-8) σ el C ε el C { ε ε

More information

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ II p = mv p x > h/4π λ = h p m v Ψ 2 Ψ Ψ Ψ 2 0 x P'(x) m d 2 x = mω 2 x = kx = F(x) dt 2 x = cos(ωt + φ) mω 2 = k ω = m k v = dx = -ωsin(ωt + φ) dt = d 2 x dt 2 0 y v θ P(x,y) θ = ωt + φ ν = ω [Hz] 2π

More information

13 13 13 13 M 1000 1001 1002 1003 1004 1005 12 54 67 12 133 5 14 1006 12 71 72 43 186 5 14 1007 1 1008 35-62-1 C 35--62-31 C 35-62-2 B 35-62-32 C 35-62-3 A 35-62-33 C 35-62-4 B 35-62-34 C 35-62-5 C 35-62-35

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0,

1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition) A = {x; P (x)} P (x) x x a A a A Remark. (i) {2, 0, 0, 2005 4 1 1 2 2 6 3 8 4 11 5 14 6 18 7 20 8 22 9 24 10 26 11 27 http://matcmadison.edu/alehnen/weblogic/logset.htm 1 1 = = = (set) (element) a A a A a A a A a A {2, 5, (0, 1)}, [ 1, 1] = {x; 1 x 1}. (proposition)

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

2

2 1 2 2005 15 17 21 22 24 25 67 95 3 1 2 3 4 17 4 5 6 7 8 9 PR PR PR 10 11 12 PR 419 844 1,490 950 590 20 12 50 13 12/20 2/28 3/30 14 17 349 666 15 59 6 11 15 17 14 15 15 17 3,525,992 15 59 15 17 18 910

More information

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3

> > <., vs. > x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D > 0 x (2) D = 0 x (3 13 2 13.0 2 ( ) ( ) 2 13.1 ( ) ax 2 + bx + c > 0 ( a, b, c ) ( ) 275 > > 2 2 13.3 x 2 x y = ax 2 + bx + c y = 0 2 ax 2 + bx + c = 0 y = 0 x ( x ) y = ax 2 + bx + c D = b 2 4ac (1) D >

More information

TOP URL 1

TOP URL   1 TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7

More information

untitled

untitled ( ) c a sin b c b c a cos a c b c a tan b a b cos sin a c b c a ccos b csin (4) Ma k Mg a (Gal) g(98gal) (Gal) a max (K-E) kh Zck.85.6. 4 Ma g a k a g k D τ f c + σ tanφ σ 3 3 /A τ f3 S S τ A σ /A σ /A

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

= hυ = h c λ υ λ (ev) = 1240 λ W=NE = Nhc λ W= N 2 10-16 λ / / Φe = dqe dt J/s Φ = km Φe(λ)v(λ)dλ THBV3_0101JA Qe = Φedt (W s) Q = Φdt lm s Ee = dφe ds E = dφ ds Φ Φ THBV3_0102JA Me = dφe ds M = dφ ds

More information

( ) ー ( () ) 250 200 150 100 50 0 51 20 54 59 33 35 91 92 93 98 99 94 6 7 7 8 9 11 18 17 18 20 22 23 10 9 8 9 9 9 62 40 66 74 41 47 21 22 23 24 25 26 10 8 6 4 2 0 m3/s 7 41.3 5 5 18.4

More information

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1, 17 ( ) 17 5 1 4 II III A B C(1 ) 1,, 6, 7 II A B (1 ), 5, 6 II A B (8 ) 8 1 I II III A B C(8 ) 1 a 1 1 a n+1 a n + n + 1 (n 1,,, ) {a n+1 n } (1) a 4 () a n OA OB AOB 6 OAB AB : 1 P OB Q OP AQ R (1) PQ

More information

Microsoft Word - .....J.^...O.|Word.i10...j.doc

Microsoft Word - .....J.^...O.|Word.i10...j.doc P 1. 2. R H C H, etc. R' n R' R C R'' R R H R R' R C C R R C R' R C R' R C C R 1-1 1-2 3. 1-3 1-4 4. 5. 1-5 5. 1-6 6. 10 1-7 7. 1-8 8. 2-1 2-2 2-3 9. 2-4 2-5 2-6 2-7 10. 2-8 10. 2-9 10. 2-10 10. 11. C

More information

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論 email: takahash@sci.u-hyogo.ac.jp May 14, 2009 Outline 1. 2. 3. 4. 5. 6. 2 / 262 Today s Lecture: Mode-mode Coupling Theory 100 / 262 Part I Effects of Non-linear Mode-Mode Coupling Effects of Non-linear

More information

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x

I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ) modular symbol., notation. H = { z = x I. (CREMONA ) : Cremona [C],., modular form f E f. 1., modular X H 1 (X, Q). modular symbol M-symbol, ( ). 1.1. modular symbol., notation. H = z = x iy C y > 0, cusp H = H Q., Γ = PSL 2 (Z), G Γ [Γ : G]

More information

phs.dvi

phs.dvi 483F 3 6.........3... 6.4... 7 7.... 7.... 9.5 N (... 3.6 N (... 5.7... 5 3 6 3.... 6 3.... 7 3.3... 9 3.4... 3 4 7 4.... 7 4.... 9 4.3... 3 4.4... 34 4.4.... 34 4.4.... 35 4.5... 38 4.6... 39 5 4 5....

More information

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H 199 1 1 199 1 1. Vx) m e V cos x π x π Vx) = x < π, x > π V i) x = Vx) V 1 x /)) n n d f dξ ξ d f dξ + n f = H n ξ) ii) H n ξ) = 1) n expξ ) dn dξ n exp ξ )) H n ξ)h m ξ) exp ξ )dξ = π n n!δ n,m x = Vx)

More information

untitled

untitled œ ( œ ) œ 847,120 2,343,446 2,343,446 45,242 25. 5.17 6,472,966 6,472,966 6,472,966 972,332 972,332 5,500,000 5,500,000 634 634 2,053,480 1,423,820 27,053 79,255 523,352 4,419,486 95,352 4,300,204 4,300,204

More information

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n Part2 47 Example 161 93 1 T a a 2 M 1 a 1 T a 2 a Point 1 T L L L T T L L T L L L T T L L T detm a 1 aa 2 a 1 2 + 1 > 0 11 T T x x M λ 12 y y x y λ 2 a + 1λ + a 2 2a + 2 0 13 D D a + 1 2 4a 2 2a + 2 a

More information

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi

(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,

More information

<5461726F2D3137944E8AEE967B95FB906A8DC58F492E6A7464>

<5461726F2D3137944E8AEE967B95FB906A8DC58F492E6A7464> 187 188 189 30 4 1 60 190 17 191 18 5 15 192 etc. 193 195 196 ( ) HP 197 198 199 200 201 202 203 , 1 -- NPO 204 205 43 11 40 207 m 208 m 209 4 210 211 213 214 215 216 217 218 219 220 1 221 233

More information

Chap10.dvi

Chap10.dvi =0. f = 2 +3 { 2 +3 0 2 f = 1 =0 { sin 0 3 f = 1 =0 2 sin 1 0 4 f = 0 =0 { 1 0 5 f = 0 =0 f 3 2 lim = lim 0 0 0 =0 =0. f 0 = 0. 2 =0. 3 4 f 1 lim 0 0 = lim 0 sin 2 cos 1 = lim 0 2 sin = lim =0 0 2 =0.

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

34号 目 次

34号 目 次 1932 35 1939 π 36 37 1937 12 28 1998 2002 1937 20 ª 1937 2004 1937 12 º 1937 38 11 Ω 1937 1943 1941 39 æ 1936 1936 1936 10 1938 25 35 40 2004 4800 40 ø 41 1936 17 1935 1936 1938 1937 15 2003 28 42 1857

More information

?

? 240-8501 79-2 Email: nakamoto@ynu.ac.jp 1 3 1.1...................................... 3 1.2?................................. 6 1.3..................................... 8 1.4.......................................

More information

数学Ⅱ演習(足助・09夏)

数学Ⅱ演習(足助・09夏) II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w

More information

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4

y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f() + f() + f(3) + f(4) () *4 Simpson H4 BioS. Simpson 3 3 0 x. β α (β α)3 (x α)(x β)dx = () * * x * * ɛ δ y = x 4 y = x 8 3 y = x 4 y = x 3. 4 f(x) = x y = f(x) 4 x =,, 3, 4, 5 5 f(x) f() = f() = 3 f(3) = 3 4 f(4) = 4 *3 S S = f()

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1

1/1 lim f(x, y) (x,y) (a,b) ( ) ( ) lim limf(x, y) lim lim f(x, y) x a y b y b x a ( ) ( ) xy x lim lim lim lim x y x y x + y y x x + y x x lim x x 1 1/5 ( ) Taylor ( 7.1) (x, y) f(x, y) f(x, y) x + y, xy, e x y,... 1 R {(x, y) x, y R} f(x, y) x y,xy e y log x,... R {(x, y, z) (x, y),z f(x, y)} R 3 z 1 (x + y ) z ax + by + c x 1 z ax + by + c y x +

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information