(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law
|
|
|
- みさえ しげまつ
- 8 years ago
- Views:
Transcription
1 I (Radom Walks ad Percolatios) ( -2 ) (Preface),.,,,...,,.,,,,.,.,,.,,. (,.)
2 (Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law of Large Numbers) (Radom Walks) 4 2. (Markov Chais) d (d-dimesioal Radom Walks) (Oe-dimesioal ati-symmetric Radom Walks) (Percolatios) /3 p H 2/ ( 2.2(iii))
3 (Basic of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F,P),, X,. (Ω, F,P) (probability space) Ω ( ω Ω ) F( 2 Ω ) Ω σ (σ-field); (2 Ω Ω ) (i) Ω F (ii) A F A c F (iii) A F ( =, 2,...) A F P = P (dω) (Ω, F) (probability measure), i.e., ; P : F [0, ]. (i) P (Ω) = (ii) A F ( =, 2,...) P ( A )= P (A )(σ ). (Ω, F,P),. (i) σ-., F σ- A, B, A F F, A B, A \ B, A B := (A \ B) (B \ A), A. lima = lim sup A := A, lima = lim if A := A F. N N N N (lim = if sup, lim = sup if.) (ii) P ( ) =0, A, B F; A B P (A) P (B) ( ). (iii) A k F (k =, 2,...,) P ( A k)= ( ) P (A k)( ). (iv) A F, A P A = lim P (A ). ( ) (v) A F, A P A = lim P (A ). ( ) (vi) A F ( ) P A P (A ). ( ) (vii) (Borel-Catelli ) A F ( ), P (A ) < P lim sup A = 0, i.e., ( ) P lim if Ac =. (Ω, F,P) X = X(ω) :Ω R {X a} := {ω Ω; X(ω) a} F ( a R). (radom variable). X k S = {a j } j, {X = a j } F ( j ). X k (Ω, F,P) (k =, 2,...,). {X k } (idepedet) P (X a,,x a )=P (X a ) P (X a ) ( a k R,k =,...,).
4 {X k } k N {X k } N. X k S = {a j } j, : P (X = b,,x = b )=P (X = b ) P (X = b ) (b k S, k =,...,). µ(a) =P (X A) X (distributio), F (x) =P (X x) X (distributio fuctio)..2, (Expectatios, Meas) X Z := Z {± }. X (expectatio, mea) EX = E[X] = XdP = X(ω)P (dω). () X 0 EX := P (X = )+ P (X = ). =0 (P (X = ) =0 P (X = ) =0. P (X = ) > 0 EX =.) (2) X X + := X 0, X := ( X) 0 ( X ± 0, X = X + X.) EX := EX + EX.,. EX = Z P (X = ), f : Z R, Ef(X) = f()p (X = ). (.) Z ;f()>0 ;f()<0 X, V (X) :=E[(X EX) 2 ]=E[X 2 ] E[X] 2.. (Chebichev ) p. a>0, P ( X a) E[ X p ] a p. [ ] P ( X a) =P ( X p a p ) p =. E X = P ( X = ) a Ω P ( X = ) a a P ( X = ) =ap ( X a)..2 X,...,X Z, E[Xk 2 ] < (k =,...,). X,...,X, E[X j X k ]=E[X j ]E[X k ](j k). 0(E[X k ]=0) ( ) 2 E X k = E[Xk 2 ]. [ ] () j k P (X j = m, X k = ) =P (X j = m)p (X k = ) E[X j X k ]= m, mp (X j = m, X k = ) = m, mp (X j = m)p (X k = ) =E[X j ]E[X k ]. ( ) 2 (2) X k = X j X k () j k E[X j X k ]=E[X j ]E[X k ]=0. X 2 k + j k 2
5 .3 (Weak Law of Large Numbers), /2.,..3 ( (Weak Law of Large Numbers)) X,X 2,... EX = m v := sup V (X ) < ɛ>0, ( ) ( ) lim P X k m ɛ =0, i.e., lim P X k m <ɛ =. [ ] {X } { X = X m} ( ). X k m = (X k m), X X m = 0, i.e., E[X ]=0 V (X )=E[X] 2, ( ) 2 E X k = E[Xk 2 ]= V (X k ) sup V (X )=v. ɛ>0, ( P ) X k ɛ = P ( ) X k ɛ E[( X k) 2 ] ɛ 2 2 v ɛ 2 2 v = ɛ 2 0 ( ).., P. ( lim ) X k = m =. X,X, ɛ>0, P ( X X ɛ) 0( ), X X i pr., X X. P (X X) =, X X, P -a.s., X X. (a.s. almost surely ).2, i.e., X X, P -a.s. X X i pr.. ( P (X X) = ( { P X X < } ) ( { = P X X } ) =0 k k k N N = k, lim P N ( N { X X k } ) = P k N N ( N N { X X k } ) =0 k, ε =/k, lim P ( X X /k) =0 m, N ; N,P( X X /k) < /m.) 3
6 2 (Radom Walks),,.,,. d, d. Z d ( j =(j,...,j d )) d (lattice). (X,P) d (simple radom walk),, 2d,. Y = X X ( ) {X 0,Y,Y 2,...}, {Y }, P (Y = k) =/(2d) ( k =), =0( k ). k =(k,...,k d ), k = k k2 d. {X 0,Y,Y 2,...}, k 0,k,...,k Z, P (X 0 = k 0,Y = k,...,y = k )=P(X 0 = k 0 )P (Y = k ) P(Y = k ). Z d {p k } k Z d (p k 0, p k =), (X,P), d. P (Y = k) =p k (,k Z d ). P j (X = k,...,x = k ):=P(X = k,...,x = k X 0 = j) P j (X,P j ) j d. 2. P (A B) :=P (A B)/P (B) P (B) > 0. A, B F P (A B) =P (A). 2. (Markov Chais),,.. 2. S,,.,,,.,.,,,,.. S, S (X,P)=(X (ω),p(dω)) ( =0,, 2,...) (Markov Chai) : 4
7 (M) [ ],j 0,j,...,j,k S, P (X + = k X 0 = j 0,X = j,...,x = j )=P (X + = k X = j ).. (M2) [ ],j,k S, P (X + = k X = j) =P (X = k X 0 = j).,. X 0 µ = {µ j }; µ j = P (X 0 = j) (iitial distributio),, j S, P (X 0 = j) = P P j, (X,P j ) j. ( P (X 0 = j) > 0, P j ( ) :=P ( X 0 = j),.) 2.2 P j ( ): P j (X = k,...,x = k ) := P (X = k,...,x = k X 0 = j) = P (X m+ = k,...,x m+ = k X m = j) (m 0). 0,j,k S, j,k = P (X = k X 0 = j), Q () =( j,k ) ( ) (-step trasitio probability (trasitio matrix)),, Q () Q =(q j,k ),, ( ). 2.. (i) j,k 0, k q() j,k =(j S), (ii), j 0,j,...,j S P (X 0 = j 0,X = j,...,x = j )=µ j0 q j0,j q j,j, (iii) m,, j,...,j m,k 0,k,...,k S P (X + = j,...,x +m = j m X 0 = k 0,X = k,...,x = k )=q k,j q j,j 2 q jm,j m. (iv) Q (0) = I := (δ jk )( ), Q () = Q ( ),, δ jk =(j = k), = 0 (j k). 2.2 µ = {µ j } X. P (X = k) = j S µ j j,k., j S (recurrece time): T j : T j = if{ ; X = j} (= if { } = ). j (recurret) j (trasiet) def P j (T j < ) =, def P j (T j < ) < 5
8 . j, T j, j (positive-recurret) def E j [T j ] <, j (ull-recurret) def E j [T j ]=, P j (T j < ) =. E j [T j ] T j P j, : E j [T j ]= mp j (T j = m)+ P j (T j = ). m= j (or,, ) (X ) (or,, ) {X } Q =(q j,k ) π = {π j } π (statioary distributio) def π k = j π jq j,k (k S), π (reversible distributio) def π k q k,j = π j q j,k (j, k S) (i) π,, X π. (ii) π, {X } :,j 0,...,j S, P (X 0 = j 0,...,X = j )=P(X 0 = j,...,x = j 0 ). {X } Q =(q j,k ) (irreducible) j, k,, j,k > 0.,,. (,,.), : 2.2 j, k S. (i) j : a) j,j =. =0 b) P j ({X } j )=. (ii) j : a) j,j <. =0 b) P j ({X } j )=0. (iii) {X },,,,,. (π j )[ k, j π jq j,k = π k ], π j =/E j [T j ] ( ). 6
9 (i), (ii) b), a), (iii). (iii). 2. O- {B k }, A, C, P (A B k)=p (A C) ( k ). P (A B k )=P(A C). O-2 m,, j,...,j m,k 0,k,...,k S P (X + = j,...,x +m = j m X 0 = k 0,X = k,...,x = k ) = P (X + = j,...,x +m = j m X = k ). 2. (i) j S P j ({X } j )=. (ii) j S P j ({X } j )=0..,,,., 0. m j T (m) j. P j (T (m) j T () j = T j, T (m) j = mi{ >T (m ) j ; X = j} (= if { } = ). < ) =P j (T j < ) m. s, t,, P j (T (m) j = s + t T (m ) j = s) =P j (T j = t) (, [ ]= P (X s+t = j, X s+u j ( u t )), {X u j} = k {X u S;k u j u = k u } {T (m ) j = s} {X,...,X s (= j)}, 2 O-, O-2.)., P j (T (m) j P j (T (m ) j = s, T (m) j P j (T (m) j < ) = P j (T (m ) j = = s + t) =P j (T (m ) j = s)p j (T j = t) s=m t= <T (m) j < ) P j (T (m ) j = P j (T (m ) j < )P j (T j < ) < ) =P j (T j < ) m. P j ({X } j ) = P j ( m P j (T j < ) =, 0. = s, T (m) j = s + t) {T (m) j < }) = lim m P j(t (m) j < ) = lim m P j(t j < ) m. [, ] 7
10 ,. j, k S, f (m) j,k := P j(t k = m) (m ) Q jk (s) := =0 j,k s ( s < ), F jk (s) := m= f (m) j,k s ( s ). { j,k } 0, {f (m) j,k } m (geeratig fuctios). F jk () = P j (T k < ). 2. j, k S, : j,k = m= f (m) j,k q m k,k ( ), Q jk (s) =δ jk + F jk (s)q kk (s) ( s < ). {T k = m} = {X m = k, X s k ( s m )} m= f (m) j,k q( m) k,k = = = P j (T k = m)p j (X = k X m = k) m= P j (T k = m)p j (X = k T k = m) m= P j (X = k, T k = m) m= = P j (X = k) = j,k. Q jk (s) = δ jk + = δ jk + j,k s f (m) j,k q( m) k,k s m= = δ jk + F jk (s)q kk (s). 2.2 j S =0 j,j =. Q jj (s)( F jj (s)) = ( s < ) F jj () = P j (T j < ) lim Q jj (s) = s =0 j,j s. : =0 j,j ( P j(t j < )) =. 8
11 2.6 j k j S =0 k,j < ( k S), k S; =0 k,j = j :. ( q() k,j = F kj() q() j,j.) 2.2 j j k [i.e., ; j,k > 0] P k(t j < ) =., i, j S P i (T j < ) =q i,j +. (, k S;k j q i,k P k (T j < ) P i (X = k, T j = ) =q i,k P k (T j = ) P i (T j < ) = P i (X = k, T j = ) k S.) i = j j, k ; q j,k > 0, P k (T j < ) =., k 2 ; q k,k 2 > 0, i.e, q (2) j,k 2 > 0, P k2 (T j < ) =., j,k > 0 (k,...,k ); q j,k q k,k 2 q k2,k 3 q k,k > 0, : j, j k =0 k,j =. j, k S j k k j j k. 2.3 j, k S; j k, j,, k.,,,. l, m 0; q (l) j,k > 0,q(m) k,j > 0. j, =0 q (l+m+) j,j q (l) j,k q() k,k q(m) k,j ( 0) Q jj (s) s l+m q (l) j,k q(m) k,j Q kk(s). lim Q jj (s) = s =0 j,j < k,k <, k. j, k. 9
12 . 2. Q jj (s)( F jj (s)) = F jj (s) =Q jj (s)/q jj(s) 2. j Q jj lim (s) s Q jj (s) 2 = F jj ( ) =E j[t j ] <.. Q kk (s) s l+m q (m) k,j q(l) j,k Q jj(s), Q jj (s) (l + m + )s l+m+ q (l+m+) =0 s l+m q (l) j,k q(m) k,j Q kk(s) Q kk (s) Q kk (s) 2 Q jj (s) s 3(l+m) (q (l) j,k )3 (q (m) k,j )3 Q jj (s) 2. j,j E k [T k ]=F kk( ) Q kk = lim (s) s Q kk (s) 2 < k. j, k. 2.8 k S E k [T k ]=F kk ( ) , 2.7 j, k S, q() j,k =. j, k S, q() j,k <., j, k S, q() j,k,. 2.2 d (d-dimesioal Radom Walks) (X,P) d., {p k } k Z d Z d, {X 0,X X 0,X 2 X,...}, P (X X = k) =p k (,k Z d ). ( p k =/(2d).), d. Q =(q j,k ) q j,k = p k j [,,, ] 2.9 (X,P) d. (i) X + X (X 0,X,...,X ), i.e., P (X + X = j, X 0 = k 0,X = k,...,x = k ) = P (X + X = j)p (X 0 = k 0,X = k,...,x = k ). k 0,k,...,k Z d, X + X X. (ii) P (X + = j X 0 = k 0,X = k,...,x = k )=P(X + = j X = k )=p j k. {X }, q j,k = p k j. 0
13 (iii). ( j k := j k + + j d k d j k, j = k.), Q =(q j,k )=(p k j ),,,., : 2.3 d (i) d =, 2 (i.e., E j [T j ]= P j (T j < )), (ii) d ( ), 0,0. q (2+) 0,0 =0, q (2) 0,0.. ( 2.2.) 2.4 d Q =(q j,k ) (i) d =, 2 q (2) 0,0 { / π (d =) /(π) (d =2) (ii) d =3 C q (2) 0,0 C 3/2. 2.4,, : (d =3 (3/π) 3 /4) q (2) 0,0 2 d d d/2 (π) d/2 ( ). a b ( ) def a /b ( ). 2.0 {a }, {b }, a b ( ) c,c 2 > 0; c b a c 2 b ( ).. [ (Stirlig s formula)]! 2π +/2 e ( ). 2.4 d =, : ( ) q (2) 2 0,0 = 2 2. d =2 q (2) 0,0 = j,k 0;j+k= (2)! (j!k!) = ( 2 ) j=0 ( ) k
14 , j=0 d =3 ( ) 2 = k ( ) 2. q (2) 0,0 = j,k,m 0;j+k+m= (2)! (j!k!m!) 2 6 2, 3 q (2) (2)! 0,0 c 3 6 2!. c = max j,k,m 0;j+k+m= (j!k!m!). c,,. c c3 +3/2 3/2 e (c>0 ). (), 3 (m!) 3 ( =3m) c (m!) 2 ((m + )!) ( =3m +) (m!) ((m + )!) 2 ( =3m +2) (2),, c,c 2 > 0 c +/2 e! c 2 +/2 e (2), (), d =3 ( ). [ ( 2.2).] d =, 2,. 2.5 d =, 2 Z d (i.e., E 0 [T 0 ]= ). 2.3 (i) α> α s Γ(α +) ( s) α+ (s ). (ii) α = s = log s. α> log(/s) s (s ) : α = log. 0 x α s x dx = ( log s ) α Γ(α +). 2
15 F 00 (s) =Q 00 (s)/q 00(s) 2, d =, q (2) 0,0 / π ( ), s Q 00 (s) =+ Q 00 (s) = s 2 q (2) 0,0 + 2s 2 q (2) 0,0 s 2 Γ(/2) π π ( s 2 ), /2 2s 2 2 Γ(3/2) π π ( s 2 ). 3/2 F 00(s) = Q 00(s) Q 00 (s) 2 2 πγ(3/2) Γ(/2) 2 s (s ). s 2 E 0 [T 0 ] = lim F s 00(s) =. d =2 q (2) 0,0 /(π) ( ), s Q 00(s) E 0 [T 0 ] = lim s 2 Q 00 (s) π log s 2, 2 πs( s 2 ) 2 π( s 2 ) [ π( s 2 ) ( log ) ] 2 s 2 =. 2.3 (Oe-dimesioal ati-symmetric Radom Walks) Z {X } p (0 <p<), p. p /2, {X = X (p) }. d, d, ( 0 ). q j,j+ = q 0, = p, q j,j = q 0, = p, j,k = ( ) +j k p ( j+k)/2 ( p) (+j k)/2 ( + j k 2Z) 2 0 ( + j k 2Z +) [ + l, m, = l + m. k j =?.] 3
16 q (2) 0,0 = ( ) 2 (p( p)) (4p( p)) π ( ) 2.4. p /2 4p( p) < : 2.4 {X = X (p) } (0 <p<,p /2)., :. ( P lim ) X =2p =. 2.5 p>/2 j, u j (s) :=F j0 (s) = m sm P j (T 0 = m) (0<s<) lim j u j(s) =0,,. u (s) = psu 2 (s)+( p)s u j (s) = psu j+ (s)+( p)su j (s) (j 2) ( ) j 4p( p)s F j0 (s) = 2 (0 <s<) 2ps ( ) j p P j (T 0 < ) = (j ) p. [ {X = j +}, {X = j }., P j (T 0 = m) =P j (T 0 = m X = j +)P j (X = j +)+P j (T 0 = m X = j )P j (X = j ), P j (T 0 = m X = j ) j 2 P j (T 0 = m ), j = P (T 0 = m X =0)=. ] 2.6 u j := P j (T 0 < ) j Z. p>/2 j, u j = P j (T 0 < ) =, j = 0 u 0 = pu +( p), P 0 (T 0 < ) =u 0 = 2( p) <. 4
17 3 (Percolatios) 3. Z 2, B 2 = {{x, y}; x, y Z 2, x y =} 2, bod.,, p (0 p ) ope, p closed. X b = X (p) b = X (p) b (ω) b B 2, X = {X b ; b B 2 }. P p. S = {b B 2 ; X b =}, O C O, (ope cluster). C O C O. p H : Hammersley (critical probability) θ(p) =P p ( C O = ), : p H = if{p [0, ]; θ(p) > 0}. p T : Temperley χ(p) =E p [ C O ]=, : P p ( C O = )+ P p ( C O = ) p T = if{p [0, ]; χ(p) = }. p H p T, p H = p T.. 3. Z 2, p H, p T, p H = p T = /2, p c. p>p c,, p p c. 3.. Z d (d 3), p c =/2., /3 p H 2/3. θ(p) =P p ( C O = ) p., p,. 3. p H p T.,,,,.,. Ω=Ξ:={0, } B2 ω = ω(b); B 2 {0, }, (0 ) Ω ; (cylider set) A i,...,i b,...,b = {ω; ω(b )=i,...,ω(b )=i } (b k B 2,i k = 0 or,k =,...,) 5
18 C. F = B(Ξ) := σ(c) (C σ-field, C σ-field). B(Ξ) = {G 2 Ω ; G C σ-field}. P = P p cylider set, P p (A i,,i b,...,b )=p i+ +i ( p) ( i)+ +( i). (.), b B 2 (Ω b, F b,p b,p ) Ω b = {ω(b) =,ω(b) =0}, F b =2 Ω b, P b,p (ω(b) = ) = p,. X b = X (p) b X b (ω) =ω(b). X b P p (X b =)= P p (ω(b) = ) = p, X = {X b ; b B 2 } P p. X(ω) =ω. (.) θ(p) =P p ( C O = ) p. θ (p) :=P p ( C O ) θ(p) = lim θ (p) θ (p). b B 2, Z b Z b (ω) [0, ], {Z b }. Q Q(Z b p) =p = P p (X b =). S(p) ={b B 2 ; Z b p}, O C O (p), p θ (p) =P p ( C O ) =Q( C O (p) ) θ (p). 3.2 /3 p H 2/3 p H,. Peierls. 3.2 Hammersley p H /3 p H 2/3. = if{p [0, ]; θ(p) = P p ( C O = ) > 0},. γ = {x 0,b,x,b 2,...,b,x } (, path) (i) b = {x i,x i }, (ii) i j b i b j., γ = {b,...,b }. 3.2 [p H /3 ] p</3,θ(p) =0., γ ( ), P p (γ C O )=P p (X b =, b γ )=p. γ 4 3, P p ( γ C O ) 4 3 p (< if p</3). 6
19 C O = N, N; γ C O, p</3, Borel- Catelli θ(p) =P p ( C O = ) P p { γ C O } =0. N N p H /3. [p H 2/3 ] p>2/3,θ(p) > 0. Z 2 (Z 2 ) := {(m +/2,+/2); m, Z}. (Z 2 ) b (B 2 ) b B 2. X b := X b {X b ; b (B 2 ) } = {X b ; b B 2 }. N, V N := {(m, ) Z 2 ; m := max( m, ) N}, V N. p>2/3 N = N(p) S = {b B 2 ; X b =}, P p (S V N ) 2 (3). C O < C O (B 2 ) (closed path) γ. O V N, P p (S V N ) = P p (V N (B 2 ) γ ) P p (X b =0, b γ ) γ ; V N, γ = k V N k 4(2N +) = 8N +4 ( 8N), γ [0,k] {0} (, {(j +/2, /2); j k} ) γ, k 4 3 k. P p (S V N ) 4k 3 k ( p) k. p>2/3 N, 0 ( ). N = N(p) (3). (3) {X b ; b V N }, {X b ; b V N } ( P p {Xb =, b V N } {S V N } ) = P p (X b =, b V N )P p (S V N ) 2 P p(x b =, b V N )= p4n 2 > 0. 2 P p ( C O = ) ( ), p>2/3 θ(p) > 0,, p H 2/ [0 p</3,θ(p) =0 p H /3] [2/3 < p,θ(p) > 0 p H 2/3]. 3.3 p>2/3 k3 k ( p) k <. k k 8N 3.4 θ(p). Z b S(p) ={b B 2 ; Z b p}, θ(p + h) =P ( ) S(p + h), h 0 S(p + h) S(p), i.e., S(p + h) =S(p) ( ), θ(p + h) θ(p) (h 0). h>0, θ h (p) (p ), θ (p) θ(p) ( ). 3.5 f (x) [0, ] f f ( ) f(x) [0, ]. 7
20 4.,. 4. ( 2.2 (iii)) 4.. π =(π j ) π j =/E j [T j ] > 0,. i, j S, 2. Q ij (s) =δ ij + F ij (s)q jj (s) i j s lim( s)q jj (s) = lim s s F jj (s) = F jj ( ) = E j [T j ]. lim( s)q ij (s) = F ij() s E j [T j ]., 2.2 F ij () = P i (T j < ) = i, j S, lim( s)q ij (s) = s E j [T j ] (=: π j ). E j [T j ] < 0 <π j. j S ( s)q ij (s) = Fatou j S π j, k S, j S π j q j,k lim if s ( s)q ij (s)q j,k j S lim( s) s =0 s q (+) i,k = lim s ( s)s (Q ik (s) δ ik ) = π k, k π j q j,k = π k (k S) j S. π j ( s)q jk (s) =( s) j S =0 s j S π j j,k = π k. (4) s Lebesgue j π j π k = π k j π j =. π =(π j ). π =(π j ), (4) s π k = F jk () π j E k [T k ] + π k E k [T k ] E k [T k ] j k. k; π k > 0 E k [T k ] <,. k S E k [T k ] <, 2.2 F jk () = P j (T k < ) =( j, k S) 8
21 ,., π k =/E k [T k ] > 0(k S). π =(π j ). 4. Fubii j S( s)q ij (s) =. 4.2 Fatou Lebsgue ( (Strog Law of Large Numbers)) X,X 2,... EX = m sup V (X ) < ( ) lim X k = m, a.s., i.e., P lim (X k m) =0 =. sup E[X] 4 < X,X 2,.... Borel f,...,f 4.3. E[f (X ) f (X )] = E[f (X )] E[f (X )]. (f k 0, f k = Ak (A k ),.) [ sup E[X 4 ] < ] X X = X m m = 0, i.e., E[X ]=0 ( ) 4 X k 0 Hölder E[Y 2 ] (E[Y 4 ]) /2 ( ) 4 E X k = E[Xk]+ 4 i j, i,j ( ) 4 ( E ) 4 X k = 4 E X k P ( lim ) X k =0 = E[Xi 2 ]E[Xj 2 ] 2 sup E[Xk] 4 k 2 sup E[Xk] 4 < k [], ( ),
(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi
I (Basics of Probability Theory ad Radom Walks) 25 4 5 ( 4 ) (Preface),.,,,.,,,...,,.,.,,.,,. (,.) (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios,
(Basics of Proability Theory). (Probability Spacees ad Radom Variables,, (Ω, F, P ),, X,. (Ω, F, P ) (probability space) Ω ( ω Ω ) F ( 2 Ω ) Ω σ (σ-fi
II (Basics of Probability Theory ad Radom Walks) (Preface),.,,,.,,,...,,.,.,,.,,. (Basics of Proability Theory). (Probability Spacees ad Radom Variables...............2, (Expectatios, Meas).............................
II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3
II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )
(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t
6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]
³ÎΨÏÀ
2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
Part () () Γ Part ,
Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)
1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct
27 6 2 1 2 2 5 3 8 4 13 5 16 6 19 7 23 8 27 N Z = {, ±1, ±2,... }, R =, R + = [, + ), R = [, ], C =. a b = max{a, b}, a b = mi{a, b}, a a, a a. f : X R [a < f < b] = {x X; a < f(x) < b}. X [f] = [f ],
III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). T
III III 2010 PART I 1 Definition 1.1 (, σ-),,,, Borel( ),, (σ-) (M, F, µ), (R, B(R)), (C, B(C)) Borel Definition 1.2 (µ-a.e.), (in µ), (in L 1 (µ)). Theorem 1.3 (Lebesgue ) lim n f n = f µ-a.e. g L 1 (µ)
,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.
9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7
B [ 0.1 ] x > 0 x 6= 1 f(x) µ 1 1 xn 1 + sin sin x 1 x 1 f(x) := lim. n x n (1) lim inf f(x) (2) lim sup f(x) x 1 0 x 1 0 (
. 28 4 14 [.1 ] x > x 6= 1 f(x) µ 1 1 xn 1 + sin + 2 + sin x 1 x 1 f(x) := lim. 1 + x n (1) lim inf f(x) (2) lim sup f(x) x 1 x 1 (3) lim inf x 1+ f(x) (4) lim sup f(x) x 1+ [.2 ] [, 1] Ω æ x (1) (2) nx(1
S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt
S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............
() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (
3 n nc k+ k + 3 () n C r n C n r nc r C r + C r ( r n ) () n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (4) n C n n C + n C + n C + + n C n (5) k k n C k n C k (6) n C + nc
6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P
6 x x 6.1 t P P = P t P = I P P P 1 0 1 0,, 0 1 0 1 cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ x θ x θ P x P x, P ) = t P x)p ) = t x t P P ) = t x = x, ) 6.1) x = Figure 6.1 Px = x, P=, θ = θ P
..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A
.. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.
2016 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 1 16 2 1 () X O 3 (O1) X O, O (O2) O O (O3) O O O X (X, O) O X X (O1), (O2), (O3) (O2) (O3) n (O2) U 1,..., U n O U k O k=1 (O3) U λ O( λ Λ) λ Λ U λ O 0 X 0 (O2) n =
( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1
( )/2 http://www2.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html 1 2011 ( )/2 2 2011 4 1 2 1.1 1 2 1 2 3 4 5 1.1.1 sample space S S = {H, T } H T T H S = {(H, H), (H, T ), (T, H), (T, T )} (T, H) S
S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d
S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....
行列代数2010A
a ij i j 1) i +j i, j) ij ij 1 j a i1 a ij a i a 1 a j a ij 1) i +j 1,j 1,j +1 a i1,1 a i1,j 1 a i1,j +1 a i1, a i +1,1 a i +1.j 1 a i +1,j +1 a i +1, a 1 a,j 1 a,j +1 a, ij i j 1,j 1,j +1 ij 1) i +j a
熊本県数学問題正解
00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (
2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a
No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2
No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j
24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x
24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),
‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í
Markov 2009 10 2 Markov 2009 10 2 1 / 25 1 (GA) 2 GA 3 4 Markov 2009 10 2 2 / 25 (GA) (GA) L ( 1) I := {0, 1} L f : I (0, ) M( 2) S := I M GA (GA) f (i) i I Markov 2009 10 2 3 / 25 (GA) ρ(i, j), i, j I
I
I [email protected] 27 6 A A. /a δx = lim a + a exp π x2 a 2 = lim a + a = lim a + a exp a 2 π 2 x 2 + a 2 2 x a x = lim a + a Sic a x = lim a + a Rect a Gaussia Loretzia Bilateral expoetial Normalized
n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................
入試の軌跡
4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf
(I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47
4 Typeset by Akio Namba usig Powerdot. / 47 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 Typeset by Akio Namba usig Powerdot. 2 / 47 (I) (II) 2 (I) 2 (II) 2 (III) (I) (II) (II) : 2 (radom variable):
.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(
06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,
x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x
[ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),
1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =
1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A
V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V
I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)
S K(S) = T K(T ) T S K n (1.1) n {}}{ n K n (1.1) 0 K 0 0 K Q p K Z/pZ L K (1) L K L K (2) K L L K [L : K] 1.1.
() 1.1.. 1. 1.1. (1) L K (i) 0 K 1 K (ii) x, y K x + y K, x y K (iii) x, y K xy K (iv) x K \ {0} x 1 K K L L K ( 0 L 1 L ) L K L/K (2) K M L M K L 1.1. C C 1.2. R K = {a + b 3 i a, b Q} Q( 2, 3) = Q( 2
ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
ルベーグ積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/005431 このサンプルページの内容は, 初版 1 刷発行時のものです. Lebesgue 1 2 4 4 1 2 5 6 λ a
ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.
24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)
Microsoft Word - 表紙.docx
黒住英司 [ 著 ] サピエンティア 計量経済学 訂正および練習問題解答 (206/2/2 版 ) 訂正 練習問題解答 3 .69, 3.8 4 (X i X)U i i i (X i μ x )U i ( X μx ) U i. i E [ ] (X i μ x )U i i E[(X i μ x )]E[U i ]0. i V [ ] (X i μ x )U i i 2 i j E [(X i
X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2
量子力学 問題
3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,
waseda2010a-jukaiki1-main.dvi
November, 2 Contents 6 2 8 3 3 3 32 32 33 5 34 34 6 35 35 7 4 R 2 7 4 4 9 42 42 2 43 44 2 5 : 2 5 5 23 52 52 23 53 53 23 54 24 6 24 6 6 26 62 62 26 63 t 27 7 27 7 7 28 72 72 28 73 36) 29 8 29 8 29 82 3
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )
I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)
x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy
A
A 2563 15 4 21 1 3 1.1................................................ 3 1.2............................................. 3 2 3 2.1......................................... 3 2.2............................................
all.dvi
5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0
populatio sample II, B II? [1] I. [2] 1 [3] David J. Had [4] 2 [5] 3 2
(2015 ) 1 NHK 2012 5 28 2013 7 3 2014 9 17 2015 4 8!? New York Times 2009 8 5 For Today s Graduate, Just Oe Word: Statistics Google Hal Varia I keep sayig that the sexy job i the ext 10 years will be statisticias.
211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,
1 Abstract 2 3 n a ax 2 + bx + c = 0 (a 0) (1) ( x + b ) 2 = b2 4ac 2a 4a 2 D = b 2 4ac > 0 (1) 2 D = 0 D < 0 x + b 2a = ± b2 4ac 2a b ± b 2
1 Abstract n 1 1.1 a ax + bx + c = 0 (a 0) (1) ( x + b ) = b 4ac a 4a D = b 4ac > 0 (1) D = 0 D < 0 x + b a = ± b 4ac a b ± b 4ac a b a b ± 4ac b i a D (1) ax + bx + c D 0 () () (015 8 1 ) 1. D = b 4ac
4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx
4 4 5 4 I II III A B C, 5 7 I II A B,, 8, 9 I II A B O A,, Bb, b, Cc, c, c b c b b c c c OA BC P BC OP BC P AP BC n f n x xn e x! e n! n f n x f n x f n x f k x k 4 e > f n x dx k k! fx sin x cos x tan
( )
18 10 01 ( ) 1 2018 4 1.1 2018............................... 4 1.2 2018......................... 5 2 2017 7 2.1 2017............................... 7 2.2 2017......................... 8 3 2016 9 3.1 2016...............................
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 1 19 3 19.1................... 3 19.............................. 4 19.3............................... 6 19.4.............................. 8 19.5.............................
v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i
1. 1 1.1 1.1.1 1.1.1.1 v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) R ij R ik = δ jk (4) δ ij Kronecker δ ij = { 1 (i = j) 0 (i j) (5) 1 1.1. v1.1 2011/04/10 1. 1 2 v i = R ij v j (6) [
() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.
() 6 f(x) [, b] 6. Riemnn [, b] f(x) S f(x) [, b] (Riemnn) = x 0 < x < x < < x n = b. I = [, b] = {x,, x n } mx(x i x i ) =. i [x i, x i ] ξ i n (f) = f(ξ i )(x i x i ) i=. (ξ i ) (f) 0( ), ξ i, S, ε >
A11 (1993,1994) 29 A12 (1994) 29 A13 Trefethen and Bau Numerical Linear Algebra (1997) 29 A14 (1999) 30 A15 (2003) 30 A16 (2004) 30 A17 (2007) 30 A18
2013 8 29y, 2016 10 29 1 2 2 Jordan 3 21 3 3 Jordan (1) 3 31 Jordan 4 32 Jordan 4 33 Jordan 6 34 Jordan 8 35 9 4 Jordan (2) 10 41 x 11 42 x 12 43 16 44 19 441 19 442 20 443 25 45 25 5 Jordan 26 A 26 A1
4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.
A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c
16 B
16 B (1) 3 (2) (3) 5 ( ) 3 : 2 3 : 3 : () 3 19 ( ) 2 ax 2 + bx + c = 0 (a 0) x = b ± b 2 4ac 2a 3, 4 5 1824 5 Contents 1. 1 2. 7 3. 13 4. 18 5. 22 6. 25 7. 27 8. 31 9. 37 10. 46 11. 50 12. 56 i 1 1. 1.1..
D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j
6 6.. [, b] [, d] ij P ij ξ ij, η ij f Sf,, {P ij } Sf,, {P ij } k m i j m fξ ij, η ij i i j j i j i m i j k i i j j m i i j j k i i j j kb d {P ij } lim Sf,, {P ij} kb d f, k [, b] [, d] f, d kb d 6..
読めば必ずわかる 分散分析の基礎 第2版
2 2003 12 5 ( ) ( ) 2 I 3 1 3 2 2? 6 3 11 4? 12 II 14 5 15 6 16 7 17 8 19 9 21 10 22 11 F 25 12 : 1 26 3 I 1 17 11 x 1, x 2,, x n x( ) x = 1 n n i=1 x i 12 (SD ) x 1, x 2,, x n s 2 s 2 = 1 n n (x i x)
1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.
1.1 1. 1.3.1..3.4 3.1 3. 3.3 4.1 4. 4.3 5.1 5. 5.3 6.1 6. 6.3 7.1 7. 7.3 1 1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N
meiji_resume_1.PDF
β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E
「産業上利用することができる発明」の審査の運用指針(案)
1 1.... 2 1.1... 2 2.... 4 2.1... 4 3.... 6 4.... 6 1 1 29 1 29 1 1 1. 2 1 1.1 (1) (2) (3) 1 (4) 2 4 1 2 2 3 4 31 12 5 7 2.2 (5) ( a ) ( b ) 1 3 2 ( c ) (6) 2. 2.1 2.1 (1) 4 ( i ) ( ii ) ( iii ) ( iv)
ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.
23(2011) (1 C104) 5 11 (2 C206) 5 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 ( ). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5.. 6.. 7.,,. 8.,. 1. (75%
OABC OA OC 4, OB, AOB BOC COA 60 OA a OB b OC c () AB AC () ABC D OD ABC OD OA + p AB + q AC p q () OABC 4 f(x) + x ( ), () y f(x) P l 4 () y f(x) l P
4 ( ) ( ) ( ) ( ) 4 5 5 II III A B (0 ) 4, 6, 7 II III A B (0 ) ( ),, 6, 8, 9 II III A B (0 ) ( [ ] ) 5, 0, II A B (90 ) log x x () (a) y x + x (b) y sin (x + ) () (a) (b) (c) (d) 0 e π 0 x x x + dx e
1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1
sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω ω α 3 3 2 2V 3 33+.6T m T 5 34m Hz. 34 3.4m 2 36km 5Hz. 36km m 34 m 5 34 + m 5 33 5 =.66m 34m 34 x =.66 55Hz, 35 5 =.7 485.7Hz 2 V 5Hz.5V.5V V
1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +
( )5 ( ( ) ) 4 6 7 9 M M 5 + 4 + M + M M + ( + ) () + + M () M () 4 + + M a b y = a + b a > () a b () y V a () V a b V n f() = n k= k k () < f() = log( ) t dt log () n+ (i) dt t (n + ) (ii) < t dt n+ n
Dynkin Serre Weyl
Dynkin Naoya Enomoto 2003.3. paper Dynkin Introduction Dynkin Lie Lie paper 1 0 Introduction 3 I ( ) Lie Dynkin 4 1 ( ) Lie 4 1.1 Lie ( )................................ 4 1.2 Killing form...........................................
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y
(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b
数学Ⅱ演習(足助・09夏)
II I 9/4/4 9/4/2 z C z z z z, z 2 z, w C zw z w 3 z, w C z + w z + w 4 t R t C t t t t t z z z 2 z C re z z + z z z, im z 2 2 3 z C e z + z + 2 z2 + 3! z3 + z!, I 4 x R e x cos x + sin x 2 z, w C e z+w
<4D6963726F736F667420506F776572506F696E74202D208376838C835B83938365815B835683878393312E707074205B8CDD8AB78382815B83685D>
i i vi ii iii iv v vi vii viii ix 2 3 4 5 6 7 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
SC-85X2取説
I II III IV V VI .................. VII VIII IX X 1-1 1-2 1-3 1-4 ( ) 1-5 1-6 2-1 2-2 3-1 3-2 3-3 8 3-4 3-5 3-6 3-7 ) ) - - 3-8 3-9 4-1 4-2 4-3 4-4 4-5 4-6 5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9 5-10 5-11
