27 2 1
|
|
|
- ふさこ よせ
- 9 years ago
- Views:
Transcription
1 28 2 9
2 27 2 1
3
4
5 1 [32] [31] CPU [5] [7] [2]
6
7 2 2.1 Service Level Agreement( SLA) SLA [34] NTT VPN Arcstar Universal One SLA [33] 35msec 10% CPU 2.3 6
8 [7] [2] ( CL) [13] ( ) [21] 1 CL A B C 3 1: 7
9 CPU n n ( BN) E P (E) [14] 3 [5][19] [26] 2 BN B C P (B) P (C) B C A P (A B, C) BN 2: Web CPU 100% 8
10 BN 2.5 CL BN [16][15][5][19][12] 2.6 [20] BN CL BN BN 9
11 3 CL BN 3.1 CL CL BN CL BN CL CL 1 CL 2 3 BN 4 BN 10
12 2 BN 4 3 3: CL R k-means[9] BN R bnlearn[26]
13 3.3.1 Apache JMeter[23] Apache JMeter - Java Apache mod proxy balancer[24] mod proxy balancer Apache Apache Tomcat[25] ibatis JPetStore[30] Apache Tomcat Java Servlet JavaServer Pages HTML Java JPetStore Java MySQL MySQL Oracle[29] JPetStore
14 4: 4 3 CPU 1 1GB HDD 20GB 1Gbps CPU 2 4GB HDD 110GB 1Gbps OS Linux(CentOS 6.4) 1 1: CPU OS 2core 1GB 30GB Apache JMeter core 1GB 30GB Apache mod proxy balancer A 1core 1GB 30GB Apache Tomcat B 1core 1GB 30GB ibatis JPetStore core 4GB 110GB MySQL CentOS Ver6.4 x64 CPU Disk 10 collectd[27] (2 ) 2, 3, 4,
15 2: 1 CPU( 2 ) (%) 2 (bytes) 3 (bytes/sec) 4 Disk( ) I/O (ops/sec) Web Access 5 ( ) 3.4 CL BN BN 3.5 BN COR(0 COR 1) 1 x, y ni=1 (x i x)(y i ȳ) COR = ni=1 (x i x) 2 ni=1 (y i ȳ) 2 COR CL COR CL 14
16 3.6 BN 1 BN CL ( ) 6 CL BN 3 5 5: 15
17 JPetStore Apache JMeter stress [30] ( 6) 7 28 BN 7 3 6: 16
18 7: 3: A A B A B DB B DB DB 3.8 CL BN 17
19 CL CL 1 CL 500 CL 500 BN BN ( sec) 10 ( sec) 10 ( request/sec) ( ) MA=
20 8: (3.2 ) BN CL 9 BN 3 P( ) CL D( ) (sec) BN CL BN
21 9: BN CL ( 1-1) BN 8 BN COR = (3.6 )
22 10: CL BN ( 3-6) 4:
23 ( 1-7) BN CL ( 3-6) BN 1-7 BN CL : BN CL ( 1-7) ( 10 11) COR =
24 23
25 4 CL BN 4.1 BN 0 CL 1 CL BN 2 BN 3 BN
26 12: 4.2 collectd CL 25
27 4.4 CL CL ( 7) CL BN 1 CL 500 (6 4 ) BN ( sec) 10 ( sec) 10 ( request/sec) ( ) BN 15 (sec) BN 3 ( ) (LS) (LW) R bnlearn 26
28 13: LW LW 14: 27
29 LW : LW
30 4.8.1 BN BN
31 16: BN t = 2( )
32 : / 0.561% 0.841% /
33
34 Software Development and Analysis 33
35 [1] T. F. Abdelzaher, K. G. Shin, et al, Performance guarantees for Web server endsystems: A controltheoretical approach, IEEE Transactions on Parallel and DistributedSystems, 13(1), pp80-96, [2] G. A. Alvarez, E. Borowsky, et al. An automated resource provisioning tool for largescale storage systems, ACM Transactions on Computer Systems (TOCS), pp , [3] D. Arthur, B. Manthey, H. Roglin, k-means has polynomial smoothed complexity, [4] C. Bernard, An optimal convex hull algorithm in any fixed dimension, [5] I. Cohen, M. Goldszmidt, T. Kelly, J. Symons, J.S. Chase, Correlating instrumentation data to system state: A building block for automated diagnosis and control, USENIX Association OSDI 04: 6th Symposium on Operating Systems Design and Implementation, [6] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth From Data Mining to Knowledge Discovery in Databases, [7] A. Fox and D. Patterson, Self-repairing computers, Scientific American, [8] N. Friedman, D. Geiger, M. Goldszmidt, Bayesian Network Classifiers, Machine Learning Volume 29, Issue 2-3, pp , [9] N. Friedman, M. Linial, I. Nachman, D. Pe er, Using Bayesian Networks to Analyze Expression Data, Journal of Computational Biology 7, pp , [10] S. Iwata, K. Kono, Clustering Performance Anomalies Based on Similarity in Processing Time Changes, IPSJ Transactions on Advanced Computing Systems, Vol.5 No , [11] J. B. MacQueen, Some Methods for classification and Analysis of Multivariate Observations, Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability,University of California Press, pp ,
36 [12] T.H.D. Nguyen, M. Nagappan, A.E. Hassan, M. Nasser, P. Flora, An Industrial Case Study of Automatically Identifying Performance Regression-Causes, MSR Hyderabad, India, [13] Y. Okada, T. Sahara, S. Ohgiya, T. Nagashima, Detection of Cluster Boundary in Microarray Data by Reference to MIPS Functional Catalogue Database, The 16th Int. Conference on Genome Informatics, Japanese Society for Bioinformatics, Proc. of The 16th Int. Conference on Genome Informatics, Tokyo, Japan, [14] J. Pearl, Bayesian Networks, a Model of Self-Activated Memory for Evidential Reasoning, Proceedings, Cognitive Science Society pp , [15] E. Stehle, K. Lynch, M. Shevertalov, C. Rorres, and S. Mancoridis, On the use of Computational Geometry to Detect Software Faults at Runtime, 7th International Conference on Autonomic Computing, ICAC, Washington, DC, USA, [16] E. Stehle, K. Lynch, M. Shevertalov, C. Rorres, and S. Mancoridis, Diagnosis of Software Failures Using Computational Geometry, 26th IEEE/ACM International Conference on Automated Software Engineering (ASE 2011), Lawrence, KS, USA, Nov., [17] R. Taylor, E. Rdcs. Interpretation of the Correlation Coefficient: A Basic Review, JDMS1, pp35-39, [18] S. Thrun, C. C. Faloutsos, A. W. Moore, P. Spirtes, G. F. Cooper, Learning Bayesian Network Model Structure from Data [19] S. Zhang, I. Cohen, M. Goldszmidt, J. Symons, A. Fox, Ensembles of Models for Automated Diagnosis of System Performance Problems, The International Conference on Dependable Systems and Networks, Yokohama, Japan, [20],,,,, Web,, Vol.J99-D, No.1, pp , [21],,,,, pp ,
37 [22],,,,, 188 SE, pp1-8, [23] Apache JMeter, [24] Apache mod proxy balancer, docs/2.2/ja/mod/mod proxy balancer.html/. [25] Apache Tomcat, [26] bnlearn - an R package for Bayesian network learning and inference, [27] collectd, [28] ibatis JPetStore, [29] Oracle, [30] stress project page, [31],, [32],, im/articles/1005/19/news106.html. [33] VPN Arcstar Universal One SLA, [34] Web Forum, SLA, 36
DEIM Forum 2009 C8-4 QA NTT QA QA QA 2 QA Abstract Questions Recomme
DEIM Forum 2009 C8-4 QA NTT 239 0847 1 1 E-mail: {kabutoya.yutaka,kawashima.harumi,fujimura.ko}@lab.ntt.co.jp QA QA QA 2 QA Abstract Questions Recommendation Based on Evolution Patterns of a QA Community
Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m
Vol.55 No.1 2 15 (Jan. 2014) 1,a) 2,3,b) 4,3,c) 3,d) 2013 3 18, 2013 10 9 saccess 1 1 saccess saccess Design and Implementation of an Online Tool for Database Education Hiroyuki Nagataki 1,a) Yoshiaki
B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int
SOA 1 1 1 1 (HNS) HNS SOA SOA 3 3 A Service-Oriented Platform for Feature Interaction Detection and Resolution in Home Network System Yuhei Yoshimura, 1 Takuya Inada Hiroshi Igaki 1, 1 and Masahide Nakamura
Run-Based Trieから構成される 決定木の枝刈り法
Run-Based Trie 2 2 25 6 Run-Based Trie Simple Search Run-Based Trie Network A Network B Packet Router Packet Filtering Policy Rule Network A, K Network B Network C, D Action Permit Deny Permit Network
IPSJ SIG Technical Report Vol.2010-GN-74 No /1/ , 3 Disaster Training Supporting System Based on Electronic Triage HIROAKI KOJIMA, 1 KU
1 2 2 1, 3 Disaster Training Supporting System Based on Electronic Triage HIROAKI KOJIMA, 1 KUNIAKI SUSEKI, 2 KENTARO NAGAHASHI 2 and KEN-ICHI OKADA 1, 3 When there are a lot of injured people at a large-scale
& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro
TV 1,2,a) 1 2 2015 1 26, 2015 5 21 Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Rotation Using Mobile Device Hiroyuki Kawakita 1,2,a) Toshio Nakagawa 1 Makoto Sato
DEIM Forum 2017 H ,
DEIM Forum 217 H5-4 113 8656 7 3 1 153 855 4 6 1 3 2 1 2 E-mail: {satoyuki,haya,kgoda,kitsure}@tkl.iis.u-tokyo.ac.jp,.,,.,,.,, 1.. 1956., IBM IBM RAMAC 35 IBM 35 24 5, 5MB. 1961 IBM 131,,, IBM 35 13.,
27 YouTube YouTube UGC User Generated Content CDN Content Delivery Networks LRU Least Recently Used UGC YouTube CGM Consumer Generated Media CGM CGM U
YouTube 2016 2 16 27 YouTube YouTube UGC User Generated Content CDN Content Delivery Networks LRU Least Recently Used UGC YouTube CGM Consumer Generated Media CGM CGM UGC UGC YouTube k-means YouTube YouTube
Wikipedia YahooQA MAD 4)5) MAD Web 6) 3. YAMAHA 7) 8) 2 3 4 5 6 2. Vocaloid2 2006 1 PV 2009 1 1100 200 YouTube 1 minato minato ussy 3D MAD F EDis ussy
1, 2 3 1, 2 Web Fischer Social Creativity 1) Social Creativity CG Network Analysis of an Emergent Massively Collaborative Creation Community Masahiro Hamasaki, 1, 2 Hideaki Takeda 3 and Takuichi Nishimura
3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)
(MIRU2012) 2012 8 820-8502 680-4 E-mail: {d kouno,shimada,endo}@pluto.ai.kyutech.ac.jp (1) (2) (3) (4) 4 AdaBoost 1. Kanade [6] CLAFIC [12] EigenFace [10] 1 1 2 1 [7] 3 2 2 (1) (2) (3) (4) 4 4 AdaBoost
DEIM Forum 2012 E Web Extracting Modification of Objec
DEIM Forum 2012 E4-2 670 0092 1 1 12 E-mail: [email protected], {dkitayama,sumiya}@shse.u-hyogo.ac.jp Web Extracting Modification of Objects for Supporting Map Browsing Junki MATSUO, Daisuke
DEIM Forum 2012 C2-6 Hadoop Web Hadoop Distributed File System Hadoop I/O I/O Hadoo
DEIM Forum 12 C2-6 Hadoop 112-86 2-1-1 E-mail: [email protected], [email protected] Web Hadoop Distributed File System Hadoop I/O I/O Hadoop A Study about the Remote Data Access Control for Hadoop
Lyra 2 2 2 X Y X Y ivis Designer Lyra ivisdesigner Lyra ivisdesigner 2 ( 1 ) ( 2 ) ( 3 ) ( 4 ) ( 5 ) (1) (2) (3) (4) (5) Iv Studio [8] 3 (5) (4) (1) (
1,a) 2,b) 2,c) 1. Web [1][2][3][4] [5] 1 2 a) [email protected] b) [email protected] c) [email protected] [6] Lyra[5] ivisdesigner[6] [7] 2 Lyra ivisdesigner c 2012 Information Processing
A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi
A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi ODA Department of Human and Mechanical Systems Engineering,
IPSJ SIG Technical Report Vol.2010-NL-199 No /11/ treebank ( ) KWIC /MeCab / Morphological and Dependency Structure Annotated Corp
1. 1 1 1 2 treebank ( ) KWIC /MeCab / Morphological and Dependency Structure Annotated Corpus Management Tool: ChaKi Yuji Matsumoto, 1 Masayuki Asahara, 1 Masakazu Iwatate 1 and Toshio Morita 2 This paper
main.dvi
305 8550 1 2 CREST [email protected] 1 7% 2 2 3 PRIME Multi-lingual Information Retrieval 2 2.1 Cross-Language Information Retrieval CLIR 1990 CD-ROM a. b. c. d. b CLIR b 70% CLIR CLIR 2.2 (b) 2
1 IDC Wo rldwide Business Analytics Technology and Services 2013-2017 Forecast 2 24 http://www.soumu.go.jp/johotsusintokei/whitepaper/ja/h24/pdf/n2010000.pdf 3 Manyika, J., Chui, M., Brown, B., Bughin,
1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15. 1. 2. 3. 16 17 18 ( ) ( 19 ( ) CG PC 20 ) I want some rice. I want some lice. 21 22 23 24 2001 9 18 3 2000 4 21 3,. 13,. Science/Technology, Design, Experiments,
149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :
Transactions of the Operations Research Society of Japan Vol. 58, 215, pp. 148 165 c ( 215 1 2 ; 215 9 3 ) 1) 2) :,,,,, 1. [9] 3 12 Darroch,Newell, and Morris [1] Mcneil [3] Miller [4] Newell [5, 6], [1]
情報処理学会研究報告 IPSJ SIG Technical Report Vol.2013-HPC-139 No /5/29 Gfarm/Pwrake NICT NICT 10TB 100TB CPU I/O HPC I/O NICT Gf
Gfarm/Pwrake NICT 1 1 1 1 2 2 3 4 5 5 5 6 NICT 10TB 100TB CPU I/O HPC I/O NICT Gfarm Gfarm Pwrake A Parallel Processing Technique on the NICT Science Cloud via Gfarm/Pwrake KEN T. MURATA 1 HIDENOBU WATANABE
IPSJ SIG Technical Report Vol.2011-IOT-12 No /3/ , 6 Construction and Operation of Large Scale Web Contents Distribution Platfo
1 1 2 3 4 5 1 1, 6 Construction and Operation of Large Scale Web Contents Distribution Platform using Cloud Computing 1. ( ) 1 IT Web Yoshihiro Okamoto, 1 Naomi Terada and Tomohisa Akafuji, 1, 2 Yuko Okamoto,
IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info
1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Information Science and Technology, Osaka University a) [email protected] 1 1 Bucket R*-tree[5] [4] 2 3 4 5 6 2. 2.1 2.2 2.3
[2][3][4][5] 4 ( 1 ) ( 2 ) ( 3 ) ( 4 ) 2. Shiratori [2] Shiratori [3] [4] GP [5] [6] [7] [8][9] Kinect Choi [10] 3. 1 c 2016 Information Processing So
1,a) 2 2 1 2,b) 3,c) A choreographic authoring system reflecting a user s preference Ryo Kakitsuka 1,a) Kosetsu Tsukuda 2 Satoru Fukayama 2 Naoya Iwamoto 1 Masataka Goto 2,b) Shigeo Morishima 3,c) Abstract:
3.1 Thalmic Lab Myo * Bluetooth PC Myo 8 RMS RMS t RMS(t) i (i = 1, 2,, 8) 8 SVM libsvm *2 ν-svm 1 Myo 2 8 RMS 3.2 Myo (Root
1,a) 2 2 1. 1 College of Information Science, School of Informatics, University of Tsukuba 2 Faculty of Engineering, Information and Systems, University of Tsukuba a) [email protected] 2.
56 OS OS OS OS 1 OS HDD OS 1 OS HDD HDD OS OS OSOS HDD 図 1 二重キャッシュ環境 3. 負の参照の時間的局所性 3.1 参照の局所性 Locality of Reference Temporal locality Spatial localit
116 26 4 1 2 2 1 3 An Analysis of Locality of Reference in Virtualized Environment Hiroki SUGIMOTO 1, Kousuke TAKEUCHI 2, Kouya HINAGAWA 2 and Saneyasu YAMAGUCHI 1 3 Abstract As cloud computing has spread
fiš„v8.dvi
(2001) 49 2 333 343 Java Jasp 1 2 3 4 2001 4 13 2001 9 17 Java Jasp (JAva based Statistical Processor) Jasp Jasp. Java. 1. Jasp CPU 1 106 8569 4 6 7; [email protected] 2 106 8569 4 6 7; [email protected]
Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution
Convolutional Neural Network 2014 3 A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolutional Neural Network Fukui Hiroshi 1940 1980 [1] 90 3
Amazon EC2 IaaS (Infrastructure as a Service) HPCI HPCI ( VM) VM VM HPCI VM OS VM HPCI HPC HPCI RENKEI-PoP 2 HPCI HPCI 1 HPCI HPCI HPC CS
HPCI 1 2 3 4 5 1, 6 5 24 HPCI HPC OS HPC RENKEI-PoP Design of Advanced Software Deployment Infrastructure in HPCI Wide-area Distributed Environment Shinichiro Takizawa, 1 Masaharu Munetomo, 2 Atsuya Uno,
A Japanese Word Dependency Corpus ÆüËܸì¤Îñ¸ì·¸¤ê¼õ¤±¥³¡¼¥Ñ¥¹
A Japanese Word Dependency Corpus 2015 3 18 Special thanks to NTT CS, 1 /27 Bunsetsu? What is it? ( ) Cf. CoNLL Multilingual Dependency Parsing [Buchholz+ 2006] (, Penn Treebank [Marcus 93]) 2 /27 1. 2.
Vol. 48 No. 4 Apr LAN TCP/IP LAN TCP/IP 1 PC TCP/IP 1 PC User-mode Linux 12 Development of a System to Visualize Computer Network Behavior for L
Vol. 48 No. 4 Apr. 2007 LAN TCP/IP LAN TCP/IP 1 PC TCP/IP 1 PC User-mode Linux 12 Development of a System to Visualize Computer Network Behavior for Learning to Associate LAN Construction Skills with TCP/IP
,., ping - RTT,., [2],RTT TCP [3] [4] Android.Android,.,,. LAN ACK. [5].. 3., 1.,. 3 AI.,,Amazon, (NN),, 1..NN,, (RNN) RNN
DEIM Forum 2018 F1-1 LAN LSTM 112 8610 2-1-1 163-8677 1-24-2 E-mail: [email protected], [email protected], [email protected],,.,,., LAN,. Android LAN,. LSTM LAN., LSTM, Analysis of Packet of
258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System
Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.
2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC
H.264 CABAC 1 1 1 1 1 2, CABAC(Context-based Adaptive Binary Arithmetic Coding) H.264, CABAC, A Parallelization Technology of H.264 CABAC For Real Time Encoder of Moving Picture YUSUKE YATABE 1 HIRONORI
IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe
1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Speech Visualization System Based on Augmented Reality Yuichiro Nagano 1 and Takashi Yoshino 2 As the spread of the Augmented Reality(AR) technology and service,
一部の論文は web 非掲載です Journal of International Student Advisors and Educators Volume 18 / 2015 3 7 13 19 31 45 57 71 85 111 115 101 123 124 126 135 131 132 146 Vol.18 pp.3 Vol.18 3 4 Vol.18 Vol.18 5 6 Vol.18
ITS資料
Innovation Technology System Development WEB Design Program System Tool Technology CSS Service Developer CMS Domain Server HTML PROJECT A B C A B C www.stasiasbakery.com/ B C A www.example.com/ A B
& 3 3 ' ' (., (Pixel), (Light Intensity) (Random Variable). (Joint Probability). V., V = {,,, V }. i x i x = (x, x,, x V ) T. x i i (State Variable),
.... Deeping and Expansion of Large-Scale Random Fields and Probabilistic Image Processing Kazuyuki Tanaka The mathematical frameworks of probabilistic image processing are formulated by means of Markov
2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055
1 1 1 2 DCRA 1. 1.1 1) 1 Tactile Interface with Air Jets for Floating Images Aya Higuchi, 1 Nomin, 1 Sandor Markon 1 and Satoshi Maekawa 2 The new optical device DCRA can display floating images in free
2
Copyright 2008 Nara Institute of Science and Technology / Osaka University 2 Copyright 2008 Nara Institute of Science and Technology / Osaka University CHAOS Report in US 1994 http://www.standishgroup.com/sample_research/
untitled
K-Means 1 5 2 K-Means 7 2.1 K-Means.............................. 7 2.2 K-Means.......................... 8 2.3................... 9 3 K-Means 11 3.1.................................. 11 3.2..................................
[4], [5] [6] [7] [7], [8] [9] 70 [3] 85 40% [10] Snowdon 50 [5] Kemper [3] 2.2 [11], [12], [13] [14] [15] [16]
1,a) 1 2 1 12 1 2Type Token 2 1 2 1. 2013 25.1% *1 2012 8 2010 II *2 *3 280 2025 323 65 9.3% *4 10 18 64 47.6 1 Center for the Promotion of Interdisciplinary Education and Research, Kyoto University 2
2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server
a) Change Detection Using Joint Intensity Histogram Yasuyo KITA a) 2 (0 255) (I 1 (x),i 2 (x)) I 2 = CI 1 (C>0) (I 1,I 2 ) (I 1,I 2 ) 2 1. [1] 2 [2] [3] [5] [6] [8] Intelligent Systems Research Institute,
7章 構造物の応答値の算定
(1) 2 (2) 5.4 5.8.4 2 5.2 (3) 1.8 1) 36 2) PS 3) N N PS 37 10 20m N G hg h PS N (1) G h G/G 0 h 3 1) G 0 PS PS 38 N V s G 0 40% Gh 1 S 0.11% G/G 0 h G/G 0 h H-D 2),3) R-O 4) 5),6),7) τ G 0 γ = 0 r 1 (
36 581/2 2012
4 Development of Optical Ground Station System 4-1 Overview of Optical Ground Station with 1.5 m Diameter KUNIMORI Hiroo, TOYOSHMA Morio, and TAKAYAMA Yoshihisa The OICETS experiment, LEO Satellite-Ground
AJACS18_ ppt
1, 1, 1, 1, 1, 1,2, 1,2, 1 1 DDBJ 2 AJACS3 2010 6 414:20-15:20 2231 DDBJ DDBJ DDBJ DDBJ NCBI (GenBank) DDBJ EBI (EMBL-Bank) GEO DDBJ Omics ARchive(DOR) ArrayExpress DTA (DDBJ Trace Archive) DRA (DDBJ
EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju
EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Jun Motohashi, Member, Takashi Ichinose, Member (Tokyo
Web ( ) [1] Web Shibboleth SSO Web SSO Web Web Shibboleth SAML IdP(Identity Provider) Web Web (SP:ServiceProvider) ( ) IdP Web Web MRA(Mail Retrieval
SAML PAM SSO Web 1,a) 1 1 1 Shibboleth SAML Web IMAPS Web SAML PAM IMAPS SSO Web Shibboleth Web SSO, Shibboleth, SAML, Web, Web-based mail system with SSO authentication through SAML supporting PAM Makoto
A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member
A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member (University of Tsukuba), Yasuharu Ohsawa, Member (Kobe
