Size: px
Start display at page:

Download ""

Transcription

1 需 要 予 測 のための 統 計 モテ ルの 研 究 異 常 値 検 知 のための 基 本 的 モテ ルの 考 察 平 成 26 年 3 月 東 京 大 学 大 学 院 情 報 理 工 学 系 研 究 科 教 授 博 士 課 程 修 士 課 程 竹 村 彰 通 小 川 光 紀 笹 井 健 行 特 定 非 営 利 活 動 法 人 ヒ ュー コミュニケーションス 副 理 事 長 小 松 秀 樹 主 任 研 究 員 池 谷 貞 彦 研 究 員 河 内 敦 雄

2 (AR) Change Finder Change Finder Change Finder SDAR Change Finder

3 Change Finder Change Finder Change Finder A 35 A A A A A B 38 C 43

4 ARIMA ( ) ARIMA ( ) ARIMA ( ) 1.2 (AR ) AR

5 1 4 Change Finder AR Change Finder

6 5 2 AR [1] T t T x t p (x t ) {p (x t ) t T t T = {1, 2, {x t {x t E (x t ) = µ Cov (x t, x t+1 ) = γ ( h ) {x t V (y t ) = γ (0) ρ (h) = γ (h) γ (0) = γ (t) V (y t ) = ρ ( h) h ρ (h), h = 0, 1, 2,... ρ (h) 1 1

7 S = Cov (x t, x t+h ) = γ (h) h= h= S 2.2 (AR) (AR) {x t t T x t = ϕ 1 x t ϕ p x t p + ε t, {ε t i.i.d.n ( 0, σ 2) (2.1) {x t p AR(p) AR(p) AR(p) ϕ (x) = 1 ϕ 1 x ϕ 2 x 2 ϕ p x p = 0 1 AR(p) (2.1) y t j (j > 0) γ (j) = ϕ 1 γ (j 1) + ϕ 2 γ (j 2) + + ϕ p γ (j p) (2.2) γ (0) p ρ (j) = ϕ 1 ρ (j 1) + ϕ 2 ρ (j 2) + + ϕ p ρ (j p), (j > 0) (2.3) λ 1, λ 2,, λ p c 1, c 2,, c p ρ (j) = p c i i=1 λ j i c 1, c 2,..., c p (2.3) j = 1, 2,..., p 1 ρ (1), ρ (2),..., ρ (p 1)

8 2 7 ρ (1) = ϕ 1 + ϕ 2 ρ (1) + + ϕ p ρ (p 1) ρ (2) = ϕ 1 ρ (1) + ϕ ϕ p ρ (p 2). ρ (p 1) = ϕ 1 ρ (p 2) + ϕ 2 ρ (p 3) + + ϕ p ρ (1). c 1, c 2,.., c p 1 = c 1 + c c p ρ (1) = c 1 + c c p λ 1 λ 2 λ p. ρ (p 1) = c 1 λ p c 2 λ p c p λ p 1 p AR(p) ϕ 1, ϕ 2,..., ϕ p (2.3) j = 1, 2,..., p p. ρ (1) = ϕ 1 + ϕ 2 ρ (1) + + ϕ p ρ (p 1) ρ (2) = ϕ 1 ρ (1) + ϕ ϕ p ρ (p 2). ρ (p) = ϕ 1 ρ (p 1) + ϕ 2 ρ (p 2) + + ϕ p. 1 ρ (1) ρ (p 1) ϕ 1 ρ (1) ρ (1) 1 ρ (p 2) =.... ρ (p 1) ρ (p 2) 1 ρ (p) ϕ p

9 8 3 [2] 3.1 x t, (t = 1, 2,...) µ x τ τ = 7 γ xx (τ) = E [(x t µ x ) (x t+τ µ x )] 3.2 A B A B x t, y t (t = 1, 2,...) µ x, µ y τ x t = 1 y t = 2 τ = 7 1

10 3 9 2 γ xy (τ) = E [(x t µ x ) (y t+τ µ y )] 3.3

11 10 4 Change Finder [3, 4] Change Finder AR AR AR [3, 4] 4.1 x 1 x 2... p x t 1 = x 1 x 2...x t 1 p ( x t x t 1) p p (1), p (2) p ( x t x t 1) = p (1) ( x t x t 1), t < a, p ( x t x t 1) = p (2) ( x t x t 1), t a. t = a -

12 4 Change Finder 11 ( D p (2) p (1)) [ 1 := lim n n E p log p(2) (x n ] ), (2) p (1) (x n ) p (1) = p (2) D = jumping mean p (1), p (2) (µ 1, σ), (µ 2, σ) D ( p (1) p (2)) = (µ 1 µ 2 ) 2 / ( 2σ 2) 2. jumping variance p (1), p (2) (µ, σ 1 ), (µ, σ 2 ) D ( p (1) p (2)) = 1 2 ( σ 2 2 σ log σ2 2 σ 2 1 ) x n 1 = x 1,..., x n t x i, (i = 1,, n) d x t = x 1,..., x t x n t = x t+1,..., x n t x t 1 t k = x t k,..., x t 1 x t p ( [ ] x t x t 1 ) 1 t k = exp (x t w t ) T Σ 1 (x t w t ) (2π) d/2 1/2 Σ 2 Σ AR k α 1, α 2,..., α k, µ w t = k α i (x t i µ) + µ i=1

13 4 Change Finder 12 AR w t ŵ t I (x n 1 ) = n x t ŵ t 2. t=1 t I (x t 1) Error1 t I ( x n t+1) Error2 t = t δ > 0 I (x n 1 ) ( I ( ) ( x t 1 + I x n t +1)) > δ n t Change Finder 4.3 Change Finder Change Finder Change Finder Step 1 x 1, x 2,... {p t (x) : t = 1, 2,... p t 1 (x) x t 1 = x 1,..., x t 1 t x t Score (x t ), t = 1, 2,... Step 2 W > 0 Step1 {y t : t = 1, 2,... Step {Score (x i ) : i = t W + 1,..., t W - y t

14 4 Change Finder 13 y t = 1 W t t=t W +1 Score (x i ). Step 3 Step1 Step2 y t, t = 1, 2,... {q t (y t ) : t = 1, 2,... t y t Score (y t ), t = 1, 2,... W > 0 t W - Score (t) = 1 t W Score (y i ) i=t T W +1 Change Finder Step2 Step3 Step2 T Change Finder W W W 4.4 Change Finder Change Finder AR Step 1 x t, t = 1, 2,... SDAR {p t (x) : t = 1, 2,... SDAR

15 4 Change Finder 14 t x t Score (x t ) = log p t 1 (x t ) Score (x t ) = d (p t 1, p t ) = ( p (xt 1 ) ) 2 p (x t ) d AR z t = k A i z t i + ε i=1 A i ε 0 Σ {x t : t = 1, 2,... x t = z t + µ x t 1 t k = x t k...x t 1 x t 1 t k x t p ( ( x t x t 1 t k : θ) 1 = exp 1 ) (2π) k/2 Σ 1/2 2 (x t w) T Σ 1 (x t w), k w = A i (x t i µ) + µ i=1 θ = (A 1,..., A k, µ, Σ) x t θ θ t p t = p (, θ t ) θ (SDAR ) Step 2 k (1 r) t i log p ( x i x i 1, θ ). i=1 Step1 {y t : t = 1, 2,... AR SDAR {q t : t = 1, 2,... W > 0 t W -

16 4 Change Finder 15 Score (t) = 1 t W ( log q i 1 (y i )) i=t W +1 Step1 Score (t) = 1 t W d (q i 1, q i ) i=t W +1 Score (t) t 4.5 SDAR AR SDAR (Sequencially Discounting AR model learning) n x 1,..., x n x t = z t + µ z 1,..., z n k p (z t θ) t=1 n t=k+1 p ( z t z t 1 t k : θ). k log p (z t θ) + t=1 n t=k+1 log p ( z t z t 1 t k : θ). n k AR ( (n k) log (2π) 1/2 Σ 1/2) 1 2 n t=k+1 ( z t ) T k w i z t i Σ (z 1 t w w i (i = 1,..., k) i=1 k w i C j i = C j (j = 1,..., k). i=1 C j ) k w i z t i. i=1

17 4 Change Finder 16 C j = 1 n k = 1 n k n t=k+1 n t=k+1 z t z T t j (x t µ) (x t j µ) T. s C s = C T s. µ Σ ˆµ = 1 n k n t=k+1 C j µ ˆµ ŵ 1,..., ŵ k x t, ˆΣ = 1 n k = 1 n k n t=k+1 n t=k+1 ( ( z t ) k ŵ i z t i (z t i=1 x t ˆµ ) T k ŵ i z t i i=1 ) ( k ŵ i (x t i µ) x t ˆµ i=1 k ŵ i (x t i µ) SDAR (1 r) : r 0 < r < 1 r SDAR AR SDAR AR SDAR i=1 ) T

18 4 Change Finder 17 SDAR :0 < r < 1 ˆµ, C j, ŵ j (j = 1, 2,...), ˆΣ t (= 1, 2,...) x t ˆµ := (1 r) ˆµ + rx t, C j := (1 r) C j + r (x t ˆµ) (x t j ˆµ) T. k w i C i i = C j (j = 1,..., k). i=1 ŵ 1,..., ŵ k k ˆx t := ŵ i (x t i ˆµ) + ˆµ, i=1 ˆΣ := (1 r) ˆΣ + r (x t ˆx t ) (x t ˆx t ) T

19 18 5 Change Finder 11 Change Finder 5.1 Change Finder SDAR AR Score [x (t)] E [Score [x (t)]] σ [Score [x (t)]] E [Score [x (t)]] + 4σ [Score [x (t)]] Score Score [x (t)] x (t) E [x (t)] 2σ [x (t)] E [x (t)] + 2σ [x (t)] SDAR

20 yasai1 sales quantity : 1 yasai1 score :

21 yasai2 sales quantity : 2 yasai2 score : , 17, 25, 52, 29 13, 59

22 yasai3 sales quantity : 3 yasai3 score : , 46, 59, 60 45, 46, 59, 60

23 yasai4 sales quantity : 4 yasai4 score :

24 yasai5 sales quantity : 5 yasai5 score : 5 5

25 niku1 sales quantity : 1 T = 2 AR 3 niku1 score :

26 niku2 sales quantity : 2 niku2 score : 2 2 7, 67

27 niku3 sales quantity : 3 niku3 score : 3 AR 3 3

28 niku4 sales quantity : 4 niku4 score :

29 niku5 sales quantity : 5 niku5 score : 5 5

30 niku6 sales quantity : 6 niku6 score : Change Finder AR

31 Change Finder Change Finder SDAR yasai1 yasai1 sales quantity score : AR AR

32 yasai5 yasai5 sales quantity score : AR AR niku1 niku1 sales quantity score : AR AR

33 Change Finder

34 33 6 Change Finder Change Finder

35 34 [1] 2006 [2] J. P. Peckmann, S. Oliffson Kamphorst, and D. Ruelle, Recurrence Plots of Dynamical Systems, Europhysics Letters, Vol. 4, No. 9, pp , [3] 2009 [4] J. Takeuchi and K. Yamanishi, A Unifying Framework for Detecting Outliers and Change Points from Time Series, IEEE Transaction on Knowledge and Data Engineering, Vol. 18, No. 4, pp , [5] C. M

36 35 A A [5] A.1.1 x h (x) x x p (x) 1 h (x) p (x) 2 x, y h (x, y) = h (x) + h (y) p (x, y) = p (x) p (y) h (x) p (x) h (x) = log p (x) x h (x) 2 A.1.2 H [x] = x p (x) log p (x). N i n i n i n i! N

37 A 36 W = N! i n i! H = 1 N ln W = 1 N ln N! 1 N ln n i! n i /N N i i n i = N H = lim N ln N! N ln N N i ( ni ) ( ni ) ln = N N i p i ln p i p i = lim N (n i /N) i n i /N W H [x] = p (x) ln p (x) dx A p (x) q (x) p (x) q (x) q (x) x x KL (p q) = = p (x) ln q (x) dx { q (x) p (x) ln p (x) dx ( ) p (x) ln p (x) dx p (x) q (x) -

38 A 37 A.3 Change Finder - p (x) θ q (x θ) θ p (x) q (x θ) - p (x) p (x) x n (n = 1, 2,..., N) - KL (p q) 1 N N { ln q (x n θ) + ln p (x n ) n=1 - Change Finder

39 38 B Change Finder R ###.txt ###scorext ###score ##### ###########step1 x <- read.table("yasai1.txt") ### n <- nrow(x) scorext <-matrix(0, nrow=n, ncol=1) pt <-matrix(0, nrow=n, ncol=1) ### Tst1 <- 3 Tst3 <- 5 ###AR kst1 <- 3 kst3 <- 2 ### rst1 < rst3 < xmean <- mean(x[,1]) Cst1 <- matrix(0, nrow=kst1+1, ncol=n) Cst1e <- matrix(0, nrow=kst1, ncol=1) Cmatst1 <- matrix(0, nrow=kst1, ncol=kst1) nmatst1 <- matrix(0, nrow=kst1, ncol=kst1) wst1 <- matrix(0, nrow=kst1, ncol=n) xt <- matrix(0, nrow=n, ncol=1) xtemp <- 0 #must1 <- xmean must1 <- 0 sigmast1 <- matrix(0, nrow=n, ncol=1)

40 B 39 kstartst1 <- kst1+1 for (t in kstartst1 : n ) { must1 <- (1-rst1)*must1 + rst1*x[t,1] for (j in 1 : kstartst1){ Cst1[j,t] <- (1-rst1)*Cst1[j,t-1]+rst1*(x[t,1]-must1)*(x[t-j+1,1]-must1) Cmatst1 <- matrix(0, nrow=kst1, ncol=kst1) for (j in 1 : kst1){ nmatst1 <- matrix(0, nrow=kst1, ncol=kst1) for (i in 1 : kst1){ for (l in 1 : kst1){ if (abs(l-i) == j-1){ nmatst1 <- matrix(0, nrow=kst1, ncol=kst1) nmatst1[l,i] <- 1 Cmatst1 <- Cmatst1 + Cst1[j,t]*nmatst1 for (i in 1:kst1){ Cst1e[i]<-Cst1[i+1,t] wst1[,t] <- solve(cmatst1,cst1e) for (i in 1 : kst1){ xtemp <- xtemp + wst1[i,t]*(x[t-i,1]-must1) xt[t] <- xtemp + must1 xtemp <- 0 if (t == kstartst1){ sigmast1[t] <- (x[t,1]-xt[t])*(x[t,1]-xt[t]) if (t!= kstartst1){ sigmast1[t] <- (1-rst1)*sigmast1[t-1] + rst1*(x[t,1]-xt[t])*(x[t,1]-xt[t]) pt[t] <- exp((-(xt[t]-x[t,1])^2)/(2*sigmast1[t]))*(1/(2*pi*sqrt(sigmast1[t]))) scorext[t] <- -log(pt[t])

41 B 40 #######step2 y <- matrix(0, nrow=n, ncol=1) ytemp <- 0 step2kst1 <- kst1+tst1 for (t in step2kst1 : n ) { kstartst2 <- t-tst1+1 for (i in kstartst2 : t){ ytemp <- ytemp + scorext[i] y[t] = ytemp/tst1 ytemp <- 0 #########step3 scoreyt <-matrix(0, nrow=n, ncol=1) qt <-matrix(0, nrow=n, ncol=1) ytempst3 <- 0 Cst3 <- matrix(0, nrow=kst3+1, ncol=n) Cmatst3 <- matrix(0, nrow=kst3, ncol=kst3) Cst3e <- matrix(0, nrow=kst3, ncol=1) nmatst3 <- matrix(0, nrow=kst3, ncol=kst3) wst3 <- matrix(0, nrow=kst3, ncol=n) yt <- matrix(0, nrow=n, ncol=1) ysum <- sum(y) #must3 <- ysum/(n-tst1-kst1+1) must3 <- 0 sigmast3 <- matrix(0, nrow=n, ncol=1) kstartst3 <- kst1+tst1+1+kst3 kstartst32 <- kst3+1 for (t in kstartst3 : n ) { must3 <- (1-rst3)*must3 + rst3*y[t]

42 B 41 for (j in 1 : kstartst32){ Cst3[j,t] <- (1-rst3)*Cst3[j,t-1] + rst3*(y[t,1]-must3)*(y[t-j+1,1]-must3) Cmatst3 <- matrix(0, nrow=kst3, ncol=kst3) for (j in 1 : kst3){ nmatst3 <- matrix(0, nrow=kst3, ncol=kst3) for (i in 1 : kst3){ for (l in 1 : kst3){ if (abs(l-i) == j-1){ nmatst3 <- matrix(0, nrow=kst3, ncol=kst3) nmatst3[l,i] <- 1 Cmatst3 <- Cmatst3 + Cst3[j,t]*nmatst3 for (i in 1:kst3){ Cst3e[i]<-Cst3[i+1,t] wst3[,t] <- solve(cmatst3,cst3e) ytempst3 <- 0 for (i in 1 : kst3){ ytempst3 <- ytempst3 + wst3[i,t]*(y[t-i]-must3) yt[t] <- ytempst3 + must3 if (t==kstartst3){ sigmast3[t] <- (y[t]-yt[t])*(y[t]-yt[t]) if (t!=kstartst3){ sigmast3[t] <- (1-rst3)*sigmast3[t-1] + rst3*(y[t]-yt[t])*(y[t]-yt[t]) qt[t] <- exp(((yt[t]-y[t])^2)/(2*sigmast3[t])*(-1))*(1/(2*pi*sqrt(sigmast3[t]))) scoreyt[t] <- -log(qt[t]) score <- matrix(0, nrow=n, ncol=1) scoretemp <- 0 winsst3 <- kst1+tst1+tst3 for (t in winsst3 : n ) {

43 B 42 kstartscore <- t - Tst3 +1 for (i in kstartscore : t){ scoretemp <- scoretemp + scoreyt[i] score[t] = scoretemp/tst3 scoretemp <- 0 #plot(x[,1],xlab="",ylab="sales quantity",type="o",main="niku6") #par(new=t) plot(score,xlab="",ylab="score",col="red",main="niku1",type="o")

44 43 C

467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 B =(1+R ) B +G τ C C G τ R B C = a R +a W W ρ W =(1+R ) B +(1+R +δ ) (1 ρ) L B L δ B = λ B + μ (W C λ B )

More information

チュートリアル:ノンパラメトリックベイズ

チュートリアル:ノンパラメトリックベイズ { x,x, L, xn} 2 p( θ, θ, θ, θ, θ, } { 2 3 4 5 θ6 p( p( { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} K n p( θ θ n N n θ x N + { x,x, L, N} 2 x { θ, θ2, θ3, θ4, θ5, θ6} log p( 6 n logθ F 6 log p( + λ θ F θ

More information

Takeuchi, J., and Yamanishi, K.: A Unifying Framework for Detecting Outliers and Change Points from Time Series, IEEE Trans. on Knowledge and Data Eng

Takeuchi, J., and Yamanishi, K.: A Unifying Framework for Detecting Outliers and Change Points from Time Series, IEEE Trans. on Knowledge and Data Eng Takeuchi, J., and Yamanishi, K.: A Unifying Framework for Detecting Outliers and Change Points from Time Series, IEEE Trans. on Knowledge and Data Engineering, 18(4), pp.482-492, 2006. 2013 年度論文ゼミ #9 20130621

More information

24.15章.微分方程式

24.15章.微分方程式 m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt

More information

330

330 330 331 332 333 334 t t P 335 t R t t i R +(P P ) P =i t P = R + P 1+i t 336 uc R=uc P 337 338 339 340 341 342 343 π π β τ τ (1+π ) (1 βτ )(1 τ ) (1+π ) (1 βτ ) (1 τ ) (1+π ) (1 τ ) (1 τ ) 344 (1 βτ )(1

More information

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5-

46 Y 5.1.1 Y Y Y 3.1 R Y Figures 5-1 5-3 3.2mm Nylon Glass Y (X > X ) X Y X Figure 5-1 X min Y Y d Figure 5-3 X =X min Y X =10 Y Y Y 5.1.2 Y Figure 5- 45 5 5.1 Y 3.2 Eq. (3) 1 R [s -1 ] ideal [s -1 ] Y [-] Y [-] ideal * [-] S [-] 3 R * ( ω S ) = ω Y = ω 3-1a ideal ideal X X R X R (X > X ) ideal * X S Eq. (3-1a) ( X X ) = Y ( X ) R > > θ ω ideal X θ =

More information

untitled

untitled 10 log 10 W W 10 L W = 10 log 10 W 10 12 10 log 10 I I 0 I 0 =10 12 I = P2 ρc = ρcv2 L p = 10 log 10 p 2 p 0 2 = 20 log 10 p p = 20 log p 10 0 2 10 5 L 3 = 10 log 10 10 L 1 /10 +10 L 2 ( /10 ) L 1 =10

More information

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1

1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 1 21 10 5 1 E-mail: [email protected] 1 1 ( ) ( 1.1 1.1.1 60% mm 100 100 60 60% 1.1.2 A B A B A 1 B 1.1.3 boy W ID 1 2 3 DI DII DIII OL OL 1.1.4 2 1.1.5 1.1.6 1.1.7 1.1.8 1.2 1.2.1 1. 2. 3 1.2.2

More information

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim

Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestim TS001 Stata 11 Stata ts (ARMA) ARCH/GARCH whitepaper mwp 3 mwp-083 arch ARCH 11 mwp-051 arch postestimation 27 mwp-056 arima ARMA 35 mwp-003 arima postestimation 49 mwp-055 corrgram/ac/pac 56 mwp-009 dfgls

More information

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,, 2012 10 13 1,,,.,,.,.,,. 2?.,,. 1,, 1. (θ, φ), θ, φ (0, π),, (0, 2π). 1 0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ).

More information

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä

…K…E…X„^…x…C…W…A…fi…l…b…g…‘†[…N‡Ì“‚¢−w‘K‡Ì‹ê™v’«‡É‡Â‡¢‡Ä 2009 8 26 1 2 3 ARMA 4 BN 5 BN 6 (Ω, F, µ) Ω: F Ω σ 1 Ω, ϕ F 2 A, B F = A B, A B, A\B F F µ F 1 µ(ϕ) = 0 2 A F = µ(a) 0 3 A, B F, A B = ϕ = µ(a B) = µ(a) + µ(b) µ(ω) = 1 X : µ X : X x 1,, x n X (Ω) x 1,,

More information

第85 回日本感染症学会総会学術集会後抄録(III)

第85 回日本感染症学会総会学術集会後抄録(III) β β α α α µ µ µ µ α α α α γ αβ α γ α α γ α γ µ µ β β β β β β β β β µ β α µ µ µ β β µ µ µ µ µ µ γ γ γ γ γ γ µ α β γ β β µ µ µ µ µ β β µ β β µ α β β µ µµ β µ µ µ µ µ µ λ µ µ β µ µ µ µ µ µ µ µ

More information

5 36 5................................................... 36 5................................................... 36 5.3..............................

5 36 5................................................... 36 5................................................... 36 5.3.............................. 9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................

More information

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n

http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 2 N(ε 1 ) N(ε 2 ) ε 1 ε 2 α ε ε 2 1 n N(ɛ) N ɛ ɛ- (1.1.3) n > N(ɛ) a n α < ɛ n N(ɛ) a n http://www2.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html 1 1 1.1 ɛ-n 1 ɛ-n lim n a n = α n a n α 2 lim a n = 1 n a k n n k=1 1.1.7 ɛ-n 1.1.1 a n α a n n α lim n a n = α ɛ N(ɛ) n > N(ɛ) a n α < ɛ

More information

DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC 2 5 4 1 1 1.1 1. 2. 118

DSGE Dynamic Stochastic General Equilibrium Model DSGE 5 2 DSGE DSGE ω 0 < ω < 1 1 DSGE Blanchard and Kahn VAR 3 MCMC 2 5 4 1 1 1.1 1. 2. 118 7 DSGE 2013 3 7 1 118 1.1............................ 118 1.2................................... 123 1.3.............................. 125 1.4..................... 127 1.5...................... 128 1.6..............

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46..

Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3. 39. 4.. 4.. 43. 46.. 46.. Cotets 6 6 : 6 6 6 6 6 6 7 7 7 Part. 8. 8.. 8.. 9..... 3. 3 3.. 3 3.. 7 3.3. 8 Part. 4. () 4.. () 4.. 3 5. 5 5.. 5 5.. 6 5.3. 7 Part 3. 8 6. 8 6.. 8 6.. 8 7. 8 7.. 8 7.. 3 8. 3 9., 34 9.. 34 9.. 37 9.3.

More information

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad

168 13 Maxwell ( H ds = C S rot H = j + D j + D ) ds (13.5) (13.6) Maxwell Ampère-Maxwell (3) Gauss S B 0 B ds = 0 (13.7) S div B = 0 (13.8) (4) Farad 13 Maxwell Maxwell Ampère Maxwell 13.1 Maxwell Maxwell E D H B ε 0 µ 0 (1) Gauss D = ε 0 E (13.1) B = µ 0 H. (13.2) S D = εe S S D ds = ρ(r)dr (13.3) S V div D = ρ (13.4) ρ S V Coulomb (2) Ampère C H =

More information

Microsoft Word - 触ってみよう、Maximaに2.doc

Microsoft Word - 触ってみよう、Maximaに2.doc i i e! ( x +1) 2 3 ( 2x + 3)! ( x + 1) 3 ( a + b) 5 2 2 2 2! 3! 5! 7 2 x! 3x! 1 = 0 ",! " >!!! # 2x + 4y = 30 "! x + y = 12 sin x lim x!0 x x n! # $ & 1 lim 1 + ('% " n 1 1 lim lim x!+0 x x"!0 x log x

More information

1 P2 P P3P4 P5P8 P9P10 P11 P12

1 P2 P P3P4 P5P8 P9P10 P11 P12 1 P2 P14 2 3 4 5 1 P3P4 P5P8 P9P10 P11 P12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 & 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1! 3 2 3! 4 4 3 5 6 I 7 8 P7 P7I P5 9 P5! 10 4!! 11 5 03-5220-8520

More information

1 1 1 1 1 1 2 f z 2 C 1, C 2 f 2 C 1, C 2 f(c 2 ) C 2 f(c 1 ) z C 1 f f(z) xy uv ( u v ) = ( a b c d ) ( x y ) + ( p q ) (p + b, q + d) 1 (p + a, q + c) 1 (p, q) 1 1 (b, d) (a, c) 2 3 2 3 a = d, c = b

More information

z.prn(Gray)

z.prn(Gray) 1. 90 2 1 1 2 Friedman[1983] Friedman ( ) Dockner[1992] closed-loop Theorem 2 Theorem 4 Dockner ( ) 31 40 2010 Kinoshita, Suzuki and Kaiser [2002] () 1) 2) () VAR 32 () Mueller[1986], Mueller ed. [1990]

More information

受賞講演要旨2012cs3

受賞講演要旨2012cs3 アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート アハ ート α β α α α α α

More information

36

36 36 37 38 P r R P 39 (1+r ) P =R+P g P r g P = R r g r g == == 40 41 42 τ R P = r g+τ 43 τ (1+r ) P τ ( P P ) = R+P τ ( P P ) n P P r P P g P 44 R τ P P = (1 τ )(r g) (1 τ )P R τ 45 R R σ u R= R +u u~ (0,σ

More information

boost_sine1_iter4.eps

boost_sine1_iter4.eps 3 (, 3D ) 2. 2 3.. 3D 3D....,,. a + b = f, a, f. b a (.) b a.: b f (.2), b f., f.2. 2 Y y Q(X,Y,Z) O f o q(x,y) Z X x image plane.2:.2, O, z,. O..2 (X, Y, Z) 3D Q..2 O f, x, y X, Y. Q OQ q, q (x, y). x

More information

p12.dvi

p12.dvi 301 12 (2) : 1 (1) dx dt = f(x,t) ( (t 0,t 1,...,t N ) ) h k = t k+1 t k. h k k h. x(t k ) x k. : 2 (2) :1. step. 1 : explicit( ) : ξ k+1 = ξ k +h k Ψ(t k,ξ k,h k ) implicit( ) : ξ k+1 = ξ k +h k Ψ(t k,t

More information

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 9 π 046 Vol.69-1 January 2016 204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 047 β γ α / α / 048 Vol.69-1 January 2016 π π π / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January 2016 049 β 050 Vol.69-1

More information

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)............................................ 5 partial differentiation (total) differentiation 5. z = f(x, y) (a, b) A = lim h f(a + h, b) f(a, b) h........................................................... ( ) f(x, y) (a, b) x A (a, b) x (a, b)

More information

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α

3 3.3. I 3.3.2. [ ] N(µ, σ 2 ) σ 2 (X 1,..., X n ) X := 1 n (X 1 + + X n ): µ X N(µ, σ 2 /n) 1.8.4 Z = X µ σ/ n N(, 1) 1.8.2 < α < 1/2 Φ(z) =.5 α z α 2 2.1. : : 2 : ( ): : ( ): : : : ( ) ( ) ( ) : ( pp.53 6 2.3 2.4 ) : 2.2. ( ). i X i (i = 1, 2,..., n) X 1, X 2,..., X n X i (X 1, X 2,..., X n ) ( ) n (x 1, x 2,..., x n ) (X 1, X 2,..., X n ) : X 1,

More information

,255 7, ,355 4,452 3,420 3,736 8,206 4, , ,992 6, ,646 4,

,255 7, ,355 4,452 3,420 3,736 8,206 4, , ,992 6, ,646 4, 30 8 IT 28 1,260 3 1 11. 1101. 1102. 1103. 1 3 1,368.3 3 1,109.8 p.5,p.7 2 9,646 4,291 14.5% 10,p.11 3 3,521 8 p.13 45-49 40-44 50-54 019 5 3 1 2,891 3 6 1 3 95 1 1101 1102 1103 1101 1102 1103 1 6,255

More information

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x >

f (x) f (x) f (x) f (x) f (x) 2 f (x) f (x) f (x) f (x) 2 n f (x) n f (n) (x) dn f f (x) dx n dn dx n D n f (x) n C n C f (x) x = a 1 f (x) x = a x > 5.1 1. x = a f (x) a x h f (a + h) f (a) h (5.1) h 0 f (x) x = a f +(a) f (a + h) f (a) = lim h +0 h (5.2) x h h 0 f (a) f (a + h) f (a) f (a h) f (a) = lim = lim h 0 h h 0 h (5.3) f (x) x = a f (a) =

More information

第86回日本感染症学会総会学術集会後抄録(II)

第86回日本感染症学会総会学術集会後抄録(II) χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α

More information

橡Taro11-卒業論文.PDF

橡Taro11-卒業論文.PDF Recombination Generation Lifetime 13 9 1. 3. 4.1. 4.. 9 3. Recombination Lifetime 17 3.1. 17 3.. 19 3.3. 4. 1 4.1. Si 1 4.1.1. 1 4.1.. 4.. TEG 3 5. Recombination Lifetime 4 5.1 Si 4 5.. TEG 6 6. Pulse

More information

Box-Jenkinsの方法

Box-Jenkinsの方法 Box-Jeks の 方 法 自 己 回 帰 AR 任 意 の 時 系 列 を 過 程 ARと 呼 ぶ で 表 す これが AR または AR m m m 個 の 過 去 の 値 に 依 存 する 時 これを 次 数 の 自 己 回 帰 ここで は 時 間 の 経 過 に 対 して 不 変 な 分 布 を 持 つ 系 列 相 関 のない 撹 乱 誤 差 項 である 期 待 値 一 定 の 分 散 σ

More information

DGE DGE 2 2 1 1990 1 1 3 (1) ( 1

DGE DGE 2 2 1 1990 1 1 3 (1) ( 1 早 稲 田 大 学 現 代 政 治 経 済 研 究 所 ゼロ 金 利 下 で 量 的 緩 和 政 策 は 有 効 か? -ニューケインジアンDGEモデルによる 信 用 創 造 の 罠 の 分 析 - 井 上 智 洋 品 川 俊 介 都 築 栄 司 上 浦 基 No.J1403 Working Paper Series Institute for Research in Contemporary Political

More information

JMP V4 による生存時間分析

JMP V4 による生存時間分析 V4 1 SAS 2000.11.18 4 ( ) (Survival Time) 1 (Event) Start of Study Start of Observation Died Died Died Lost End Time Censor Died Died Censor Died Time Start of Study End Start of Observation Censor

More information

2012年5月11日

2012年5月11日 広 報 部 広 報 グループ 100-8162 東 京 都 千 代 田 区 大 手 町 二 丁 目 6 番 3 号 TEL:03-6275-5046 各 位 2014 年 5 月 9 日 役 員 等 の 人 事 異 動 について 当 社 ( 社 長 : 一 色 誠 一 )の 役 員 等 の 人 事 異 動 につきまして 下 記 の 通 り お 知 らせいたします なお および 監 査 役 の 異 動

More information

untitled

untitled Global Quantitative Research / -2- -3- -4- -5- 35 35 SPC SPC REIT REIT -6- -7- -8- -9- -10- -11- -12- -13- -14- -15- -16- -17- 100m$110-18- Global Quantitative Research -19- -20- -21- -22- -23- -24- -25-

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

1 GDP Q GDP (a) (b) (c) (d) (e) (f) A (b) (e) (f) Q GDP A GDP GDP = Q 1990 GNP GDP 4095 3004 1091 GNP A Q 1995 7 A 2 2

1 GDP Q GDP (a) (b) (c) (d) (e) (f) A (b) (e) (f) Q GDP A GDP GDP = Q 1990 GNP GDP 4095 3004 1091 GNP A Q 1995 7 A 2 2 /, 2001 1 GDP................................... 2 2.......................... 2 3.................................... 4 4........................................ 5 5.....................................

More information

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E

7 9 7..................................... 9 7................................ 3 7.3...................................... 3 A A. ω ν = ω/π E = hω. E B 8.9.4, : : MIT I,II A.P. E.F.,, 993 I,,, 999, 7 I,II, 95 A A........................... A........................... 3.3 A.............................. 4.4....................................... 5 6..............................

More information

アナログ・デジタルの仕様とパフォーマンス特性の用語集

アナログ・デジタルの仕様とパフォーマンス特性の用語集 www.tij.co.jp Application Report JAJA127 Σ Σ 2 3 Σ 4 5 Σ Σ 2 2 1 1 Data Out 1 2 3 4 Data 1 2 3 4 Out Data Out 1 2 3 4 6 A CS B CLK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 DOUT D 11 D 10 D 9 D 8 D 7 D 6 D 5

More information

4.2.................... 20 4.3.................. 21 4.4 ( )............... 22 4.5 ( )...... 24 4.6 ( )........ 25 4.7 ( )..... 26 5 28 5.1 PID........

4.2.................... 20 4.3.................. 21 4.4 ( )............... 22 4.5 ( )...... 24 4.6 ( )........ 25 4.7 ( )..... 26 5 28 5.1 PID........ version 0.01 : 2004/04/16 1 2 1.1................. 2 1.2.......................... 3 1.3................. 5 1.4............... 6 1.5.............. 7 2 9 2.1........................ 9 2.2......................

More information

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9 1-1. 1, 2, 3, 4, 5, 6, 7,, 100,, 1000, n, m m m n n 0 n, m m n 1-2. 0 m n m n 0 2 = 1.41421356 π = 3.141516 1-3. 1 0 1-4. 1-5. (1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c),

More information