umeda_1118web(2).pptx
|
|
|
- たつや けいれい
- 9 years ago
- Views:
Transcription
1 選択的ノード破壊による ネットワーク分断に耐性のある 最適ネットワーク設計 関西学院大学理工学部情報科学科 松井知美 巳波弘佳 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 0 / 20
2 現実のネットワーク 現実世界のネットワークの分析技術の進展! ネットワークのデータ収集の効率化 高速化! 膨大な量のデータを解析できる コンピュータ能力の向上! インターネット! WWWハイパーリンク構造 (Web Graph)! 知人関係! 代謝ネットワーク! など 現実の複雑なネットワークを科学的に分析 効用として, 例えば! アルゴリズムの設計! 新たな性質の発見! 経験則の適用範囲の明確化!... 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 1 / 20
3 現実のネットワーク 現実のネットワークの例 実ネットワークは 単純ではなく 複雑 一見ランダムだが 生成原理はありそう 複雑ネットワーク (Complex Network) インターネットにおけるAS(Autonomous System)間の隣接関係図 h/p://sk- aslinks.caida.org/data/2007/のデータに基づき h/p://xavier.informaccs.indiana.edu/lanet- vi/のツールを用いて描画 電子情報通信学会 第6回情報ネットワーク科学研究会 (2013/11/22) 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 2 / 20
4 複雑ネットワークが持つ性質 現実世界の複雑ネットワークが持つ性質の例 :! スケールフリー 次数分布がべき乗則を満たすこと collaboration network WWW power grid! 平均的な次数 というものが 存在しない ( 適当なスケールがない = スケールフリー )! 大きな次数を持つ少数 ( だが 少なすぎない ) の点 ( ハブ )! 小さな次数を持つ多数の点 (Barabási & Albert, 1999) 次数分布がべき乗則を満たす例 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 3 / 20
5 スケールフリーネットワーク スケールフリーネットワークの特徴 : 頑健性と脆弱性 (Error and a/ack tolerance of complex networks, R. Albert et. al.)! ランダムな点破壊には頑健 5% 程度の点がランダムに破壊される - ほとんど影響がない - 平均経路長はほぼ変化しない! 選択的破壊には脆弱 次数の高い上位 5% が選択的に破壊される - 小さな連結成分に分断される - 平均経路長は約 2 倍に増大する 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 4 / 20
6 SF ネットワーク設計 (1) SF ネットワーク設計 : リンク付加するとよい リンク付加は現実のネットワーク設計で使うのは困難 & リンク数を増やせば信頼性が上がるのは自明 & 最小コスト設計の観点からの研究はない 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 5 / 20
7 SF ネットワーク設計 (2) DetecCng CriCcal Nodes in Sparse Graph, A. Arulselvan et. Al. ネットワークを分断するノード集合を決定する最適化問題 各連結成分ができるだけ小さくなるように これらのノード集合を破壊すると 通信ネットワークの品質に重大なダメージを与える ならば これらのノード集合を守れば ネットワークの信頼性を維持することはできるのか? できない 同程度の損失を出すノード集合は, 一意ではない ネットワークの信頼性を維持するノード集合ではない 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 6 / 20
8 社会基盤として通信ネットワーク ネットワークの信頼性に関する最近の懸念 スケールフリーネットワークはハブ攻撃に弱い しかし 次数の高い少数のノード破壊で, - すぐに非連結化 - 最大連結成分のサイズが小さくなる これらの指摘に対するこれまでのネットワーク設計法は使えない なぜなら - コスト最小化を追求していない - 信頼性の確保が実はできていない 信頼性の高いネットワーク設計に関するアプローチがない 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 7 / 20
9 通信ネットワーク設計 高い信頼性が必要 一部が故障しても通信が継続できること 信頼性 の評価尺度は ネットワークやアプリケーションに依存する コストは小さいことが望ましい コストをかければ信頼性は高まるのは自明 必要な信頼性を最小コストで実現することが必要 通信ネットワーク設計 目的関数 : コスト 最小化 制約条件 : 必要な信頼性を満たすこと など最適化問題 通信ネットワーク設計は最適化問題として扱える 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 8 / 20
10 リンク ノード保護による高信頼化 Link AB が保護されていない Link AB が保護されている B 保護リンク B IP 層 A C A C E D E D Node A バックアップリンク Node B 独立したバックアップリンク Node A Node B 下位層 故障 Node C 故障 Node C Node E Node D Node E Node D 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 9 / 20
11 リンク ノード保護による高信頼化 壊れないように 頑健化 ルータ それ以外のノードが破壊しても 通信ネットワークの信頼性は 保たれる 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 10 / 20
12 リンク ノード保護による高信頼化 リンク ノード保護による高信頼化設計 リンク ノードの高信頼化のためのコストを抑えたい 保護リンク以外の任意の同時 k リンク故障に対しても 直径が指定値以下, サーバと連結しているノード数が指定値以上 などの制約条件の下で保護リンク数最小化 保護ノード以外の任意の同時 k ノード故障に対しても 最小連結成分のサイズが指定値以上 などの制約条件の下で保護ノード数最小化 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 11 / 20
13 分断抑制点保護問題 (PNC) 最小連結成分のサイズの下限 Instance : 無向グラフ G =( V, E ) 正整数 p, k, L 保護点数 同時削除点数 QuesCon : G にサイズが p 以下の ( k, L ) - 保護点集合 V p は存在するか? V p に含まれないどのような k 個の点を取り除いても, 点を除かれたグラフの各連結成分の点数は L 以上 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 12 / 20
14 分断抑制点保護問題 (PNC) 定理 1. PNC は一般的に NP 完全 既知の NP 完全問題である点被覆問題 VC からの 多項式時間帰着により証明 定理 2. 同時故障ノード数が 1 の場合における O( n 2 + nm ) アルゴリズムが存在する 定理 3. 同時故障ノード数が 2 の場合における 2 近似 O( n 3 + n 2 ( 1 + m ) + m( n+1) ) アルゴリズムが存在する 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 13 / 20
15 削除点数が 1 の場合の多項式時間 アルゴリズム 削除 k=1 L=4 p=1 連結成分のサイズ 8 (1) 点をグラフから削除する (2) 残ったグラフの最小連結成分のサイズを調べる (3) L より大きいので何もしない 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 14 / 20
16 削除点数が 1 の場合の多項式時間 アルゴリズム 削除 k=1 L=4 p=1 連結成分のサイズ3 次の点でも同じ操作を行う (1) 点を削除 (2) 残ったグラフの最小連結成分のサイズを求める (3) Lより小さいので保護ノードとする 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 15 / 20
17 削除点数が 1 の場合の多項式時間 アルゴリズム 保護点 削除 k=1 L=4 p=1 この操作 (1) (3) を全ての点に行う 連結成分のサイズ 4 (4) 保護ノード数が p より大きいなら解はなし 保護ノード数が p より小さいなら保護ノードを出力 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 16 / 20
18 削除点数が 1 の場合の多項式時間 アルゴリズム 無向グラフ : G 点数 : n 辺数 : m 全ての点に対し,12 を繰り返す 全ての点に対して実行 O( n ) 回 1 点 v をグラフ G から削除 2 最小連結成分のサイズを求める L より小さければ削除した点を保護点とする 点 v を復活させ 1 に戻る 幅優先探索を用いて O( n + m ) 3 V p p ならば保護点集合 V p を出力 そうでなければ解なし O( n(n + m) ) 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 17 / 20
19 ノード保護の例 CAIDA で公開されている ISP バックボーンネットワークの グラフ構造に対して保護ノードを調べた ISP n m L p No No No No No No No No.2(L=80) 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 18 / 20
20 ノード保護の例 CAIDA で公開されている ISP バックボーンネットワークの グラフ構造に対して保護ノードを調べた ISP n m L p No No No No No No No No.3(L=12) 5 13 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 19 / 20
21 まとめ ネットワーク分断を抑制するノード保護問題 (PNC) を定義 PNC は一般に NP 完全であることを証明 PNC において, 同時故障ノード数が 1 である場合に対する 多項式時間アルゴリズムを設計 PNC において, 同時故障ノード数が 2 である場合に対する 2 近似多項式時間アルゴリズムを設計 選択的ノード破壊によるネットワーク分断に耐性のある最適ネットワーク設計 20 / 20
Microsoft PowerPoint - mp13-07.pptx
数理計画法 ( 数理最適化 ) 第 7 回 ネットワーク最適化 最大流問題と増加路アルゴリズム 担当 : 塩浦昭義 ( 情報科学研究科准教授 ) [email protected] ネットワーク最適化問題 ( 無向, 有向 ) グラフ 頂点 (verex, 接点, 点 ) が枝 (edge, 辺, 線 ) で結ばれたもの ネットワーク 頂点や枝に数値データ ( 距離, コストなど ) が付加されたもの
PowerPoint Presentation
2012 年 11 月 2 日 複雑系の科学 第 3 回複雑ネットワーク その 1 東京大学大学院工学系研究科鳥海不二夫 複雑ネットワーク 1. 世の中すべてネットワーク~ 複雑ネットワーク入門 2. ネットワークを見る~ 複雑ネットワーク分析指標 3. 古典的ネットワーク~ランダム 格子ネットワーク 4. 世間は狭い~スモールワールドネットワーク 5. 不平等な世界 ~スケールフリーネットワーク
Microsoft PowerPoint - 13.ppt [互換モード]
13. 近似アルゴリズム 1 13.1 近似アルゴリズムの種類 NP 困難な問題に対しては多項式時間で最適解を求めることは困難であるので 最適解に近い近似解を求めるアルゴリズムが用いられることがある このように 必ずしも厳密解を求めないアルゴリズムは 大きく分けて 2 つの範疇に分けられる 2 ヒューリスティックと近似アルゴリズム ヒュ- リスティクス ( 発見的解法 経験的解法 ) 遺伝的アルゴリズム
Microsoft PowerPoint - mp11-06.pptx
数理計画法第 6 回 塩浦昭義情報科学研究科准教授 [email protected] http://www.dais.is.tohoku.ac.jp/~shioura/teaching 第 5 章組合せ計画 5.2 分枝限定法 組合せ計画問題 組合せ計画問題とは : 有限個の もの の組合せの中から, 目的関数を最小または最大にする組合せを見つける問題 例 1: 整数計画問題全般
統計的データ解析
統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c
アルゴリズムとデータ構造
講義 アルゴリズムとデータ構造 第 2 回アルゴリズムと計算量 大学院情報科学研究科情報理工学専攻情報知識ネットワーク研究室喜田拓也 講義資料 2018/5/23 今日の内容 アルゴリズムの計算量とは? 漸近的計算量オーダーの計算の方法最悪計算量と平均計算量 ポイント オーダー記法 ビッグオー (O), ビッグオメガ (Ω), ビッグシータ (Θ) 2 お風呂スケジューリング問題 お風呂に入る順番を決めよう!
Microsoft PowerPoint - ad11-09.pptx
無向グラフと有向グラフ 無向グラフ G=(V, E) 頂点集合 V 頂点の対を表す枝の集合 E e=(u,v) 頂点 u, v は枝 e の端点 f c 0 a 1 e b d 有向グラフ G=(V, E) 頂点集合 V 頂点の順序対を表す枝の集合 E e=(u,v) 頂点 uは枝 eの始点頂点 vは枝 eの終点 f c 0 a 1 e b d グラフのデータ構造 グラフ G=(V, E) を表現するデータ構造
グラフ理論における偶奇性の現象
グラフ理論における偶奇性に関連する現象 (3 回目の講義 ) 加納幹雄 (Mikio Kano) 茨城大学名誉教授 講義の概略 1 回目入門的な話証明の多くを演習問題とします 2 回目マッチングと 1- 因子の一般化に関連する話 3 回目因子 = ある条件を満たす全域部分グラフ最近の因子理論のなかで偶奇性に関連するものの紹介 連結グラフ G と G-S の成分 G S S V(G) iso(g-s)=3
航空機の運動方程式
可制御性 可観測性. 可制御性システムの状態を, 適切な操作によって, 有限時間内に, 任意の状態から別の任意の状態に移動させることができるか否かという特性を可制御性という. 可制御性を有するシステムに対し, システムは可制御である, 可制御なシステム という言い方をする. 状態方程式, 出力方程式が以下で表されるn 次元 m 入力 r 出力線形時不変システム x Ax u y x Du () に対し,
カイ二乗フィット検定、パラメータの誤差
統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,
Microsoft PowerPoint - mp11-02.pptx
数理計画法第 2 回 塩浦昭義情報科学研究科准教授 [email protected] http://www.dais.is.tohoku.ac.jp/~shioura/teaching 前回の復習 数理計画とは? 数理計画 ( 復習 ) 数理計画問題とは? 狭義には : 数理 ( 数学 ) を使って計画を立てるための問題 広義には : 与えられた評価尺度に関して最も良い解を求める問題
Microsoft PowerPoint - DA2_2017.pptx
1// 小テスト内容 データ構造とアルゴリズム IⅠ 第 回単一始点最短路 (I) 1 1 第 章の構成. 単一始点最短路問題 単一始点最短路問題とは 単一始点最短路問題の考え方 単一始点最短路問題を解くつのアルゴリズム ベルマン フォードのアルゴリズム トポロジカル ソートによる解法 ダイクストラのアルゴリズム 1 1 単一始点最短路問題とは 単一始点最短路問題とは 前提 : 重み付き有向グラフ
DVIOUT-SS_Ma
第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり
Microsoft PowerPoint - DA2_2018.pptx
1//1 データ構造とアルゴリズム IⅠ 第 回単一始点最短路 (I). 単一始点最短路問題 第 章の構成 単一始点最短路問題とは 単一始点最短路問題の考え方 単一始点最短路問題を解くつのアルゴリズム ベルマン フォードのアルゴリズム トポロジカル ソートによる解法 ダイクストラのアルゴリズム 単一始点最短路問題とは 単一始点最短路問題とは 前提 : 重み付き有向グラフ 特定の開始頂点 から任意の頂点
簡単な検索と整列(ソート)
フローチャート (2) アルゴリズム論第 2 回講義 2011 年 10 月 7 日 ( 金 ) 反復構造 ( 一定回数のループ処理 ) START 100 回同じ処理を繰り返す お風呂で子供が指をおって数を数える感じ 繰り返し数を記憶する変数をカウンター ( 変数名 I をよく使う ) と呼ぶ カウンターを初期化して, 100 回繰り返したかどうか判定してそうならば終了そうでなければ処理を実行して
Learning Bayesian Network from data 本論文はデータから大規模なベイジアン ネットワークを構築する TPDA(Three Phase Dependency Analysis) のアルゴリズムを記述 2002 年の発表だが 現在も大規模用 BN モデルのベンチマークと
@mabo0725 2015 年 05 月 29 日 Learning Bayesian Network from data 本論文はデータから大規模なベイジアン ネットワークを構築する TPDA(Three Phase Dependency Analysis) のアルゴリズムを記述 2002 年の発表だが 現在も大規模用 BN モデルのベンチマークとして使用されている TPDA は BN Power
パスウェイ解析 システム 物学 本和広 (JSTさきがけ ) tokyo.ac.jpk ac 1
パスウェイ解析 システム 物学 本和広 (JSTさきがけ ) [email protected] tokyo.ac.jpk ac 1 パスウェイ解析 システム 物学の必要性 命現象は個々の 体分 の相互作 によって記述される どのように記述 理解するか Science, 298, 763 (2002)2 本 の流れ パスウェイ / ネットワーク解析 相互作 をどのように表現 解析するか システム 物学
CLEFIA_ISEC発表
128 ビットブロック暗号 CLEFIA 白井太三 渋谷香士 秋下徹 盛合志帆 岩田哲 ソニー株式会社 名古屋大学 目次 背景 アルゴリズム仕様 設計方針 安全性評価 実装性能評価 まとめ 2 背景 AES プロジェクト開始 (1997~) から 10 年 AES プロジェクト 攻撃法の進化 代数攻撃 関連鍵攻撃 新しい攻撃法への対策 暗号設計法の進化 IC カード, RFID などのアプリケーション拡大
学習指導要領
(1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している
<4D F736F F D208CF68BA48C6F8DCF8A C30342C CFA90B68C6F8DCF8A7782CC8AEE967B92E8979D32288F4390B394C529332E646F63>
2. 厚生経済学の ( 第 ) 基本定理 2 203 年 4 月 7 日 ( 水曜 3 限 )/8 本章では 純粋交換経済において厚生経済学の ( 第 ) 基本定理 が成立することを示す なお より一般的な生産技術のケースについては 4.5 補論 2 で議論する 2. 予算集合と最適消費点 ( 完全 ) 競争市場で達成される資源配分がパレート効率的であることを示すための準備として 個人の最適化行動を検討する
調和系工学 ゲーム理論編
ゲーム理論第三部 知的都市基盤工学 5 月 30 日 ( 水 5 限 (6:30~8:0 再掲 : 囚人のジレンマ 囚人のジレンマの利得行列 協調 (Cooperte:C プレイヤー 裏切 (Deect:D ( 協調 = 黙秘 裏切 = 自白 プレイヤー C 3,3 4, D,4, 右がプレイヤー の利得左がプレイヤー の利得 ナッシュ均衡点 プレイヤーの合理的な意思決定の結果 (C,C はナッシュ均衡ではない
Microsoft PowerPoint - DA2_2018.pptx
データ構造とアルゴリズム IⅠ 第 7 回幅優先 / 深さ優先探索 / トポロジカルソート. 基本的グラフアルゴリズム 無向グラフ 個の頂点と7 本の辺からなる無向グラフ 隣接リスト 各頂点に関して, 隣接する ( 直接, 辺で結ばれた ) 頂点集合をリストで表現 無向グラフ G=(V,E),V は頂点集合,E は辺集合.E の要素は頂点のペア {u,} によって表される.{u, } と {, u}
論文ゼミ ( 修士論文にむけて ) M2 浦田淳司 (Wed)
論文ゼミ 修士論文にむけて M2 浦田淳司 2009.2.02Wed 修士研究 : 全体見取り図 第 章 背景 目的 第 2 章 既往研究 避難行動 ゲーム理論 ネットワーク分析 複雑ネットワーク 第 3 章 調査概要 第 4 章 基礎分析 第 5 章 紐帯生成モデル ミクロモデル 第 6 章 巨視モデルの適用 適応度モデル 第 7 章 ネットワーク評価 2 第 8 章 結論 2 章概要 第 2 章既往研究の整理
Information Theory
前回の復習 情報をコンパクトに表現するための符号化方式を考える 情報源符号化における基礎的な性質 一意復号可能性 瞬時復号可能性 クラフトの不等式 2 l 1 + + 2 l M 1 ハフマン符号の構成法 (2 元符号の場合 ) D. Huffman 1 前回の練習問題 : ハフマン符号 符号木を再帰的に構成し, 符号を作る A B C D E F 確率 0.3 0.2 0.2 0.1 0.1 0.1
PowerPoint プレゼンテーション
解けない問題 を知ろう 保坂和宏 ( 東京大学 B2) 第 11 回 JOI 春合宿 2012/03/19 概要 計算量に関して P と NP NP 完全 決定不能 いろいろな問題 コンテストにおいて Turing 機械 コンピュータの計算のモデル 計算 を数学的に厳密に扱うためのもの メモリのテープ (0/1 の列 ), ポインタ, 機械の内部状態を持ち, 規則に従って状態遷移をする 本講義では
航空機の運動方程式
オブザーバ 状態フィードバックにはすべての状態変数の値が必要であった. しかしながら, システムの外部から観測できるのは出力だけであり, すべての状態変数が観測できるとは限らない. そこで, 制御対象システムの状態変数を, システムのモデルに基づいてその入出力信号から推定する方法を考える.. オブザーバとは 次元 m 入力 r 出力線形時不変システム x Ax Bu y Cx () の状態変数ベクトル
計算幾何学入門 Introduction to Computational Geometry
テーマ 6: ボロノイ図とデローネイ 三角形分割 ボロノイ図, デローネイ三角形分割 ボロノイ図とは 平面上に多数の点が与えられたとき, 平面をどの点に最も近いかという関係で分割したものをボロノイ図 (Voronoi diagram) という. 2 点だけの場合 2 点の垂直 2 等分線による分割 3 点の場合 3 点で決まる三角形の外接円の中心から各辺に引いた垂直線による分割線 2 点からの等距離線
Microsoft PowerPoint - 10.pptx
m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる
周期時系列の統計解析 (3) 移動平均とフーリエ変換 nino 2017 年 12 月 18 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ( ノイズ ) の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分の振幅
周期時系列の統計解析 3 移動平均とフーリエ変換 io 07 年 月 8 日 移動平均は, 周期時系列における特定の周期成分の消去や不規則変動 ノイズ の低減に汎用されている統計手法である. ここでは, 周期時系列をコサイン関数で近似し, その移動平均により周期成分のがどのように変化するのか等について検討する. また, 気温の実測値に移動平均を適用した結果についてフーリエ変換も併用して考察する. 単純移動平均の計算式移動平均には,
Microsoft PowerPoint - 9.pptx
9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍
040402.ユニットテスト
2. ユニットテスト ユニットテスト ( 単体テスト ) ユニットテストとはユニットテストはプログラムの最小単位であるモジュールの品質をテストすることであり その目的は結合テスト前にモジュール内のエラーを発見することである テストは機能テストと構造テストの2つの観点から行う モジュールはプログラムを構成する要素であるから 単体では動作しない ドライバとスタブというテスト支援ツールを使用してテストを行う
データ構造
アルゴリズム及び実習 7 馬青 1 表探索 定義表探索とは 表の形で格納されているデータの中から条件に合ったデータを取り出してくる操作である 但し 表は配列 ( 連結 ) リストなどで実現できるので 以降 表 の代わりに直接 配列 や リスト などの表現を用いる場合が多い 表探索をただ 探索 と呼ぶ場合が多い 用語レコード : 表の中にある個々のデータをレコード (record) と呼ぶ フィールド
次に示す数値の並びを昇順にソートするものとする このソートでは配列の末尾側から操作を行っていく まず 末尾の数値 9 と 8 に着目する 昇順にソートするので この値を交換すると以下の数値の並びになる 次に末尾側から 2 番目と 3 番目の 1
4. ソート ( 教科書 p.205-p.273) 整列すなわちソートは アプリケーションを作成する際には良く使われる基本的な操作であり 今までに数多くのソートのアルゴリズムが考えられてきた 今回はこれらソートのアルゴリズムについて学習していく ソートとはソートとは与えられたデータの集合をキーとなる項目の値の大小関係に基づき 一定の順序で並べ替える操作である ソートには図 1 に示すように キーの値の小さいデータを先頭に並べる
コンピュータ応用・演習 情報処理システム
2010 年 12 月 15 日 データエンジニアリング 演習 情報処理システム データマイニング ~ データからの自動知識獲得手法 ~ 1. 演習の目的 (1) 多種多様な膨大な量のデータを解析し, 企業の経営活動などに活用することが望まれている. 大規模データベースを有効に活用する, データマイニング技術の研究が脚光を浴びている 1 1. 演習の目的 (2) POS データを用いて顧客の購買パターンを分析する.
ビッグデータ分析を高速化する 分散処理技術を開発 日本電気株式会社
ビッグデータ分析を高速化する 分散処理技術を開発 日本電気株式会社 概要 NEC は ビッグデータの分析を高速化する分散処理技術を開発しました 本技術により レコメンド 価格予測 需要予測などに必要な機械学習処理を従来の 10 倍以上高速に行い 分析結果の迅速な活用に貢献します ビッグデータの分散処理で一般的なオープンソース Hadoop を利用 これにより レコメンド 価格予測 需要予測などの分析において
Microsoft PowerPoint - 06graph3.ppt [互換モード]
I118 グラフとオートマトン理論 Graphs and Automata 担当 : 上原隆平 (Ryuhei UEHARA) [email protected] http://www.jaist.ac.jp/~uehara/ 1/20 6.14 グラフにおける探索木 (Search Tree in a Graph) グラフG=(V,E) における探索アルゴリズム : 1. Q:={v { 0 }
Microsoft PowerPoint - Inoue-statistics [互換モード]
誤差論 神戸大学大学院農学研究科 井上一哉 (Kazuya INOUE) 誤差論 2011 年度前期火曜クラス 1 講義内容 誤差と有効数字 (Slide No.2~8 Text p.76~78) 誤差の分布と標準偏差 (Slide No.9~18 Text p.78~80) 最確値とその誤差 (Slide No.19~25 Text p.80~81) 誤差の伝播 (Slide No.26~32 Text
離散数学
離散数学 最小全域木と最大流問題 落合秀也 今日の内容 最小全域木 プリムのアルゴリズム 最大流問題 フォード ファルカーソンのアルゴリズム 今日の内容 最小全域木 プリムのアルゴリズム 最大流問題 フォード ファルカーソンのアルゴリズム 最小全域木を考える Minimum Spanning Tree Problem ラベル付 ( 重み付 ) グラフ G(V, E) が与えられたとき ラベルの和が最小となる全域木を作りたい
千葉大学 ゲーム論II
千葉大学ゲーム論 II 第五, 六回 担当 上條良夫 千葉大学ゲーム論 II 第五 六回上條良夫 本日の講義内容 前回宿題の問題 3 の解答 Nash の交渉問題 Nash 解とその公理的特徴づけ 千葉大学ゲーム論 II 第五 六回上條良夫 宿題の問題 3 の解答 ホワイトボードでやる 千葉大学ゲーム論 II 第五 六回上條良夫 3 Nash の二人交渉問題 Nash の二人交渉問題は以下の二つから構成される
どのような便益があり得るか? より重要な ( ハイリスクの ) プロセス及びそれらのアウトプットに焦点が当たる 相互に依存するプロセスについての理解 定義及び統合が改善される プロセス及びマネジメントシステム全体の計画策定 実施 確認及び改善の体系的なマネジメント 資源の有効利用及び説明責任の強化
ISO 9001:2015 におけるプロセスアプローチ この文書の目的 : この文書の目的は ISO 9001:2015 におけるプロセスアプローチについて説明することである プロセスアプローチは 業種 形態 規模又は複雑さに関わらず あらゆる組織及びマネジメントシステムに適用することができる プロセスアプローチとは何か? 全ての組織が目標達成のためにプロセスを用いている プロセスとは : インプットを使用して意図した結果を生み出す
ファイナンスのための数学基礎 第1回 オリエンテーション、ベクトル
時系列分析 変量時系列モデルとその性質 担当 : 長倉大輔 ( ながくらだいすけ 時系列モデル 時系列モデルとは時系列データを生み出すメカニズムとなるものである これは実際には未知である 私たちにできるのは観測された時系列データからその背後にある時系列モデルを推測 推定するだけである 以下ではいくつかの代表的な時系列モデルを考察する 自己回帰モデル (Auoregressive Model もっとも頻繁に使われる時系列モデルは自己回帰モデル
0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生
0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,
ディジタル信号処理
ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*
講義「○○○○」
講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数
Microsoft PowerPoint - H21生物計算化学2.ppt
演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A
人工知能入門
藤田悟 黄潤和 探索とは 探索問題 探索解の性質 探索空間の構造 探索木 探索グラフ 探索順序 深さ優先探索 幅優先探索 探索プログラムの作成 バックトラック 深さ優先探索 幅優先探索 n 個の ueen を n n のマスの中に 縦横斜めに重ならないように配置する 簡単化のために 4-ueen を考える 正解 全状態の探索プログラム 全ての最終状態を生成した後に 最終状態が解であるかどうかを判定する
総セク報告書(印刷発出版_.PDF
- 1 - - 2 - - 3 - - 4 - - 5 - - 6 - - 7 - - 8 - - 9 - - 10 - - 11 - IP 110 110 IP 110 110 - 12-110 2 IP 3 1 110 2 IP 3 1 - 13 - - 14 - IP - 15 - 17 11-16 - - 17 - - 18 - FAX (*1) http://www.kantei.go.jp/jp/singi/titeki2/kettei/040527f.html
Microsoft PowerPoint - stat-2014-[9] pptx
統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: [email protected] website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を
Microsoft Word - 町田・全 H30学力スタ 別紙1 1年 数学Ⅰ.doc
(1) 数と式 学習指導要領 都立町田高校 学力スタンダード ア 数と集合 ( ア ) 実数 根号を含む式の計算 数を実数まで拡張する意義を理解し 簡単な 循環小数を表す記号を用いて, 分数を循環小数で表 無理数の四則計算をすること すことができる 今まで学習してきた数の体系について整理し, 考察 しようとする 絶対値の意味と記号表示を理解している 根号を含む式の加法, 減法, 乗法の計算ができる
不偏推定量
不偏推定量 情報科学の補足資料 018 年 6 月 7 日藤本祥二 統計的推定 (statistical estimatio) 確率分布が理論的に分かっている標本統計量を利用する 確率分布の期待値の値をそのまま推定値とするのが点推定 ( 信頼度 0%) 点推定に ± で幅を持たせて信頼度を上げたものが区間推定 持たせた幅のことを誤差 (error) と呼ぶ 信頼度 (cofidece level)
Microsoft PowerPoint - DA2_2017.pptx
// データ構造とアルゴリズム IⅠ 第 回単一始点最短路 (II)/ 全点対最短路 トポロジカル ソート順による緩和 トポロジカル ソート順に緩和 閉路のない有向グラフ限定 閉路がないならトポロジカル ソート順に緩和するのがベルマン フォードより速い Θ(V + E) 方針 グラフをトポロジカル ソートして頂点に線形順序を与える ソート順に頂点を選び, その頂点の出辺を緩和する 各頂点は一回だけ選択される
PowerPoint Template
プログラミング演習 Ⅲ Linked List P. Ravindra S. De Silva e-mail: [email protected], Room F-413 URL: www.icd.cs.tut.ac.jp/~ravi/prog3/index_j.html 連結リストとは? 一つひとつの要素がその前後の要素との参照関係をもつデータ構造 A B C D 連結リストを使用する利点 - 通常の配列はサイズが固定されている
データ解析
データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第
例 e 指数関数的に減衰する信号を h( a < + a a すると, それらのラプラス変換は, H ( ) { e } e インパルス応答が h( a < ( ただし a >, U( ) { } となるシステムにステップ信号 ( y( のラプラス変換 Y () は, Y ( ) H ( ) X (
第 週ラプラス変換 教科書 p.34~ 目標ラプラス変換の定義と意味を理解する フーリエ変換や Z 変換と並ぶ 信号解析やシステム設計における重要なツール ラプラス変換は波動現象や電気回路など様々な分野で 微分方程式を解くために利用されてきた ラプラス変換を用いることで微分方程式は代数方程式に変換される また 工学上使われる主要な関数のラプラス変換は簡単な形の関数で表されるので これを ラプラス変換表
PowerPoint Presentation
幅優先探索アルゴリズム 復習 Javaでの実装 深さ優先探索 復習 Javaでの実装 1 探索アルゴリズムの一覧 問題を解決するための探索 幅優先探索 深さ優先探索 深さ制限探索 均一コスト探索 反復深化法 欲張り探索 山登り法 最良優先探索 2 Breadth-first search ( 幅優先探索 ) 探索アルゴリズムはノードやリンクからなる階層的なツリー構造で構成された状態空間を探索するアルゴリズムです
オートマトン 形式言語及び演習 3. 正規表現 酒井正彦 正規表現とは 正規表現 ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械正規表現 : 言語
オートマトン 形式言語及び演習 3. 酒井正彦 www.trs.css.i.nagoya-u.ac.jp/~sakai/lecture/automata/ とは ( 正則表現, Regular Expression) オートマトン : 言語を定義する機械 : 言語を記号列で定義 - 記述しやすい ( ユーザフレンドリ ) 例 :01 + 10 - UNIX の grep コマンド - UNIX の
1.民営化
参考資料 最小二乗法 数学的性質 経済統計分析 3 年度秋学期 回帰分析と最小二乗法 被説明変数 の動きを説明変数 の動きで説明 = 回帰分析 説明変数がつ 単回帰 説明変数がつ以上 重回帰 被説明変数 従属変数 係数 定数項傾き 説明変数 独立変数 残差... で説明できる部分 説明できない部分 説明できない部分が小さくなるように回帰式の係数 を推定する有力な方法 = 最小二乗法 最小二乗法による回帰の考え方
グラフの探索 JAVA での実装
グラフの探索 JAVA での実装 二つの探索手法 深さ優先探索 :DFS (Depth-First Search) 幅優先探索 :BFS (Breadth-First Search) 共通部分 元のグラフを指定して 極大木を得る 探索アルゴリズムの利用の観点から 利用する側からみると 取り替えられる部品 どちらの方法が良いかはグラフに依存 操作性が同じでなければ 共通のクラスの派生で作ると便利 共通化を考える
混沌系工学特論 #5
混沌系工学特論 #5 情報科学研究科井上純一 URL : htt://chaosweb.comlex.eng.hokudai.ac.j/~j_inoue/ Mirror : htt://www5.u.so-net.ne.j/j_inoue/index.html 平成 17 年 11 月 14 日第 5 回講義 デジタルデータの転送と復元再考 P ({ σ} ) = ex σ ( σσ ) < ij>
Microsoft Word - 201hyouka-tangen-1.doc
数学 Ⅰ 評価規準の作成 ( 単元ごと ) 数学 Ⅰ の目標及び図形と計量について理解させ 基礎的な知識の習得と技能の習熟を図り それらを的確に活用する機能を伸ばすとともに 数学的な見方や考え方のよさを認識できるようにする 評価の観点の趣旨 式と不等式 二次関数及び図形と計量における考え方に関 心をもつとともに 数学的な見方や考え方のよさを認識し それらを事象の考察に活用しようとする 式と不等式 二次関数及び図形と計量における数学的な見
【Cosminexus V9】クラウドサービスプラットフォーム Cosminexus
http://www.hitachi.co.jp/soft/ask/ http://www.hitachi.co.jp/cosminexus/ Printed in Japan(H) 2014.2 CA-884R データ管 タ管理 理 ノンストップデータベース データ管 タ管理 理 インメモリデータグリッド HiRDB Version 9 ucosminexus Elastic Application
Autodesk Inventor Skill Builders Autodesk Inventor 2010 構造解析の精度改良 メッシュリファインメントによる収束計算 予想作業時間:15 分 対象のバージョン:Inventor 2010 もしくはそれ以降のバージョン シミュレーションを設定する際
Autodesk Inventor Skill Builders Autodesk Inventor 2010 構造解析の精度改良 メッシュリファインメントによる収束計算 予想作業時間:15 分 対象のバージョン:Inventor 2010 もしくはそれ以降のバージョン シミュレーションを設定する際に 収束判定に関するデフォルトの設定をそのまま使うか 修正をします 応力解析ソルバーでは計算の終了を判断するときにこの設定を使います
0 スペクトル 時系列データの前処理 法 平滑化 ( スムージング ) と微分 明治大学理 学部応用化学科 データ化学 学研究室 弘昌
0 スペクトル 時系列データの前処理 法 平滑化 ( スムージング ) と微分 明治大学理 学部応用化学科 データ化学 学研究室 弘昌 スペクトルデータの特徴 1 波 ( 波数 ) が近いと 吸光度 ( 強度 ) の値も似ている ノイズが含まれる 吸光度 ( 強度 ) の極大値 ( ピーク ) 以外のデータも重要 時系列データの特徴 2 時刻が近いと プロセス変数の値も似ている ノイズが含まれる プロセス変数の極大値
情報システム評価学 ー整数計画法ー
情報システム評価学 ー整数計画法ー 第 1 回目 : 整数計画法とは? 塩浦昭義東北大学大学院情報科学研究科准教授 この講義について 授業の HP: http://www.dais.is.tohoku.ac.jp/~shioura/teaching/dais08/ 授業に関する連絡, および講義資料等はこちらを参照 教員への連絡先 : shioura (AT) dais.is.tohoku.ac.jp
untitled
に, 月次モデルの場合でも四半期モデルの場合でも, シミュレーション期間とは無関係に一様に RMSPE を最小にするバンドの設定法は存在しないということである 第 2 は, 表で与えた 2 つの期間及びすべての内生変数を見渡して, 全般的にパフォーマンスのよいバンドの設定法は, 最適固定バンドと最適可変バンドのうちの M 2, Q2 である いずれにしても, 以上述べた 3 つのバンド設定法は若干便宜的なものと言わざるを得ない
<4D F736F F F696E74202D CB4967B2D8F6F93FC8AC48E8B8D9E F8E9E8C9F8DF5817A D C882F182C282A C520837D836A B2E707074>
なんつい WEB 版簡易マニュアル ( 随時検索タイプ ) 2013/1/11 更新 1 URL ログイン名 パスワード < お手持ちのパソコンで位置情報を確認する > 1URL 2 ログイン名 3 パスワード https://loc.tliserv.co.jp/upr/user/login.do?svc= < お手持ちの携帯電話 PHS で位置情報を確認する > 4URL https://loc.tliserv.co.jp/upr/ktai/top.do?svc=
フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と
フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 となるように半固定抵抗器を調整する ( ゼロ点調整のため ) 図 1 非反転増幅器 2010 年度版物理工学実験法
