データ解析
|
|
|
- きみお だいほうじ
- 7 years ago
- Views:
Transcription
1 データ解析 ( 前期 ) 最小二乗法 向井厚志 005 年度テキスト 0
2 データ解析 - 最小二乗法 - 目次 第 回 Σ の計算 第 回ヒストグラム 第 3 回平均と標準偏差 6 第 回誤差の伝播 8 第 5 回正規分布 0 第 6 回最尤性原理 第 7 回正規分布の 分布の幅 第 8 回最小二乗法 6 第 9 回最小二乗法の練習 8 第 0 回最小二乗法の推定誤差 0 第 回推定誤差の計算 第 回 試験 -
3 第 回 Σ の計算. 個のデータの足し算 データ セット,,,, 3 K データの表記 データ番号 データの種類 足し算の表記 データ番号 終了番号 開始番号 3 L データ番号が ずつ加算 Σ の基本的な規則 ( : 定数 ). 平方根の計算 : X X X Y Y Y Y Y Y Y
4 課題 Σ の計算得点 /5 次の式を足し算に展開しなさい ( 各 0.5 点 ) 次の式を Σ でまとめなさい ( 各 0.5 点 ) の平方根を求める 空欄に適切な 桁の整数を記入しなさい ( 全 点 )
5 第 回 ヒストグラム ヒストグラム ある範囲内の測定値が何回現れたかを示す度数分布表に基づいて作成された棒グラフ 測定されやすい値 ( 平均 ) や測定値のばらつき ( 標準偏差 ) を大まかに視認できる ヒストグラムの作成手順 最大値と最小値を調べる 区間を設定する 3 度数分布表を作成する ヒストグラム ( 棒グラフ ) を描く 例題 組 A 班の 00m 走のタイム [ 秒 ] 番号 タイム [ 秒 ] 度数分布表の作成 最小値 =.7 秒 最大値 = 7.5 秒.8 秒の差 秒間隔で区間を設定 最小値以下 最大値以上 タイム [ 秒 ] 計 度数 3 0 ヒストグラムの作成 以上 3 未満 3 以上 未満 3 度数 タイム [ 秒 ]
6 課題 ヒストグラム得点 /5 ある樹木の葉の横幅を測定し, 表のような計 30 個の測定値を得た ( 単位 :mm) 最小値と最大値を調べ, 空欄に記入しなさい ( 各 0. 点 ) 最小値 = 最大値 = mm mm mm 間隔で区間を設定し, 度数分布表を作成しなさい ( 各 0. 点 ) 葉幅 [mm] 計 度数 30 3 問 の度数分布表をもとに, ヒストグラムを作成しなさい ( 全 点 ) 度数 葉幅 [mm] 5
7 第 3 回 平均と標準偏差 ある実験で音速を測定したところ, 下記の結果が得られた 測定番号 3 5 音速 [m/s] 測定値の合計. 平均 測定値の個数 測定値 [m/s] 代表値 測定値 - 代表値 計 ) 測定値 代表値の合計 平均 代表値 [m/s] 測定値の個数 5. 標準偏差 測定値 平均の合計測定値の個数 測定値 [m/s] 平均 測定値 - 平均 ( 測定値 - 平均 ) 計 ).80.8 標準偏差 L m/s 5 3. 測定結果の表記 平均 ± 標準偏差単位 6
8 課題 3 平均と標準偏差得点 /5 バネに様々な重さのおもりをつるし, バネの伸びを測った その測定結果からバネ定数を計算 したとき, 以下の結果が得られた バネ定数の推定値を求めよ 測定番号 バネ定数 [/m] 測定値 代表値 測定値 - 代表値 平均 測定値 - 平均 ( 測定値 - 平均 ) 計計計 ( 各 0. 点 ) 7 平均 /m ( 各 0. 点 ) 0 標準偏差 /m ( 小数点以下 桁まで表示 ) ( 各 0.5 点 ) バネ定数の推定値 85 /m ( 小数点以下 桁まで表示 ) ( 各 0.5 点 ) 7
9 第 回 誤差の伝播 つの測定値, が存在するとき, 測定値の和 の誤差 を求める を測定したとき, 次のつの測定値が等しい確率で得られたとする,,, その標準偏差は である 3 を測定したとき, 次のつの測定値が等しい確率で得られたとする,,, その標準偏差は である 3 を測定したとき, 次の つの測定値が等しい確率で得られることが期待される,,,, その標準偏差は, 測定値 [m/s] 平均測定値 - 平均 ( 測定値 - 平均 ) 計 計 より, よって, 測定値 と である の和は 一般に,,, 3 3,, の和は, L L 3 3 8
10 課題 誤差の伝播得点 /5 3 個のおもり A,B,C がある おもりの重さをそれぞれ 5 回ずつ測定したところ, 次表の結 果が得られた おもり A 測定番号 3 5 重さ [kg] おもり B 測定番号 3 5 重さ [kg] おもり C 測定番号 3 5 重さ [kg] おもり A,B,C の重さの平均値および標準偏差を求めよ ただし, 平均および標準偏差は, 小数点以下 桁目を四捨五入し, 小数点以下 桁まで表示せよ ( 各 0.5 点 ) 平均 [kg] 標準偏差 [kg] おもり A おもり B おもり C おもり A,B,C の重さの合計およびその測定誤差を求めよ ただし, 合計の測定誤差は, 小数点以下 桁目を四捨五入し, 小数点以下 桁まで表示せよ ( 各 点 ) ± kg 9
11 第 5 回 正規分布 正規分布 f() = 自然界で測定された値が満たす確率密度分布 f e α : 真値 β : 分布の幅 α=.5,β= の場合 0.5 α 山のピーク 最も測定されやすい値 0. 確率密度 β 山のそでの広がり 測定値のばらつきの大きさ 測定値 の測定値 が得られる確率 = ~ の範囲で確率密度関数を積分した値 確率密度 確率 p f d 測定値 の測定値 が得られる確率 (68%) 0.95 (95%) 0.99 (99%) 測定値測定値測定値 0
12 課題 5 正規分布得点 /5 表は, 次式で表される正規分布 f()(α=0,β=) の値を示す f e f f t dt f の値を用いて, 正規分布のグラフを描け ( 点 ) 確率密度 f() 数値積分によって, 表の f t dt の値を求めよ 3 f t dt のグラフを描け 確率 f()d ( 各 0. 点 ) ( 点 ) 0 3
13 第 6 回最尤性原理 ( さいゆうせいげんり ) 最尤性原理 個の測定値,,, があるとき, これらの測定値が得られる確率を最大とする α および β が真値および分布の幅の最良推定値である 測定値が真値 α, 分布の幅 β の正規分布に従うとき, 測定値 が k k となる確率 k P は, 近似的に次式で表される k k k k e d e P 測定値,,, が同時に得られる確率 P は, e P P P P L 確率 P を最大にする α と β が, 真値および分布の幅の最良推定値となる 真値 α の最良推定値確率 P が α のみの関数であるとすると, 定数 と を用いて,P は次式のように表される g e e P ここで,,, g と が定数の場合, 確率 P が最大となるには g が最小となればよい g であるから, g は のとき, 最小値 をもつ すなわち, 真値 α の最良推定値は平均値である
14 課題 6 最尤性原理得点 /5 最尤性原理について説明せよ ( 点 ) 次の 0 個の測定値 がある () g の式を求めよ ( 各 0.5 点 ) g () g(α) を最小とする α の値を求めよ (0.5 点 ) (3) g(α) のグラフを描け ( 点 ) g(α) α 3
15 第 7 回 正規分布の 分布の幅 分布の幅 β の最良推定値 確率 P が β のみの関数であるとすると, と を用いて P は次式のように表される P e e ここで,,, 最尤性原理に従い,P が最大となる γ の値を求める P dp e は下図のようなグラフであり,Pが最大となるγでは 0 d となる P P e 0, 3, γ k dp d e 0 現実的な測定値では, 分布の幅 β は 0 を満たすことから, 0 かつ である よって, このとき, となり, 分布の幅 βの最良推定値は, 測定値 の標準偏差に相当する
16 課題 7 正規分布の 分布の幅 得点 /5 次式の微分を求めよ ( 各 0.5 点 ) () () (3) 3 d d d d e d d e e d () d e (5) d d 次の 式について, 以下の問いに答えよ 3 3 () 式の微分を求めよ (0.5 点 ) d d () 式の極大値, 極小値, および, そのときの の値を求めよ (0.5 点 ) 極大値となる 極大値 極小値となる 極小値 5
17 6 第 8 回最小二乗法最小二乗法測定値との差の 乗和が最小となる関数の式を求める方法測定値,,,,,, に最もよく当てはまる直線の式 を求める 仮定 : () 測定値 は正規分布に従う () 測定値 の真値は, 分布の幅は である 最尤性原理により, 測定値 が得られる確率を最大とする および を求める 測定値,,, が同時に得られる確率 P は, e P であり, 分布の幅 σ を定数とみなす場合, 確率 P が最大となるには, g, が最小となればよい g, が最小となる点では, 0 d dg かつ 0 d dg となることから, と の連立一次方程式 および を解いて,
18 課題 8 最小二乗法得点 /5 最小二乗法を用いて, 個の測定値 る指数関数の式 e,,,,,, を求める 以下の空欄に適切な式を記入せよ に最もよく当てはま 測定値 の真値をe, 分布の幅を とするとき, 測定値 が得られる確率 P は, P (0.5 点 ) となる 測定値,,, が同時に得られる確率 Pは, (0.5 点 ) P であり, 確率 P が最大となるには, g, ( 点 ) が最小となればよい よって, dg d dg d (0.5 点 ) (0.5 点 ) 0 0 式と 式を, と について解く ( 点 ) ( 点 ) 7
19 第 9 回 最小二乗法の練習 個の測定値,,,,, Det, を表す最適な直線の式 : Det Det 練習問題 : エアトラック上を滑る台車の位置を測定した 台車の速さの最良推定値, および, 時刻 0 秒における台車の位置の最良推定値を求めよ 時刻 [ 秒 ] 3 台車の位置 [cm] ( 解 ) 時刻 台車の位置 計 Det cm/ 秒 0 台車の速さ cm 0 時刻 0 秒における台車の位置 8
20 課題 9 最小二乗法の練習得点 /5 エアトラック上を滑る台車の位置を測定した 時刻 [ 秒 ] 3 5 台車の位置 [cm] () 横軸を時刻, 縦軸を台車の位置としてグラフを描け ( 点 ) () 台車の速さの最良推定値, および, 時刻 0 秒における台車の位置の最良推定値を求めよ 時刻 台車の位置 各 0. 点 計 各 0.3 点 台車の速さ cm/ 秒 ( 小数点以下 桁まで表示 ) 時刻 0 秒における台車の位置 cm ( 小数点以下 桁まで表示 ) 9
21 0 第 0 回最小二乗法の推定誤差最小二乗法で求めた直線の式 の傾き および切片 の推定誤差を求める 第 回 誤差の伝播 の復習測定値,,, の和は ( : 測定値, : 測定誤差 ), L L 測定値 の誤差がすべて同じ値 ( ) であると仮定すると, の誤差 = の誤差 = であることから, Det Det Det Det のとき, であることから,
22 課題 0 最小二乗法の推定誤差得点 /5 のとき, であることを証明する 以下の空欄に適切な式を記入せよ ( 各 点 ) 0 K K K のとき, K が成り立つと仮定する K のとき, K K K K K K K K K K K 同上 K 0 となり, の任意のに対して, が成立する 一般に, のとき, 式の値は無限大に発散する そのため, のとき, となる
23 第 回推定誤差の計算 練習問題 : エアトラック上を滑る台車の位置を測定した 台車の速さの最良推定値, および, 時刻 0 秒における台車の位置の最良推定値を求めよ 時刻 [ 秒 ] 3 台車の位置 [cm] ( 解 ) 計 Det cm/ 秒 cm L 0.9L L cm/ 秒 L L cm よって, 台車の速さ =.07±0.03 cm/ 秒 時刻 0 秒における台車の位置 = 0.00±0.07 cm
24 課題 推定誤差の計算得点 /5 エアトラック上を滑る台車の位置を測定した 時刻 [ 秒 ] 3 5 台車の位置 [cm] () 横軸を時刻, 縦軸を台車の位置としてグラフを描け ( 点 ) 5 台車の位置 [cm] 時刻 [ 秒 ] () 台車の速さの最良推定値, および, 時刻 0 秒における台車の位置の最良推定値を求めよ 各 0. 点 計 各 0. 点 台車の速さ ± cm/ 秒 ( 小数点以下 桁まで表示 ) 時刻 0 秒における台車の位置 ± cm ( 小数点以下 桁まで表示 ) 直線の当てはめ誤差 σ cm cm ( 小数点以下 桁まで表示 ) 3
学習指導要領
(1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 絶対値の意味を理解し適切な処理することができる 例題 1-3 の絶対値をはずせ 展開公式 ( a + b ) ( a - b ) = a 2 - b 2 を利用して根号を含む分数の分母を有理化することができる 例題 5 5 + 2 の分母を有理化せよ 実数の整数部分と小数部分の表し方を理解している
Microsoft PowerPoint - 測量学.ppt [互換モード]
8/5/ 誤差理論 測定の分類 性格による分類 独立 ( な ) 測定 : 測定値がある条件を満たさなければならないなどの拘束や制約を持たないで独立して行う測定 条件 ( 付き ) 測定 : 三角形の 3 つの内角の和のように, 個々の測定値間に満たすべき条件式が存在する場合の測定 方法による分類 直接測定 : 距離や角度などを機器を用いて直接行う測定 間接測定 : 求めるべき量を直接測定するのではなく,
Microsoft Word - 微分入門.doc
基本公式 例題 0 定義式 f( ) 数 Ⅲ 微分入門 = の導関数を定義式にもとづいて計算しなさい 基本事項 ( f( ), g( ) が微分可能ならば ) y= f( ) g( ) のとき, y = y= f( ) g( ) h( ) のとき, y = ( f( ), g( ) が微分可能で, g( ) 0 ならば ) f( ) y = のとき, y = g ( ) とくに, y = のとき,
スライド 1
データ解析特論重回帰分析編 2017 年 7 月 10 日 ( 月 )~ 情報エレクトロニクスコース横田孝義 1 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える 具体的には y = a + bx という回帰直線 ( モデル ) でデータを代表させる このためにデータからこの回帰直線の切片 (a) と傾き (b) を最小
スライド 1
データ解析特論第 10 回 ( 全 15 回 ) 2012 年 12 月 11 日 ( 火 ) 情報エレクトロニクス専攻横田孝義 1 終了 11/13 11/20 重回帰分析をしばらくやります 12/4 12/11 12/18 2 前回から回帰分析について学習しています 3 ( 単 ) 回帰分析 単回帰分析では一つの従属変数 ( 目的変数 ) を 一つの独立変数 ( 説明変数 ) で予測する事を考える
2011年度 大阪大・理系数学
0 大阪大学 ( 理系 ) 前期日程問題 解答解説のページへ a a を自然数とする O を原点とする座標平面上で行列 A= a の表す 次変換 を f とする cosθ siθ () >0 および0θ
Microsoft PowerPoint - e-stat(OLS).pptx
経済統計学 ( 補足 ) 最小二乗法について 担当 : 小塚匡文 2015 年 11 月 19 日 ( 改訂版 ) 神戸大学経済学部 2015 年度後期開講授業 補足 : 最小二乗法 ( 単回帰分析 ) 1.( 単純 ) 回帰分析とは? 標本サイズTの2 変数 ( ここではXとY) のデータが存在 YをXで説明する回帰方程式を推定するための方法 Y: 被説明変数 ( または従属変数 ) X: 説明変数
カイ二乗フィット検定、パラメータの誤差
統計的データ解析 008 008.. 林田清 ( 大阪大学大学院理学研究科 ) 問題 C (, ) ( x xˆ) ( y yˆ) σ x πσ σ y y Pabx (, ;,,, ) ˆ y σx σ y = dx exp exp πσx ただし xy ˆ ˆ はyˆ = axˆ+ bであらわされる直線モデル上の点 ( ˆ) ( ˆ ) ( ) x x y ax b y ax b Pabx (,
14 化学実験法 II( 吉村 ( 洋 mmol/l の半分だったから さんの測定値は くんの測定値の 4 倍の重みがあり 推定値 としては 0.68 mmol/l その標準偏差は mmol/l 程度ということになる 測定値を 特徴づけるパラメータ t を推定するこの手
14 化学実験法 II( 吉村 ( 洋 014.6.1. 最小 乗法のはなし 014.6.1. 内容 最小 乗法のはなし...1 最小 乗法の考え方...1 最小 乗法によるパラメータの決定... パラメータの信頼区間...3 重みの異なるデータの取扱い...4 相関係数 決定係数 ( 最小 乗法を語るもう一つの立場...5 実験条件の誤差の影響...5 問題...6 最小 乗法の考え方 飲料水中のカルシウム濃度を
スライド 1
計測工学第 12 回以降 測定値の誤差と精度編 2014 年 7 月 2 日 ( 水 )~7 月 16 日 ( 水 ) 知能情報工学科 横田孝義 1 授業計画 4/9 4/16 4/23 5/7 5/14 5/21 5/28 6/4 6/11 6/18 6/25 7/2 7/9 7/16 7/23 2 誤差とその取扱い 3 誤差 = 測定値 真の値 相対誤差 = 誤差 / 真の値 4 誤差 (error)
統計的データ解析
統計的データ解析 011 011.11.9 林田清 ( 大阪大学大学院理学研究科 ) 連続確率分布の平均値 分散 比較のため P(c ) c 分布 自由度 の ( カイ c 平均値 0, 標準偏差 1の正規分布 に従う変数 xの自乗和 c x =1 が従う分布を自由度 の分布と呼ぶ 一般に自由度の分布は f /1 c / / ( c ) {( c ) e }/ ( / ) 期待値 二乗 ) 分布 c
森林水文 水資源学 2 2. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 1 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,10 年に 1 回の渇水を対象として計画が立て
. 水文統計 豪雨があった時, 新聞やテレビのニュースで 50 年に一度の大雨だった などと報告されることがある. 今争点となっている川辺川ダムは,80 年に 回の洪水を想定して治水計画が立てられている. 畑地かんがいでは,0 年に 回の渇水を対象として計画が立てられる. このように, 水利構造物の設計や, 治水や利水の計画などでは, 年に 回起こるような降雨事象 ( 最大降雨強度, 最大連続干天日数など
Kumamoto University Center for Multimedia and Information Technologies Lab. 熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI 宮崎県美郷
熊本大学アプリケーション実験 ~ 実環境における無線 LAN 受信電波強度を用いた位置推定手法の検討 ~ InKIAI プロジェクト @ 宮崎県美郷町 熊本大学副島慶人川村諒 1 実験の目的 従来 信号の受信電波強度 (RSSI:RecevedSgnal StrengthIndcator) により 対象の位置を推定する手法として 無線 LAN の AP(AccessPont) から受信する信号の減衰量をもとに位置を推定する手法が多く検討されている
様々なミクロ計量モデル†
担当 : 長倉大輔 ( ながくらだいすけ ) この資料は私の講義において使用するために作成した資料です WEB ページ上で公開しており 自由に参照して頂いて構いません ただし 内容について 一応検証してありますが もし間違いがあった場合でもそれによって生じるいかなる損害 不利益について責任を負いかねますのでご了承ください 間違いは発見次第 継続的に直していますが まだ存在する可能性があります 1 カウントデータモデル
1 対 1 対応の演習例題を解いてみた 微分法とその応用 例題 1 極限 微分係数の定義 (2) 関数 f ( x) は任意の実数 x について微分可能なのは明らか f ( 1, f ( 1) ) と ( 1 + h, f ( 1 + h)
微分法とその応用 例題 1 極限 微分係数の定義 () 関数 ( x) は任意の実数 x について微分可能なのは明らか ( 1, ( 1) ) と ( 1 + h, ( 1 + h) ) の傾き= ( 1 + h ) - ( 1 ) ( 1 + ) - ( 1) = ( 1 + h) - 1 h ( 1) = lim h ( 1 + h) - ( 1) h ( 1, ( 1) ) と ( 1 - h,
Microsoft PowerPoint - Inoue-statistics [互換モード]
誤差論 神戸大学大学院農学研究科 井上一哉 (Kazuya INOUE) 誤差論 2011 年度前期火曜クラス 1 講義内容 誤差と有効数字 (Slide No.2~8 Text p.76~78) 誤差の分布と標準偏差 (Slide No.9~18 Text p.78~80) 最確値とその誤差 (Slide No.19~25 Text p.80~81) 誤差の伝播 (Slide No.26~32 Text
重要例題113
04_ 高校 数学 Ⅱ 必須基本公式 定理集 数学 Ⅱ 第 章式の計算と方程式 0 商と余り についての整式 A をについての整式 B で割ったときの商を Q, 余りを R とすると, ABQ+R (R の次数 ) > 0
2011年度 東京大・文系数学
東京大学 ( 文系 ) 前期日程問題 解答解説のページへ x の 次関数 f( x) = x + x + cx+ d が, つの条件 f () =, f ( ) =, ( x + cx+ d) dx= をすべて満たしているとする このような f( x) の中で定積分 I = { f ( x) } dx を最小にするものを求め, そのときの I の値を求めよ ただし, f ( x) は f ( x)
平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム A 札幌医科大学 年 P ab, を正の定数とする 平面上において ( a, を中心とする円 Q 4 C と (, b を中心とする円 C が 原点 O で外接している また P を円 C 上の点と
平成 年 月 7 日 ( 土 第 75 回数学教育実践研究会アスティ 45 ビル F セミナールーム 微分積分の拡張 変数関数問題へのアプローチ 予選決勝優勝法からラグランジュ未定乗数法 松本睦郎 ( 札幌北高等学校 変数関数の最大値 最小値に関する問題には多様なアプローチ法がある 文字を固定した 予選決勝優勝法, 計算のみで解法する 文字消去法, 微分積分を利用した ラグランジュ未定乗数法 がある
Microsoft Word - å“Ÿåłžå¸°173.docx
回帰分析 ( その 3) 経済情報処理 価格弾力性の推定ある商品について その購入量を w 単価を p とし それぞれの変化量を w p で表 w w すことにする この時 この商品の価格弾力性 は により定義される これ p p は p が 1 パーセント変化した場合に w が何パーセント変化するかを示したものである ここで p を 0 に近づけていった極限を考えると d ln w 1 dw dw
<4D F736F F D208EC08CB18C7689E68A E F AA957A82C682948C9F92E82E646F63>
第 7 回 t 分布と t 検定 実験計画学 A.t 分布 ( 小標本に関する平均の推定と検定 ) 前々回と前回の授業では, 標本が十分に大きいあるいは母分散が既知であることを条件に正規分布を用いて推定 検定した. しかし, 母集団が正規分布し, 標本が小さい場合には, 標本分散から母分散を推定するときの不確実さを加味したt 分布を用いて推定 検定しなければならない. t 分布は標本分散の自由度 f(
平均値 () 次のデータは, ある高校生 7 人が ヵ月にカレーライスを食べた回数 x を調べたものである 0,8,4,6,9,5,7 ( 回 ) このデータの平均値 x を求めよ () 右の表から, テレビをみた時間 x の平均値を求めよ 階級 ( 分 ) 階級値度数 x( 分 ) f( 人 )
データの分析 データの整理右の度数分布表は,A 高校の 0 人について, 日にみたテレビの時間を記入したものである 次の問いに答えよ () テレビをみた時間が 85 分未満の生徒は何人いるか () テレビをみた時間が 95 分以上の生徒は全体の何 % であるか (3) 右の度数分布表をもとにして, ヒストグラムをかけ 階級 ( 分 ) 階級値度数相対 ( 分 ) ( 人 ) 度数 55 以上 ~65
講義「○○○○」
講義 信頼度の推定と立証 内容. 点推定と区間推定. 指数分布の点推定 区間推定 3. 指数分布 正規分布の信頼度推定 担当 : 倉敷哲生 ( ビジネスエンジニアリング専攻 ) 統計的推測 標本から得られる情報を基に 母集団に関する結論の導出が目的 測定値 x x x 3 : x 母集団 (populaio) 母集団の特性値 統計的推測 標本 (sample) 標本の特性値 分布のパラメータ ( 母数
Microsoft Word - NumericalComputation.docx
数値計算入門 武尾英哉. 離散数学と数値計算 数学的解法の中には理論計算では求められないものもある. 例えば, 定積分は, まずは積分 ( 被積分関数の原始関数をみつけること できなければ値を得ることはできない. また, ある関数の所定の値における微分値を得るには, まずその関数の微分ができなければならない. さらに代数方程式の解を得るためには, 解析的に代数方程式を解く必要がある. ところが, これらは必ずしも解析的に導けるとは限らない.
<4D F736F F D208EC08CB18C7689E68A E F193F18D8095AA957A C C839395AA957A814590B38B4B95AA957A2E646F63>
第 4 回二項分布, ポアソン分布, 正規分布 実験計画学 009 年 月 0 日 A. 代表的な分布. 離散分布 二項分布大きさ n の標本で, 事象 Eの起こる確率を p とするとき, そのうち x 個にEが起こる確率 P(x) は二項分布に従う. 例さいころを 0 回振ったときに の出る回数 x の確率分布は二項分布に従う. この場合, n = 0, p = 6 の二項分布になる さいころを
Probit , Mixed logit
Probit, Mixed logit 2016/5/16 スタートアップゼミ #5 B4 後藤祥孝 1 0. 目次 Probit モデルについて 1. モデル概要 2. 定式化と理解 3. 推定 Mixed logit モデルについて 4. モデル概要 5. 定式化と理解 6. 推定 2 1.Probit 概要 プロビットモデルとは. 効用関数の誤差項に多変量正規分布を仮定したもの. 誤差項には様々な要因が存在するため,
数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 ) 1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期
数学 Ⅲ 微分法の応用 大学入試問題 ( 教科書程度 )1 問 1 (1) 次の各問に答えよ (ⅰ) 極限 を求めよ 年会津大学 ( 前期 ) (ⅱ) 極限値 を求めよ 年愛媛大学 ( 前期 ) (ⅲ) 無限等比級数 が収束するような実数 の範囲と そのときの和を求めよ 年広島市立大学 ( 前期 ) (2) 次の関数を微分せよ (ⅰ) を正の定数とする (ⅱ) (ⅳ) (ⅵ) ( 解答 )(1) 年群馬大学
2018年度 筑波大・理系数学
筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ < < とする 放物線 上に 点 (, ), A (ta, ta ), B( - ta, ta ) をとる 三角形 AB の内心の 座標を p とし, 外心の 座標を q とする また, 正の実数 a に対して, 直線 a と放物線 で囲まれた図形の面積を S( a) で表す () p, q を cos を用いて表せ S( p) () S(
第 3 回講義の項目と概要 統計的手法入門 : 品質のばらつきを解析する 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均
第 3 回講義の項目と概要 016.8.9 1.3 統計的手法入門 : 品質のばらつきを解析する 1.3.1 平均と標準偏差 (P30) a) データは平均を見ただけではわからない 平均が同じだからといって 同一視してはいけない b) データのばらつきを示す 標準偏差 にも注目しよう c) 平均 :AVERAGE 関数, 標準偏差 :STDEVP 関数とSTDEVという関数 1 取得したデータそのものの標準偏差
多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典
多変量解析 ~ 重回帰分析 ~ 2006 年 4 月 21 日 ( 金 ) 南慶典 重回帰分析とは? 重回帰分析とは複数の説明変数から目的変数との関係性を予測 評価説明変数 ( 数量データ ) は目的変数を説明するのに有効であるか得られた関係性より未知のデータの妥当性を判断する これを重回帰分析という つまり どんなことをするのか? 1 最小 2 乗法により重回帰モデルを想定 2 自由度調整済寄与率を求め
横浜市環境科学研究所
周期時系列の統計解析 単回帰分析 io 8 年 3 日 周期時系列に季節調整を行わないで単回帰分析を適用すると, 回帰係数には周期成分の影響が加わる. ここでは, 周期時系列をコサイン関数モデルで近似し単回帰分析によりモデルの回帰係数を求め, 周期成分の影響を検討した. また, その結果を気温時系列に当てはめ, 課題等について考察した. 気温時系列とコサイン関数モデル第 報の結果を利用するので, その一部を再掲する.
Microsoft PowerPoint - statistics pptx
統計学 第 16 回 講義 母平均の区間推定 Part-1 016 年 6 10 ( ) 1 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: [email protected] website: http://www3.u-toyama.ac.jp/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を
<8D828D5A838A817C A77425F91E6318FCD2E6D6364>
4 1 平面上のベクトル 1 ベクトルとその演算 例題 1 ベクトルの相等 次の問いに答えよ. ⑴ 右の図 1 は平行四辺形 である., と等しいベクトルをいえ. ⑵ 右の図 2 の中で互いに等しいベクトルをいえ. ただし, すべてのマス目は正方形である. 解 ⑴,= より, =,= より, = ⑵ 大きさと向きの等しいものを調べる. a =d, c = f d e f 1 右の図の長方形 において,
2017年度 長崎大・医系数学
07 長崎大学 ( 医系 ) 前期日程問題 解答解説のページへ 以下の問いに答えよ () 0 のとき, si + cos の最大値と最小値, およびそのときの の値 をそれぞれ求めよ () e を自然対数の底とする > eの範囲において, 関数 y を考える この両 辺の対数を について微分することにより, y は減少関数であることを示せ また, e< < bのとき, () 数列 { } b の一般項が,
学習指導要領
(1) 数と式 ア数と集合 ( ア ) 実数数を実数まで拡張する意義を理解し 簡単な無理数の四則計算をすること 自然数 整数 有理数 無理数の包含関係など 実数 の構成を理解する ( 例 ) 次の空欄に適当な言葉をいれて, 数の集合を表しなさい ア イ 無理数 整数 ウ 無理数の加法及び減法 乗法公式などを利用した計 算ができる また 分母だけが二項である無理数の 分母の有理化ができる ( 例 1)
2015年度 信州大・医系数学
05 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ 放物線 y = a + b + c ( a > 0) を C とし, 直線 y = -を l とする () 放物線 C が点 (, ) で直線 l と接し, かつ 軸と共有点をもつための a, b, c が満 たす必要十分条件を求めよ () a = 8 のとき, () の条件のもとで, 放物線 C と直線 l および 軸とで囲まれた部
Microsoft PowerPoint - 10.pptx
m u. 固有値とその応用 8/7/( 水 ). 固有値とその応用 固有値と固有ベクトル 行列による写像から固有ベクトルへ m m 行列 によって線形写像 f : R R が表せることを見てきた ここでは 次元平面の行列による写像を調べる とし 写像 f : を考える R R まず 単位ベクトルの像 u y y f : R R u u, u この事から 線形写像の性質を用いると 次の格子上の点全ての写像先が求まる
1 次関数 1 次関数の式 1 次の表は, ろうそくを燃やした時間 x 分と残りのろうそくの長さ ycm の関係を表しています 次の問いに答えなさい x( 分 ) y(cm ) (1) 上の表のをうめなさい (2) ろうそくは,5 分間に何 cm 短くなっていく
次関数 次関数の式 次の表は, ろうそくを燃やした時間 分と残りのろうそくの長さ cm の関係を表しています 次の問いに答えなさい ( 分 ) 0 5 0 5 (cm ) 0 () 上の表のをうめなさい () ろうそくは,5 分間に何 cm 短くなっていくか () ろうそくは, 分間に何 cm の割合で短くなっていくか () ろうそくは, 分間に何 cm の割合で短くなっていくか (5) ろうそくの長さ
Microsoft PowerPoint - H21生物計算化学2.ppt
演算子の行列表現 > L いま 次元ベクトル空間の基底をケットと書くことにする この基底は完全系を成すとすると 空間内の任意のケットベクトルは > > > これより 一度基底を与えてしまえば 任意のベクトルはその基底についての成分で完全に記述することができる これらの成分を列行列の形に書くと M これをベクトル の基底 { >} による行列表現という ところで 行列 A の共役 dont 行列は A
2016年度 筑波大・理系数学
06 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ k を実数とする y 平面の曲線 C : y とC : y- + k+ -k が異なる共 有点 P, Q をもつとする ただし点 P, Q の 座標は正であるとする また, 原点を O とする () k のとりうる値の範囲を求めよ () k が () の範囲を動くとき, OPQ の重心 G の軌跡を求めよ () OPQ の面積を S とするとき,
平成 30 年度 前期選抜学力検査問題 数学 ( 2 時間目 45 分 ) 受検番号氏名 注 意 1 問題は, 表と裏にあります 2 答えは, すべて解答欄に記入しなさい 1 次の (1)~(7) の問いに答えなさい (1) -3 (-6+4) を計算しなさい 表合計 2 次の (1)~(6) の問
平成 30 年度 前期選抜学力検査問題 数学 ( 2 時間目 45 分 ) 受検番号氏名 注 意 1 問題は, 表と裏にあります 2 答えは, すべて解答欄に記入しなさい 1 次の (1)~(7) の問いに答えなさい (1) -3 (-6+4) を計算しなさい 表合計 2 次の (1)~(6) の問いに答えなさい 合計 (1) 関数 y = x 2 において,x の変域が -2 x 3 のとき, y
切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. (
統計学ダミー変数による分析 担当 : 長倉大輔 ( ながくらだいすけ ) 1 切片 ( 定数項 ) ダミー 以下の単回帰モデルを考えよう これは賃金と就業年数の関係を分析している : ( 賃金関数 ) ここで Y i = α + β X i + u i, i =1,, n, u i ~ i.i.d. N(0, σ 2 ) Y i : 賃金の対数値, X i : 就業年数. ( 実際は賃金を就業年数だけで説明するのは現実的はない
Microsoft PowerPoint - stat-2014-[9] pptx
統計学 第 17 回 講義 母平均の区間推定 Part-1 014 年 6 17 ( )6-7 限 担当教員 : 唐渡 広志 ( からと こうじ ) 研究室 : 経済学研究棟 4 階 43 号室 email: [email protected] website: htt://www3.u-toyama.ac.j/kkarato/ 1 講義の目的 標本平均は正規分布に従うという性質を
13章 回帰分析
単回帰分析 つ以上の変数についての関係を見る つの 目的 被説明 変数を その他の 説明 変数を使って 予測しようというものである 因果関係とは限らない ここで勉強すること 最小 乗法と回帰直線 決定係数とは何か? 最小 乗法と回帰直線 これまで 変数の間の関係の深さについて考えてきた 相関係数 ここでは 変数に役割を与え 一方の 説明 変数を用いて他方の 目的 被説明 変数を説明することを考える
Microsoft PowerPoint - 配布資料・演習18.pptx
学年学科学籍番号氏名 宿題 ( 複素正弦波 jω ) メディアと信号処理第 回 ( 金田 ). 複素数とは 実数部と虚数部を持った数である 例えば 虚数単位を j と表すと 4+ j は複素数で 実数部は 4 で 虚数部が である 一般的に 実数部を 虚数部を とすると 複素数 z は z = + j と表される 複素数の 大きさ は 絶対値 (r jθ の r ) で定義される z の絶対値は z
基礎統計
基礎統計 第 11 回講義資料 6.4.2 標本平均の差の標本分布 母平均の差 標本平均の差をみれば良い ただし, 母分散に依存するため場合分けをする 1 2 3 分散が既知分散が未知であるが等しい分散が未知であり等しいとは限らない 1 母分散が既知のとき が既知 標準化変量 2 母分散が未知であり, 等しいとき 分散が未知であるが, 等しいということは分かっているとき 標準化変量 自由度 の t
第4回
Excel で度数分布表を作成 表計算ソフトの Microsoft Excel を使って 度数分布表を作成する場合 関数を使わなくても 四則演算(+ */) だけでも作成できます しかし データ数が多い場合に度数を求めたり 度数などの合計を求めるときには 関数を使えばデータを処理しやすく なります 度数分布表の作成で使用する関数 合計は SUM SUM( 合計を計算する ) 書式 :SUM( 数値数値
経済数学演習問題 2018 年 5 月 29 日 I a, b, c R n に対して a + b + c 2 = a 2 + b 2 + c 2 + 2( a, b) + 2( b, c) + 2( a, c) が成立することを示しましょう.( 線型代数学 教科書 13 ページ 演習 1.17)
経済数学演習問題 8 年 月 9 日 I a, b, c R n に対して a + b + c a + b + c + a, b + b, c + a, c が成立することを示しましょう. 線型代数学 教科書 ページ 演習.7 II a R n がすべての x R n に対して垂直, すなわち a, x x R n が成立するとします. このとき a となることを示しましょう. 線型代数学 教科書
Microsoft PowerPoint - Statistics[B]
講義の目的 サンプルサイズの大きい標本比率の分布は正規分布で近似できることを理解します 科目コード 130509, 130609, 110225 統計学講義第 19/20 回 2019 年 6 月 25 日 ( 火 )6/7 限 担当教員 : 唐渡広志 ( からと こうじ ) 研究室 : email: website: 経済学研究棟 4 階 432 号室 [email protected]
Microsoft PowerPoint - 9.pptx
9/7/8( 水 9. 線形写像 ここでは 行列の積によって 写像を定義できることをみていく また 行列の積によって定義される写像の性質を調べていく 拡大とスカラー倍 行列演算と写像 ( 次変換 拡大後 k 倍 k 倍 k 倍拡大の関係は スカラー倍を用いて次のように表現できる p = (, ' = k ' 拡大前 p ' = ( ', ' = ( k, k 拡大 4 拡大と行列の積 拡大後 k 倍
2017年度 京都大・文系数学
07 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ 曲線 y= x - 4x+ を C とする 直線 l は C の接線であり, 点 P(, 0) を通るもの とする また, l の傾きは負であるとする このとき, C と l で囲まれた部分の面積 S を求めよ -- 07 京都大学 ( 文系 ) 前期日程問題 解答解説のページへ 次の問いに答えよ ただし, 0.00 < log0
散布度
散布度 統計基礎の補足資料 2018 年 6 月 18 日金沢学院大学経営情報学部藤本祥二 基本統計量 基本統計量 : 分布の特徴を表す数値 代表値 ( 分布の中心を表す数値 ) 平均値 (mean, average) 中央値 (median) 最頻値 (mode) 散布度 ( 分布のばらつき具合を表す数値 ) 分散 (variance) 標準偏差 (standard deviation) 範囲 (
2014年度 東京大・文系数学
014 東京大学 ( 文系 ) 前期日程問題 1 解答解説のページへ以下の問いに答えよ (1) t を実数の定数とする 実数全体を定義域とする関数 f ( x ) を f ( x) =- x + 8tx- 1x+ t - 17t + 9t-18 と定める このとき, 関数 f ( x ) の最大値を t を用いて表せ () (1) の 関数 f ( x ) の最大値 を g( t ) とする t が
2014年度 千葉大・医系数学
04 千葉大学 ( 医系 ) 前期日程問題 解答解説のページへ 袋の中に, 赤玉が 3 個, 白玉が 7 個が入っている 袋から玉を無作為に つ取り出し, 色を確認してから, 再び袋に戻すという試行を行う この試行を N 回繰り返したときに, 赤玉を A 回 ( ただし 0 A N) 取り出す確率を p( N, A) とする このとき, 以下の問いに答えよ () 確率 p( N, A) を N と
DVIOUT-SS_Ma
第 章 微分方程式 ニュートンはリンゴが落ちるのを見て万有引力を発見した という有名な逸話があります 無重力の宇宙船の中ではリンゴは落ちないで静止していることを考えると 重力が働くと始め静止しているものが動き出して そのスピードはどんどん大きくなる つまり速度の変化が現れることがわかります 速度は一般に時間と共に変化します 速度の瞬間的変化の割合を加速度といい で定義しましょう 速度が変化する, つまり加速度がでなくなるためにはその原因があり
パソコンシミュレータの現状
第 2 章微分 偏微分, 写像 豊橋技術科学大学森謙一郎 2. 連続関数と微分 工学において物理現象を支配する方程式は微分方程式で表されていることが多く, 有限要素法も微分方程式を解く数値解析法であり, 定式化においては微分 積分が一般的に用いられており. 数学の基礎知識が必要になる. 図 2. に示すように, 微分は連続な関数 f() の傾きを求めることであり, 微小な に対して傾きを表し, を無限に
Microsoft Word - スーパーナビ 第6回 数学.docx
1 ⑴ 与式 =- 5 35 +14 35 =9 35 1 ⑵ 与式 =9-(-5)=9+5=14 1 ⑶ 与式 = 4(a-b)-3(5a-3b) = 8a-4b-15a+9b = -7a+5b 1 1 1 1 ⑷ 与式 =(²+ 1+1²)-{²+(-3+)+(-3) } 1 ⑷ 与式 =(²++1)-(²--6)=²++1-²++6=3+7 1 ⑸ 与式 = - ² + 16 = - +16
2017年度 金沢大・理系数学
07 金沢大学 ( 理系 前期日程問題 解答解説のページへ 次の問いに答えよ ( 6 z + 7 = 0 を満たす複素数 z をすべて求め, それらを表す点を複素数平面上に図 示せよ ( ( で求めた複素数 z を偏角が小さい方から順に z, z, とするとき, z, z と 積 zz を表す 点が複素数平面上で一直線上にあることを示せ ただし, 偏角は 0 以上 未満とする -- 07 金沢大学
埼玉県学力 学習状況調査 ( 中学校 ) 復習シート第 3 学年数学 組 番 号 名 前 ( 数と式 を問う問題 ) 1 次の計算をしなさい レベル 6~8 1 (27x-36y+18) (-9) 答え 2 15x 2 y 5xy 2 3 答え 2 次の各問いに答えなさい レベル 9 10 (1)
埼玉県学力 学習状況調査 ( 中学校 ) 復習シート第 3 学年数学 組 番 号 名 前 ( 数と式 を問う問題 ) 1 次の計算をしなさい レベル 6~8 1 (27x-36y+18) (-9) 2 15x 2 y 5xy 2 3 2 次の各問いになさい レベル 9 10 (1) 次の等式を の中の文字について解きなさい c=5(a+b) a a= (2) 次の連立方程式を解きなさい 3x 5y
統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ :
統計学 - 社会統計の基礎 - 正規分布 標準正規分布累積分布関数の逆関数 t 分布正規分布に従うサンプルの平均の信頼区間 担当 : 岸 康人 資料ページ : https://goo.gl/qw1djw 正規分布 ( 復習 ) 正規分布 (Normal Distribution)N (μ, σ 2 ) 別名 : ガウス分布 (Gaussian Distribution) 密度関数 Excel:= NORM.DIST
【FdData中間期末過去問題】中学数学2年(連立方程式計算/加減法/代入法/係数決定)
FdData 中間期末 : 中学数学 年 : 連立方程式計算 [ 元 1 次方程式 / 加減法 / 代入法 / 加減法と代入法 / 分数などのある連立方程式 / A=B=C, 元連立方程式 / 係数の決定 ] [ 数学 年 pdf ファイル一覧 ] 元 1 次方程式 次の方程式ア~カの中から, 元 1 次方程式をすべて選べ ア y = 6 イ x y = 5 ウ xy = 1 エ x + 5 = 9
2013年度 信州大・医系数学
03 信州大学 ( 医系 ) 前期日程問題 解答解説のページへ () 式 + + a a a3 を満たす自然数の組 ( a, a, a3) で, a a a3とな るものをすべて求めよ () r を正の有理数とする 式 r + + a a a を満たす自然数の組 ( a, a, a3) で, 3 a a a3となるものは有限個しかないことを証明せよ ただし, そのよう な組が存在しない場合は 0 個とし,
2011年度 筑波大・理系数学
0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ O を原点とするy 平面において, 直線 y= の を満たす部分をC とする () C 上に点 A( t, ) をとるとき, 線分 OA の垂直二等分線の方程式を求めよ () 点 A が C 全体を動くとき, 線分 OA の垂直二等分線が通過する範囲を求め, それ を図示せよ -- 0 筑波大学 ( 理系 ) 前期日程問題 解答解説のページへ
Problem P5
問題 P5 メンシュトキン反応 三級アミンとハロゲン化アルキルの間の求核置換反応はメンシュトキン反応として知られている この実験では DABCO(1,4 ジアザビシクロ [2.2.2] オクタン というアミンと臭化ベンジルの間の反応速度式を調べる N N Ph Br N N Br DABCO Ph DABCO 分子に含まれるもう片方の窒素も さらに他の臭化ベンジルと反応する可能性がある しかし この実験では
PowerPoint プレゼンテーション
反応工学 Reacio Egieerig 講義時間 場所 : 火曜 限 8- 木曜 限 S- 担当 : 山村 補講 /3 木 限 S- ジメチルエーテルの気相熱分解 CH 3 O CH 4 H CO 設計仕様 処理量 v =4.8 m 3 /h 原料は DME のみ 777K 反応率 =.95 まで熱分解 管型反応器の体積 V[m 3 ] を決定せよ ただし反応速度式反応速度定数 ラボ実験は自由に行ってよい
平成 31 年度 前期選抜学力検査問題 数学 ( 2 時間目 45 分 ) 受検番号氏名 注 意 1 問題は, 表と裏にあります 2 答えは, すべて解答欄に記入しなさい 1 次の (1)~(7) の問いに答えなさい (1) 3 (-2 2 ) を計算しなさい 表合計 2 次の (1)~(6) の問
平成 1 年度 前期選抜学力検査問題 数学 ( 時間目 45 分 ) 受検番号氏名 注 意 1 問題は, 表と裏にあります 答えは, すべて解答欄に記入しなさい 1 次の ~(7) の問いに答えなさい (- ) を計算しなさい 表合計 次の ~(6) の問いに答えなさい 合計 関数 y = x のグラフについて正しいものを, 次のア ~ エからすべて選んで記号を書きなさい アイウエ グラフは原点を通る
Microsoft PowerPoint - 基礎・経済統計6.ppt
. 確率変数 基礎 経済統計 6 確率分布 事象を数値化したもの ( 事象ー > 数値 の関数 自然に数値されている場合 さいころの目 量的尺度 数値化が必要な場合 質的尺度, 順序的尺度 それらの尺度に数値を割り当てる 例えば, コインの表が出たら, 裏なら 0. 離散確率変数と連続確率変数 確率変数の値 連続値をとるもの 身長, 体重, 実質 GDP など とびとびの値 離散値をとるもの 新生児の性別
