L A TEX L A TEX L A TEX L A TEX
|
|
|
- あきたけ なみこし
- 9 years ago
- Views:
Transcription
1 L A TEX ( ) 1
2 L A TEX L A TEX L A TEX L A TEX L A TEX L A TEX (Step1) L A TEX (Step2) (Step3) PDF (Step4) L A TEX i
3 graphicx A Libre Office 40 B AUCTeX L A TEX 42 B.1 AUCTeX B.2 AUCTeX B ii
4 1 1.1 L A TEX ( (typesetting): ) L A TEX( ) Knuth TEX [1] () Lamport TEX L A TEX [2] L A TEX ( L A TEX ) L A TEX 1.2 L A TEX L A TEX Microsoft Word L A TEX L A TEX L A TEX ( ) L A TEX ( n ) L A TEX L A TEX L A TEX ( ) L A TEX L A TEX 1
5 ( ) L A TEX L A TEX L A TEX 2
6 2 L A TEX L A TEX L A TEX \ (backslash) backslash Y backslash Y backslash Y( ) backslash Y 2.1 L A TEX ( ) L A TEX \documentclass{jarticle} \begin{document} ( (typesetting): ) LaTeX LaTeX LaTeX LaTeX \end{document} L A TEX L A TEX Emacs L A TEX 2.1 3
7 \documentclass{} \begin{document}. \end{document} 2.1: L A TEX \documentclass{...} L A TEX \begin{document} \end{document} L A TEX \documentclass{jarticle} jarticle( ) jreport( ) jbook( ) article, report, book jarticle L A TEX L A TEX 4
8 ( (typesetting): ) LaTeX LaTeX LaTeX LaTeX 1 2.2: 5
9 abc.tex platex? NO YES abc.dvi pxdvi OK NO YES pdvips dvipdfmx abc.pdf 2.3: L A TEX L A TEX L A TEX L A TEX ( 2.3 ) Linux ( ) (Step1) Emacs L A TEX (Step2) L A TEX (Step1) (Step3) ( ) (Step1) (Step4) (Step4 ) PDF ( L A TEX ) 6
10 2.2.1 L A TEX (Step1) L A TEX Emacs L A TEX.tex tex 1 L A TEX abc.tex L A TEX (Step2) L A TEX GNOME abc.tex cd platex ( % ) L A TEX % platex abc.tex L A TEX DVI... Output written on abc.dvi (nn pages, bbbb bytes). Transcript written on abc.log. LaTeX finished at MM DD hh:mm:ss abc.dvi nn bbbb byte MM DD hh:mm:ss DVI abc.log abc.aux (Step3) GNOME pxdvi % pxdvi abc.dvi PDF (Step4) PDF PDF dvipdfmx 1 7
11 PDF % dvipdfmx abc.dvi PDF abc.pdf Acrobat Reader PDF PDF ( ) pdvips PDF % pdvips -f abc.dvi lpr PDF 2.3 L A TEX (Step3) DVI () 1 \documentclass{jarticle} 2 3 \begin{documnt} 4 5 \end{document} 1! LaTeX Error: Environment documnt undefined. 2 3 See the LaTeX manual or LaTeX Companion for explanation. 4 Type H <return> for immediate help l.3 \begin{documnt} 8 ^^c9^^a4 9? 1! LaTeX Error ( Environment documnt undefined. documnt ) 7 8 l \begin{documnt} 8 \begin{documnt} \begin{document} 9? X 8
12 2.3.1 L A TEX L A TEX L A TEX L A TEX L A TEX L A TEX L A TEX \begin{...} \end{...} { } 2.4 L A TEX L A TEX backslash Emacs L A TEX B 9
13 3 L A TEX 3.1 (chapter) (section) ( ) L A TEX \documentclass{jarticle} \begin{document} \title{ } \author{ } \date{201x 10 1 } \maketitle \section{ } \subsection{} \label{subsec:writeprogram}. \subsection{ } \label{subsec:exec}. \section{ } \ref{subsec:writeprogram}. \subsection{ } \subsubsection{}. \subsection{ }.. \subsection{}. \end{document} 10
14 3.1 L A TEX L A TEX \(backslash) L A TEX \documentclass, \begin, \end L A TEX \ { 1} { n} ( ) \title, \author, \date 1 \maketitle { } [ ] documentclass \documentclass[twocolumn]{jarticle} () \begin{document} 4 \title{ } \author{ } \date{ } ( ) \date{\today} \maketitle (section) (subsection) (subsubsection) \section{ } \subsection{ } \subsubsection{ } jreport jbook (chapter) \chapter{ } ( ) L A TEX L A TEX 1 L A TEX L A TEX 11
15 201X : 12
16 3.1.3 ( 3 ) L A TEX ( \section{ }) \label{} (:, - ) ( ) \ref{} \label{subsec:writeprogram} \ref{} \ref{subsec:writeprogram} L A TEX ( enumerate, caption ) L A TEX L A TEX 2 (platex ) 1 2 (\ref{ }) 3.2 L A TEX 2.1 L A TEX \begin{document} \end{document} ( ) 13
17 3.2.1 L A TEX L A TEX L A TEX \begin{ } \end{ } \begin{document}, \end{document} \begin{ } \end{ } (\begin{ }... \end{ } \begin{ }...\end{ } ) itemize \begin{itemize} \item \item \item \item \item \begin{itemize} \item \item \\ \end{itemize} \end{itemize} \\ L A TEX (\\) ( ) ( ) 14
18 enumerate \begin{enumerate} \item X Y 1. X Y \item \label{comparison} X Y 2. X Y \begin{enumerate} \item X Y (a) X Y 3 \ref{finished} (b) X Y X Y \item X Y 2 X Y (c) Y X Y X \ref{comparison} X X, Y \item Y X 2 Y X X X, Y 3. X X Y \ref{comparison} \end{enumerate} \item \label{finished} X X Y \end{enumerate} itemize description \begin{description} \item[ ] \item[ ] \item[] \end{description} 3.3 L A TEX # $ % & _ { } ~ ^ % L A TEX % 15
19 %% % % % ( ) \ { } L A TEX $ _ ^ (4 ) & tabular (5.1 ) array (4 ) # (6.3 ) See 329~page. L A TEX 329 page % 40% 40 # $ % & _ { } \ (\# \$) 40\% 40% (1 ) verb verb ( + +) 1 \verb+%~a012345%kyoto_univ.jp+ \verb-%~a012345$kyoto+- %~a012345%kyoto_univ.jp %~a012345$kyoto+ 1 verb 16
20 L A TEX verbatim \begin{verbatim} \end{verbatim} \begin{verbatim} #include <stdio.h> #include <stdio.h> int main(void) { printf("welcome to C world! \n"); printf("%d \n", 12); return 0; } \end{verbatim} int main(void) { printf("welcome to C world! \n"); printf("%d \n", 12); } return 0; 17
21 4 L A TEX 4.1 L A TEX 2 $ $ ( \( \) \begin{math} \end{math} ) $\sum_{i=1}^{n} i = n i=1 i = n(n+1) 2 \frac{n(n+1)}{2}$ \[ \] (\begin{displaymath} \end{displaymath} ) \[ \sum_{i=1}^{n} i = n \frac{n(n+1)}{2} n(n + 1) i = \] 2 i=1 1 (i = 1 n) 18
22 \displaystyle $\displaystyle\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$ n i = i=1 n(n + 1) L A TEX L A TEX 10 ( ) = < > + /, : ; ( ) [ ] = < > + - /, : ; ( ) [ ] ( ) \[ (2+3) \times 2 \div 4 = 2.5 \geq 2 \] (2 + 3) 2 4 = \[ (x+1)(y-1) = xy - x + y - 1 (x + 1)(y 1) = xy x + y 1 \] sin(α + β) = sin α cos β + cos α sin β \[ \sin (\alpha+\beta) = \sin\alpha \cos\beta + \cos\alpha\sin\beta \] L A TEX L A TEX sin sin s i n \[ sin y = - sin (y+\pi) \] siny = sin(y + π) \[ \sin y = - \sin (y+\pi) sin y = sin(y + π) \] y sin y s i n y [5] 19
23 4.2.2 L A TEX ^{ } _{ } \[ 2^{0} =1, 2^{1} =2, 2^{2} =4 \] 2 0 = 1, 2 1 = 2, 2 2 = 4 \[ 2^{2^{2}}=16, 2^{2^{2^{2}}}= = 16, = \] \[ a n+2 = a n+1 + a n (n 0) a_{n+2} = a_{n+1} + a_{n} (n\geq 0) \] \[ \lim_{n\to \infty} \frac{1}{n} \sum_{i=0}^{n-1} f(i/n) = \int_{0}^{1}f(x)dx \] lim N 4.8 N 1 1 N i=0 f(i/n) = 1 0 f(x)dx array (2 3 ) \[ \begin{array}{ccc} 1 & 2 & 3 \\ 4 & 5 & 6 \end{array} \] ( 3 ) & \\ & ( ) {ccc}
24 c l r c 3 \[ \begin{array}{lcr} 1 & 1 & \\ & 100 & 100 \\ & & \end{array} \] array \[ \left( \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \] \left( \right) array ( ) 4.9. ( ) \[ f(n) = { \left\{ 1 (n = 0) \begin{array}{ll} f(n) = n f(n 1) (n > 0) 1 & (n=0) \\ n\times f(n-1) & (n>0) \end{array} \right. \] ( ) array eqnarray 21
25 $x,y,z\in G$ $G$ \begin{eqnarray} \label{grp1} (x \cdot y) \cdot z & = & x \cdot (y \cdot z) \\ \label{grp2} e \cdot x & = & x \cdot e = x \end{eqnarray} $G$ (\ref{grp1}), (\ref{grp2}) $x\in G$ $x^{-1}$ $G$ x, y, z G G (x y) z = x (y z) (4.1) e x = x e = x (4.2) G (4.1), (4.2) x G x 1 G eqnarray array \\ & & eqnarray eqnarray* \frac{ }{ } \[ \frac{1}{1-\frac{1}{x+1}} = 1+\frac{1}{x} \] x+1 = x \root{ } \root[n]{ } \[ 2\sqrt{2} = \sqrt[4]{64} 2 2 = 4 64 \] (\cdots)... (\ldots) \dots L A TEX 22
26 \[ 0,1,2,\cdots \] \[ 0,1,2,\ldots \] \[ 0,1,2,\dots \] 0, 1, 2, 0, 1, 2,... 0, 1, 2,... L A TEX ( ) 2 array L A TEX \, \: \; \quad \qquad ( ) \! ( ) \[ \int x\! dx = \int x dx = xdx = xdx = x dx = \int x\, dx = \int x\: dx = \int x\; dx \] \[ \int x\quad dx = \int x\qquad dx \] x dx = x x dx = dx x dx 23
27 α \alpha β \beta γ \gamma δ \delta ϵ \epsilon ζ \zeta η \eta θ \theta ι \iota κ \kappa λ \lambda µ \mu ν \nu ξ \xi π \pi ρ \rho σ \sigma τ \tau υ \upsilon ϕ \phi χ \chi ψ \psi ω \omega ε \varepsilon ϑ \vartheta ϖ \varpi ϱ \varrho ς \varsigma φ \varphi Γ \Gamma \Delta Θ \Theta Λ \Lambda Ξ \Xi Π \Pi Σ \Sigma Υ \Upsilon Φ \Phi Ψ \Psi Ω \Omega 4.1: ( ) l \ell R \Re I \Im \partial \infty \prime \emptyset \nabla \angle \triangle \forall \exists ℵ \aleph h \hbar ı \imath ȷ \jmath \wp \surd \top \bot \ \neg \flat \natural \sharp \ \backslash \clubsuit \diamondsuit \heartsuit \spadesuit 4.2: ± \pm \mp \times \ast \bullet \div. \star \circ \cdot \cdots.. \ddots. \vdots \cap \cup \oplus \ominus \otimes \odot \uplus \sqcap \sqcup \ \setminus \wr \diamond \oslash \bigcirc \dagger \ddagger \amalg 4.3: ( ) \leq \geq \ll \gg \vee \wedge \subset \supset \subseteq \supseteq \in \owns, \ni \sim \simeq \equiv \approx = \cong \neq. = \doteq \propto / \notin \parallel \smile \frown \prec \preceq \succ \succeq = \models \perp \mid \asymp \bowtie \vdash \dashv \sqsubseteq \sqsupseteq 4.4: ( ) \arccos \cos \csc \exp \ker \limsup \min \sinh \arcsin \cosh \deg \gcd \lg \ln \Pr \sup \arctan \cot \det \hom \lim \log \sec \tan \arg \coth \dim \iinf \liminf \max \sin \tanh 4.5: ( ) 24
28 \leftarrow \rightarrow, \to \leftrightarrow \uparrow \downarrow \updownarrow \nearrow \swarrow \searrow \nwarrow \leftharpoonup \rightharpoonup \leftharpoondown \rightharpoondown \rightleftharpoons \mapsto \Leftarrow \Rightarrow \Leftrightarrow \Uparrow \Downarrow \Updownarrow \longleftarrow \longrightarrow \longleftrightarrow = \Longleftarrow = \Longrightarrow \Longleftrightarrow \longmapsto \hookleftarrow \hookrightarrow 4.6: ( ) ò \grave{o} ó \acute{o} ō \bar{o} ô \hat{o} ö \ddot{o} õ \tilde{o} o \vec{o} o \overline{o} M \widehat{m} M \widetilde{m} 4.7: ( ) \sum \bigcap \bigodot \prod \bigcup \bigotimes \coprod \bigsqcup \bigoplus \int \bigvee \biguplus \oint \bigwedge 4.8: ( ) ( ( ) ) [ [ ] ] { \{ } \} \lfloor \rfloor \lceil \rceil \langle \rangle / / \ \backslash \ \uparrow \downarrow \Uparrow \Downarrow \updownarrow \Updownarrow. () 4.9: ( ) 25
29 5 L A TEX 5.1 tabular \begin{tabular}{ l c r } \hline & & \\ \hline\hline & H & \\ \hline & O & \\ \hline & Mn & \\ \hline \end{tabular} array (4.2.3 ) & \\ H O Mn & ( ) { l c r } l, c, r 1 l r c 3 tabular 1 { l c r } ( ) \hline \hline \hline\hline 1 array 26
30 5.1.1 center flushleft flushright \begin{center} \begin{tabular}{ c c } \hline a & b \\ a b \hline \end{tabular} \end{center} a b \begin{flushleft} \begin{tabular}{ c c } \hline a & b \\ \hline \end{tabular} \end{flushleft} \begin{flushright} \begin{tabular}{ c c } \hline a & b \\ \hline \end{tabular} \end{flushright} a b \multicolumn[n]{ }{ } n l, r, c ( ) \cline{n-m} n m 27
31 \begin{tabular}{ cccc } \hline XX & XY & SPQR & XY \\ \cline{2-4} YY & \multicolumn{2}{ c }{IV} & \multicolumn{1}{c}{} \\ \cline{1-2}\cline{4-4} \multicolumn{2}{c }{} & \multicolumn{1}{r }{P} & YY \\ \cline{1-3} XX & YX & \multicolumn{1}{l}{q} \\ \hline \end{tabular} & YY XX XY SPQR XY YY IV P YY XX YX Q YY 5.2 L A TEX table figure table \ref{tab:place} \LaTeX{} 5.1 L A TEX \begin{table}[t] \begin{center} \begin{tabular}{c l} \hline & \\ \hline \texttt{t} & \\ \texttt{b} & \\ \texttt{p} & \\ \texttt{h} & \\ \hline \end{tabular} \end{center} \caption{ } \label{tab:place} \end{table} \begin{table} \end{table} 28
32 t b p h 5.1: table table \begin{table}[t] t 5.1 \begin{table}[htp] (1) (2) (3) L A TEX \caption{ } (3.1.3 ) figure table \caption{ } NN NN (NN ) table tabular table 29
33 6 L A TEX 6.1 L A TEX \small, \large { } {\tiny } {\footnotesize } {\small } {\normalsize } {\large } {\Large } {\LARGE } {\huge } {\Huge } \textbf{ } 1 \textrm{roman } \textmc{mincho } \textgt{gothic } \texttt{typewriter } \textsf{sans-serif } Roman Mincho Gothic Typewriter Sans-serif 1 \textbf{ } {\bf } 30
34 \textmd{standard } \textbf{bold } Standard Bold \textup{upright } \textit{italic } \textsl{slanted } \textsc{small caps } Upright Italic Slanted Small caps () ( ) \textnormal{standard } Standard ( ) \emph{emphasize } Emphasize () \mathbf $\mathit{x}=x$ x = x ( ) $\mathrm{x}=x$ x = x ( ) $\mathbf{x}=x$ x = x ( ) $\mathsf{x}=x$ x = x ( ) $\mathtt{x}=x$ x = x () $\mathcal{k}=k$ K = K ( ) \mathrm (4.2 ) \[ \mathbf{v_o} = (\mathrm{sinh}\:\theta, \mathrm{cosh}\:\theta) \] v o = (sinh θ, cosh θ) 31
35 6.2 L A TEX L A TEX (2.1 ) \usepackage{ } graphicx L A TEX graphicx graphicx L A TEX L A TEX graphicx graphicx (2.1 ) \usepackage[dvipdfmx]{graphicx} includegraphics \includegraphics[width=3cm]{graph.eps} \includegraphics[height=1cm]{graph.eps} \includegraphics[scale=0.25]{graph.eps} includegraphics \includegraphics[ ]{ } ( ) width= height= scale= 1 32
36 EPS L A TEX EPS (Encapsulated PostScript,.eps) 2 EPS A EPS JPEG(.jpg) (JPEG PDF ) EPS \includegraphics[scale=0.2]{daimonji.jpg} platex -shell-escape ( abc.tex ) EPS L A TEX % platex -shell-escape abc.tex 3 L A TEX -shell-escape pxdvi (2.2.3 ) ( ) dvipdfmx PDF (2.2.4 ) Acrobat Reader PDF Acrobat Reader graphicx ( ) enumerate enumerate supertab (tabular ) multirow (multicolumn (5.1.2 ) ) 2 EPS 3 -shell-escape 33
37 ascmac amsmath AMS(American Mathematical Society) color url URL myblog/blog20xx1001.html xypic L A TEX 6.3 L A TEX L A TEX \newcommand{\norm}[1]{\parallel #1 \parallel} ( (2.1 ) ) newcommand norm 1 norm \norm{ } newcommand #N(N ) N \norm{x} \parallel x \parallel $\norm{x + y} \leq \norm{x} + \norm{y}$ x + y x + y \newcommand{\ }[N]{ } N ( \newcommand{\ }{ } ) 2 pow \newcommand{\pow}[1]{2^#1} 2 x 1 $\pow{x_1}$ 2 x 1 \pow{x_1} 2^x_1 \newcommand{\pow}[1]{2^{#1}} 34
38 , 1 + 1, ,..., 1 + n,... 3 n+1 \[ 1, \frac{1}{1+\frac{1}{2}}, \frac{1}{1+\frac{2}{3}}, \dots, \frac{1}{1+\frac{n}{n+1}}, \dots \] \newcommand{\frfr}[2]{\frac{1}{1+\frac{#1}{#2}}} \[ 1, \frfr{1}{2}, \frfr{2}{3}, \dots, \frfr{n}{n+1}, \dots \] \textsl{ } 6.1 ( \textit{ } ) \newcommand{\binomen}[1]{\textsl{#1}} \binomen{ } ( : \binomen{pandalus eous}) ( : \binomen{panulirus japonicus}) ( : Pandalus eous) ( : Panulirus japonicus) 35
39 ( ) \newcommand{\catname}{} \binomen{\catname{}} \newcommand{\catname}{felis silvestris catus} \binomen{\catname{}} Felis silvestris catus 6.4 \documentclass{jarticle} \begin{document} \input{10intro.tex} \input{20startup.tex} \input{30struct.tex} \input{40math.tex} \input{50table.tex} \end{document} 36
40 \input{ } L A TEX 10intro.tex 1 20startup.tex 2... () ( 1 ) 6.5 L A TEX thebibliography itemize BibTEX BibTEX pbibtex 37
41 7 L A TEX L A TEX ( 3.3 ) {} () \LaTeX L A TEX \LaTeX L A TEX LaTeX LaTeX {} \LaTeX{} L A TEX L A TEX (2.3 ) L A TEX L A TEX (2.3 ) 38
42 ( ) [1] Donald E. Knuth. The TEXbook (Computers & Typesetting). Addison-Wesley Professional, [2] Leslie Lamport ( ). L A TEX2.. L A TEX L A TEX () [3]. L A TEX2.. L A TEX [4] M. Goosens, F. Mitelbach, A. Semarin ( ). The L A TEX.. L A TEX [5],. L A TEX, URL: civil.tohoku.ac.jp/~bear/bear-collections/styleuse.lzh L A TEX ( ) L A TEX [6].. B-1311, (L A TEX 3 ) 39
43 A Libre Office L A TEX EPS Libre Office Libre Office (URL: Word() Excel( ) Libre Office 1 Libre Office Libre Office Draw Libre Office Draw (Linux ) Libre Office Draw Libre Office Draw ( ) 1. Libre Office Draw 2. ODF ( EPS (.odg) ) 3. ( L A TEX ) EPS 1. Libre Office Draw 2. ( A.1 ) 3. EPS - Encapsulated PostScript 4. EPS ( ) 5. OK EPS 1 Libre Office 40
44 A.1: Libre Office Draw EPS 41
45 B AUCTeX L A TEX UNIX(Linux) Emacs L A TEX AUCTeX 1 B.1 AUCTeX AUCTeX Emacs 1. (Linux ) Emacs 2. Emacs ~/.emacs.d/emacs23-vine-default.el B.1 ;;;;; AUCTeX ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 3. Emacs Emacs AUCTeX B.2 AUCTeX Emacs.tex AUCTeX Emacs.tex AUCTeX %%% Local Variables: %%% mode: japanese-latex %%% TeX-master: t %%% End: 1 YaTeX() 42
46 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; -*- coding: utf-8-unix -*- ;; FSF Emacs 23 vine-default ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Vine Linux ;; ;; (setq vine-default nil) ;; EMACS_IME IME ;; ;; (setq emacs-ime "atokx3");; anthy-el atokx3 ibus-el mozc tamago scim scim-bridge skk wnn7egg ;; ;; ~/.emacs.d/local *.el, *.elc ;; (add-to-list load-path "~/.emacs.d/local") ;; (add-to-list load-path "~/lib/emacs") ;; (add-to-list load-path "~/.emacs.d/auto-install") ;;;;; AUCTeX ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; (setq vine-default-auctex t vine-default-preview-latex t) (setq TeX-default-mode japanese-latex-mode) (setq japanese-latex-command-default "platex") (setq TeX-view-program-list (("pxdvi" "pxdvi -nofork -watchfile 1 -editor \"emacsclient +%%l %%f\" %d -sourceposition %n:%b") ("acroread" "acroread %o") )) (setq TeX-view-program-selection ((output-dvi "pxdvi") (output-pdf "acroread"))) (add-hook LaTeX-mode-hook TeX-PDF-mode) (add-hook LaTeX-mode-hook LaTeX-math-mode) (add-hook LaTeX-mode-hook (function (lambda () (TeX-source-correlate-mode 1) (setq TeX-source-correlate-start-server t) (add-to-list TeX-command-list ("platex" "platex -src-specials %t" TeX-run-TeX nil (latex-mode) :help "Run e-platex")) (add-to-list TeX-command-list ("dviview" "pxdvi -nofork -watchfile 1 -editor \"emacsclient +%%l %%f\" %d -sourceposition %n:%b" TeX-run-discard-or-function t t :help "Run DVI Viewer")) ))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; Local Variables: ;; mode: emacs-lisp ;; End: B.1: Emacs 43
47 Emacs LaTeX (L A TEX ) Command ( ) L A TEX C-c C-s C-c C-e C-c ] C-u C-c C-e C-c C-j C-c C-m C-c C-f Key C-{ C-} \section, \subsection \begin{ }, \end{ } \begin{ } \end{ } itemize, enumerate, description \item \ {} \textbf{...} ( \mathbf{...}) Key C-c C-f C-i \textit{}, C-c C-f C-b \textbf{} Key C-c C-f? { } } TAB AUCTeX Enter(Return) C-c C-e document \documentclass{...} C-c C-c : platex View Print C-c C-k C-c C-l L A TEX C-c ` 2 (` backquote ) LATEX 44
48 B.2.1 L A TEX AUCTeX TAB Emacs C-c C-v Ctrl Emacs 45
1.5,. ( A, 7, * ) Emacs,., <Return>., <Delete>. <Delete>, Delete. <Delete>,. 1.6,.,, Emacs.,. ( ), ( ),,. C-x,., Emacs.,. C-x C-f ( )... C-x C-s. Emac
L A TEX 1 1.1 Emacs Emacs, (, CTRL, CTL ) (, )., CONTROL META,. C-< >, < >., C-f, f. ESC < >, < >. < >,. Emacs, C-x C-c.,. C-v. ESC v. 1.2., (previous) (next) (forward) (backward)., C-p, C-n, C-f, C-b,.
visit.dvi
L A TEX 1 L A TEX 1.1 L A TEX,. L A TEX,. ( Emacs). \documentclass{jarticle} \begin{document} Hello!!, \LaTeX Hello!!, L A TEX L A TEX2ε. \LaTeXe. \end{document},. \, L A TEX. L A TEX. \LaTeX L A TEX..
1.2 L A TEX 2ε Unicode L A TEX 2ε L A TEX 2ε Windows, Linux, Macintosh L A TEX 2ε 1.3 L A TEX 2ε L A TEX 2ε 1. L A TEX 2ε 2. L A TEX 2ε L A TEX 2ε WYS
L A TEX 2ε 16 10 7 1 L A TEX 2ε L A TEX 2ε TEX Stanford Donald E. Knuth 1.1 1.1.1 Windows, Linux, Macintosh OS Adobe Acrobat Reader Adobe Acrobat Reader PDF 1.1.2 1 1.2 L A TEX 2ε Unicode L A TEX 2ε L
cpall.dvi
137 A L A TEX LATEX 1 TEX 2 (American Mathematical Society) L A TEX L. Lamport, L A TEX: a Document Preparation System, Addison Wesley (1986). Edgar Cooke, L A TEX (1990). LATEX2 ε (2003). LATEX A.1 L
プレゼン資料 - MathML
MathML2006.03 MathML MathML2006.03-0.1 MathML 2 URL http://www.hinet.mydns.jp/~hiraku/presentation/?mathml2006.03 MathML2006.03-0.2 1. 1. Web MathML 2. MathML 3. CMS Wiki 2. CMS + MathML = 1. tdiary Hiki
L A TEX Copyright c KAKEHI Katsuhiko All Rights Reserved 1 L A TEX \documentstyle[< >]{jarticle} \title{< >} \author{< >} \date{< >} < > \be
L A TEX Copyright c KAKEHI Katsuhiko 1996-1998 All Rights Reserved 1 L A TEX \documentstyle[< >]{jarticle} \title{} \author{< >} \date{} \begin{document} \end{document} article jarticle report jreport
2. label \ref \figref \fgref graphicx \usepackage{graphicx [tb] [h] here [tb] \begin{figure*~\end{figure* \ref{fig:figure1 1: \begin{figure[
L A TEX 22 7 26 1. 1.1 \begin{itemize \end{itemize 1.2 1. 2. 3. \begin{enumerate \end{enumerate 1.3 1 2 3 \begin{description \item[ 1] \item[ 2] \item[ 3] \end{description 2. label \ref \figref \fgref
2 (2) WinShell 2 (3) WinShell L A TEX ( ) ( ) 2 1 L A TEX.tex L A TEX WinShell (4) WinShell 2 L A TEX L A TEX DVI DeVice Independent (5) WinShell 2 DV
1 L A TEX 2014 1 L A TEX [ 1 ] 1 : L A TEX 1.1 L A TEX L A TEX ( ) L A TEX L A TEX ( ) ( ) L A TEX \ \ Windows Y= \ Windows Y= 1.2 L A TEX WinShell Windows L A TEX WinShell Windows L A TEX WinShell L A
web04.dvi
4 MATLAB 1 visualization MATLAB 2 Octave gnuplot Octave copyright c 2004 Tatsuya Kitamura / All rights reserved. 35 4 4.1 1 1 y =2x x 5 5 x y plot 4.1 Figure No. 1 figure window >> x=-5:5;ψ >> y=2*x;ψ
PowerPoint プレゼンテーション
秋学期情報スキル応用 田中基彦教授, 樫村京一郎講師 ( 工学部 共通教育科 ) DTP の基礎 (2) 1. 日本語の入力法 2. 数式, グラフィック, テーブル - 数式 のみは理数系 3. 相互参照, 目次, 文献参照 - あの項目はどこにある? * 提出問題 5 DTP について 提出問題 5 LaTeX 言語を用いる DTP (DeskTop Publishing) について, つぎの各問に答えなさい
電気通信大学 コンピュータリテラシー 文書整形 --- LaTeX ---
1 L A TEX B5 1. LaTeX ( ) : 1 3 2. LaTeX ( ) : 4 7 3. LaTeX (,, EPS ) : 8 10 4. LaTeX ( ) : 11 textlatex.pdf : tiny.tex, tiny.pdf : 1 small.tex, small.pdf : 2 normal.tex, normal.pdf : f1.eps : normal.tex
tex03final1.dvi
2002 3 L A TEX 2002 4 20 : TEX dvi PDF mikilab 1 L A TEX 1.1 Table 1.1 Table 1 1 1400 1 1700 Fig. 1 \begin{tabular}{ ()}. Fig. 2 tabular Table 2 tabular l c r \begin{center} \begin{tabular}{lcr} & & \\
DVIOUT-マスタ-
L A TEX T.T TEX TEX 1 TEX TEX Donald E. Knuth tex 2 L A TEX TEX LATEX( DEC Leslie Lamport TEX TEX 3 L A TEX 3.1 L A TEX documentclass[]{} begin{document} end{document} LATEX 3.1.1 documentclass[a4paper,twocolumn,11pt]{jarticle}
semi4.dvi
1 2 1.1................................................. 2 1.2................................................ 3 1.3...................................................... 3 1.3.1.............................................
4.4... 17 4.5... 18 4.6... 18 4.7 sin log lim... 18 5 19 6 20 6.1... 20 6.2... 21 7 22 7.1... 22 7.2... 23 8 Deutsch 24 9 24 1 Hello, TEX World! 1.1 T
-platex2 by MiYaGG 1 Hello, TEX World! 2 1.1 TEX... 2 1.2 pl A TEX2... 3 1.3 TEX... 4 1.4 TEX... 4 1.5 To err is human......... 6 1.6 UNIX... 6 2 7 2.1... 7 2.2... 8 2.3... 8 2.4... 9 2.5... 10 2.6...
3 MathJax HTML \ Y \ Y mathjax.html <html> <head> <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs/mathjax /2.7.0/MathJax.js
MathJax 1 MathJax MathJax JavaScript : MathJax IE6 Chrome 0.2 Safari 2 Opera 9.6 MathJax MathJax 2010 MathJax MathJax JavaScript MathJax JavaScript MathJax MathJax 2 HTML MathJax HTML HTML mathjax.html
L A TEX (2)
L A TEX M1 E-mail : [email protected] 2016 4 19 L A TEX ( c ) 1 1 1.1................................................. 1 1.2................................................ 3 1.3...............................................
sarutex.dvi
LATEX L A TEX which monkeys cannot use. LATEX Ver2.0 SaRuTEX LATEX LATEX L A TEX L A TEX LATEX LATEX L A TEX LATEX L A TEX PAW PAW ROOT ROOT LATEX L A TEX LATEX LATEX 2001 3 S a RuTEX ( 1 ) i LATEX Ver1.1
TEX 6.2. EQUATIONS Y=[ Y=] equation y = ax + b y = ax + b (6.1) Y=[ Y=] Y=nonumber eqnarray 3 2 eqnarray equation Y=Y= eqnarray y = ax + b (6.2) y = x
6 ArkOak TEX L A TEX2e 2015 11 4 6.1 making title 6.2 Equations 6.2.1 y = ax + b $ $ x x $ 6.2.2 Y=[ Y=] equation 1 TEX 6.2. EQUATIONS Y=[ Y=] equation y = ax + b y = ax + b (6.1) Y=[ Y=] Y=nonumber eqnarray
Microsoft Word - Wordで楽に数式を作る.docx
Ver. 3.1 2015/1/11 門 馬 英 一 郎 Word 1 する必要がある Alt+=の後に Ctrl+i とセットで覚えておく 1.4. 変換が出来ない場合 ごく稀に以下で説明する変換機能が無効になる場合がある その際は Word を再起動するとまた使えるようになる 1.5. 独立数式と文中数式 数式のスタイルは独立数式 文中数式(2 次元)と文中数式(線形)の 3 種類があ り 数式モードの右端の矢印を選ぶとメニューが出てくる
:15: :..
2016 1 1 2016 1 2017-01-17 21:15:42 9............................... 44 10.............................. 46 11.............................. 48 12 :................... 51 1 1 2 (Small Basic ) 2 1...............
L A L A TEX UTF-8 Makefile \begin{jabstract} \end{jabstract} \begin{eabstract} \end{eabstract} main.tex L A TEX i
2012 24 L A TEX 2013 1 2012 24 L A TEX @kurokobo L A TEX UTF-8 Makefile \begin{jabstract} \end{jabstract} \begin{eabstract} \end{eabstract} main.tex L A TEX i Abstract Of Master s Thesis Academic Year
LaTeX実践講座 - これから TeXを使って文書を書きまくる人のために
L A T E X T E X 2 2016 7 29 ( ) ITPASS @ 3 508 1 2 3 L A T E X Tips 4 Beamer Emacs T E X YaTeX 5 1 2 3 L A T E X Tips 4 Beamer Emacs T E X YaTeX 5 T E X T E X T E X L A T E X,, , T E X, 1,... T E X 1 2
PowerPoint プレゼンテーション
LaTeX Cheat Sheet 2015 ver. 2015/10/16 Matsuoka Ryo このスライドについて 1. このスライドは 北 大 理 学 部 を 中 心 とした 有 志 で 行 われている TeX 勉 強 会 で 使 われていた 資 料 です 2. このスライドの 不 正 確 な 記 述 によって 生 じた いかなる 損 害 に 関 しても 作 者 は 責 任 を 負 いかねます
Chapter 1 latex latex divout for windouws,texmaker,beamer latex 2012/2/2 2
Contents 1 2 2 latex 3 2.1 latex..................... 3 3 divout 4 3.1 divout for windouws.................... 4 3.2 divout for windows pdf................ 4 4 Texmaker 5 4.1 texmaker.............................
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.
微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)
Microsoft Word - ASCII変換文字一覧.docx
Alpha Α alpha α Beta Β beta β Chi Χ chi χ Delta Δ delta δ Epsilon Ε epsilon ϵ Eta Η eta η Gamma or G Γ gamma γ Iota Ι iota ι Kappa Κ kappa κ Lambda Λ lambda λ Mu Μ mu μ Nu Ν nu ν Omega Ω omega ω O Ο o
1 1.1 1.2 1.3 (a) WYSIWYG (What you see is what you get.) (b) (c) Hyper Text Markup Language: SGML (Standard Generalized Markup Language) HTML (d) TEX
L A TEX HTML 2000 7 2 ([-30]5051.49) 1 2 1.1.............................................. 2 1.2.............................................. 2 1.3................................................ 2 1.4.............................................
readme.dvi
Vol. 34, No. 1 (2005), 1 15 L A TEX jjas.cls pl A TEX2ε jjas.cls http://www.applstat.gr.jp/ L A TEX L A TEX 1. 2 3 4 2. template.tex 2.1. \documentclass[mentuke]{jjas} \usepackage{graphicx} \usepackage[varg]{txfonts}
b3e2003.dvi
15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2
Year 2010 Graduation Thesis A LATEX Template for Graduation Thesis Keio University Faculty of Environment and Information Studies Fusuke Hogeyama Advi
22 L A TEX Year 2010 Graduation Thesis A LATEX Template for Graduation Thesis Keio University Faculty of Environment and Information Studies Fusuke Hogeyama Advisor: Professor Hogeta Bahnaka 2010 22 L
1 1 1...................... 1 2 6 1.................. 6 2...................... 8 3 9 1........................ 9 2........................ 12 4 15 1...... 15 2........................... 18 3..........................
数学の基礎訓練I
I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.
医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/009192 このサンプルページの内容は, 第 2 版 1 刷発行時のものです. i 2 t 1. 2. 3 2 3. 6 4. 7 5. n 2 ν 6. 2 7. 2003 ii 2 2013 10 iii 1987
tex02.dvi
2002 2 L A TEX 2002 4 15 : L A TEX EPS EPS 1 L A TEX L A TEX L A TEX L A TEX 1.1 L A TEX 1.1.1 L A TEX TEX.tex.tex.tex 1.1.2 TEX 1. TEX L A TEX Y TEX L A TEX Y (@ ) TEX L A TEX 2. 1 YTeX YTeX ( ) 3. 2
JSIAM URL TEX Web jsjsiam.cls jsiammacrover
TeX. 200. How to use the TEX class files for the Transaction of the Japan Society for Industrial and Applied Mathematics Taro Ouyou Hanako Suzuki Jirou Nihon Saburou Yamada Harumi Ouyou Nihon Suuri University
PowerPoint Presentation
平成 25 年度 情報リテラシー 担当 : 一色正晴 (4 号館 405) [email protected] http://ipr20.cs.ehime-u.ac.jp/~isshiki/literacy/ 準備 リテラシ用のディレクトリ内に, 新たなディレクトリ tex を作成 HP からファイル tex.tar.gz をダウンロードして, 作成したディレクトリに保存 解凍 展開
数学論文の書き方 - 第1回:入門編
LAT E X 2007 6 19 LAT E X 1 2 L A T E X 3 4 L A T E X 5 LAT E X 1 2 L A T E X 3 4 L A T E X 5 LAT E X 1 2 L A T E X 3 4 L A T E X 5 LAT E X 1 2 L A T E X 3 4 L A T E X 5 LAT E X 1 2 L A T E X 3 4 L A T
5 36 5................................................... 36 5................................................... 36 5.3..............................
9 8 3............................................. 3.......................................... 4.3............................................ 4 5 3 6 3..................................................
I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google
I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59
211 [email protected] 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,
1 L A TEX
L A TEX ( ) 2011 11 4 L A TEX 2007 4 4 2007 2007 9 4 2007 2007 9 18 2009 9 9 2009 2011 9 4 2011 2011 11 4 (A,B) http://osksn2.hep.sci.osaka-u.ac.jp/ taku/kakenhilatex/ http://jelt.mtk.nao.ac.jp/ iye/kakenhilatex/
Microsoft PowerPoint - 第13回 TeX 1日目.ppt [互換モード]
平成 21 年度情報リテラシー 担当 : 木下浩二 (4 号館 404) [email protected] http://ipr20.cs.ehime-u.ac.jp/~kinoshita/literacy/ 準備 リテラシ用のディレクトリ内に, 新たなディレクトリ tex を作成 HP からファイル tex.tar.gz をダウンロードして, 作成したディレクトリに保存 解凍
,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.
9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,
コンピュータ基礎 5. マークアップによるレポート作成
5. Chris Plaintail December 13, 2016 1 / 70 1 L A TEX L A TEX 2 L A TEX 3 4 L A TEXbeamer 2 / 70 L A TEX 3 / 70 PDF 4 / 70 HTML(Hyper Text Markup Language) XML(eXtensible Markup Language) XHTML, SVG, SMIL,
A 2008 10 (2010 4 ) 1 1 1.1................................. 1 1.2..................................... 1 1.3............................ 3 1.3.1............................. 3 1.3.2..................................
( ) ± = 2018
30 ( 3 ) ( ) 2018 ( ) ± = 2018 (PDF ), PDF PDF. PDF, ( ), ( ),,,,., PDF,,. , 7., 14 (SSH).,,,.,,,.,., 1.. 2.,,. 3.,,. 4...,, 14 16, 17 21, 22 26, 27( ), 28 32 SSH,,,, ( 7 9 ), ( 14 16 SSH ), ( 17 21, 22
24.15章.微分方程式
m d y dt = F m d y = mg dt V y = dy dt d y dt = d dy dt dt = dv y dt dv y dt = g dv y dt = g dt dt dv y = g dt V y ( t) = gt + C V y ( ) = V y ( ) = C = V y t ( ) = gt V y ( t) = dy dt = gt dy = g t dt
Note.tex 2008/09/19( )
1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................
確率論と統計学の資料
5 June 015 ii........................ 1 1 1.1...................... 1 1........................... 3 1.3... 4 6.1........................... 6................... 7 ii ii.3.................. 8.4..........................
I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )
I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17
2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)
1 16 10 5 1 2 2.1 a a a 1 1 1 2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h) 4 2 3 4 2 5 2.4 x y (x,y) l a x = l cot h cos a, (3) y = l cot h sin a (4) h a
Ver.2.2 20.07.2 3 200 6 2 4 ) 2) 3) 4) 5) (S45 9 ) ( 4) III 6) 7) 8) 9) ) 2) 3) 4) BASIC 5) 6) 7) 8) 9) ..2 3.2. 3.2.2 4.2.3 5.2.4 6.3 8.3. 8.3.2 8.3.3 9.4 2.5 3.6 5 2.6. 5.6.2 6.6.3 9.6.4 20.6.5 2.6.6
LATEX
LATEX 2018 5 16 i 1 1 1.1 L A TEX?... 1 1.2 L A TEX?... 2 2 L A TEX 3 2.1... 3 2.2... 3 2.3... 4 2.4... 6 2.5... 7 3 ( ) 8 3.1... 8 3.2... 8 4 9 4.1... 9 4.2... 11 4.3... 11 4.4... 12 5 13 5.1 BiBTeX...
( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (
6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b
TOP URL 1
TOP URL http://amonphys.web.fc.com/ 3.............................. 3.............................. 4.3 4................... 5.4........................ 6.5........................ 8.6...........................7
1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (
1 1.1 (1) (1 + x) + (1 + y) = 0 () x + y = 0 (3) xy = x (4) x(y + 3) + y(y + 3) = 0 (5) (a + y ) = x ax a (6) x y 1 + y x 1 = 0 (7) cos x + sin x cos y = 0 (8) = tan y tan x (9) = (y 1) tan x (10) (1 +
W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)
3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)
http://www.ike-dyn.ritsumei.ac.jp/ hyoo/wave.html 1 1, 5 3 1.1 1..................................... 3 1.2 5.1................................... 4 1.3.......................... 5 1.4 5.2, 5.3....................
[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s
[ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =
No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2
No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j
http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg
2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a
009 I II III 4, 5, 6 4 30. 0 α β α β l 0 l l l l γ ) γ αβ ) α β. n n cos k n n π sin k n π k k 3. a 0, a,..., a n α a 0 + a x + a x + + a n x n 0 ᾱ 4. [a, b] f y fx) y x 5. ) Arcsin 4) Arccos ) ) Arcsin
1. A0 A B A0 A : A1,...,A5 B : B1,...,B
1. A0 A B A0 A : A1,...,A5 B : B1,...,B12 2. 3. 4. 5. A0 A, B Z Z m, n Z m n m, n A m, n B m=n (1) A, B (2) A B = A B = Z/ π : Z Z/ (3) A B Z/ (4) Z/ A, B (5) f : Z Z f(n) = n f = g π g : Z/ Z A, B (6)
4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.
A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c
() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)
0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()
(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: [email protected] i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................
1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =
1 1.1 ( ). z = + bi,, b R 0, b 0 2 + b 2 0 z = + bi = ( ) 2 + b 2 2 + b + b 2 2 + b i 2 r = 2 + b 2 θ cos θ = 2 + b 2, sin θ = b 2 + b 2 2π z = r(cos θ + i sin θ) 1.2 (, ). 1. < 2. > 3. ±,, 1.3 ( ). A
8 i, III,,,, III,, :!,,,, :!,,,,, 4:!,,,,,,!,,,, OK! 5:!,,,,,,,,,, OK 6:!, 0, 3:!,,,,! 7:!,,,,,, ii,,,,,, ( ),, :, ( ), ( ), :... : 3 ( )...,, () : ( )..., :,,, ( ), (,,, ),, (ϵ δ ), ( ), (ˆ ˆ;),,,,,,!,,,,.,,
i
i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,
第86回日本感染症学会総会学術集会後抄録(II)
χ μ μ μ μ β β μ μ μ μ β μ μ μ β β β α β β β λ Ι β μ μ β Δ Δ Δ Δ Δ μ μ α φ φ φ α γ φ φ γ φ φ γ γδ φ γδ γ φ φ φ φ φ φ φ φ φ φ φ φ φ α γ γ γ α α α α α γ γ γ γ γ γ γ α γ α γ γ μ μ κ κ α α α β α
II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2
II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh
LLG-R8.Nisus.pdf
d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =
/02/18
3 09/0/8 i III,,,, III,?,,,,,,,,,,,,,,,,,,,,?,?,,,,,,,,,,,,,,!!!,? 3,,,, ii,,,!,,,, OK! :!,,,, :!,,,,,, 3:!,, 4:!,,,, 5:!,,! 7:!,,,,, 8:!,! 9:!,,,,,,,,, ( ),, :, ( ), ( ), 6:!,,, :... : 3 ( )... iii,,
( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )
( 3 7 4 ) 2 2 ) 8 2 954 2) 955 3) 5) J = σe 2 6) 955 7) 9) 955 Statistical-Mechanical Theory of Irreversible Processes 957 ) 3 4 2 A B H (t) = Ae iωt B(t) = B(ω)e iωt B(ω) = [ Φ R (ω) Φ R () ] iω Φ R (t)
30
3 ............................................2 2...........................................2....................................2.2...................................2.3..............................
液晶の物理1:連続体理論(弾性,粘性)
The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers
sikepuri.dvi
2009 2 2 2. 2.. F(s) G(s) H(s) G(s) F(s) H(s) F(s),G(s) H(s) : V (s) Z(s)I(s) I(s) Y (s)v (s) Z(s): Y (s): 2: ( ( V V 2 I I 2 ) ( ) ( Z Z 2 Z 2 Z 22 ) ( ) ( Y Y 2 Y 2 Y 22 ( ) ( ) Z Z 2 Y Y 2 : : Z 2 Z
A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B
9 7 A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B x x B } B C y C y + x B y C x C C x C y B = A
