EDS分析ってなんですか?どのようにすればうまく分析できますか?(EDS分析の基礎)
|
|
|
- さやな なつ
- 8 years ago
- Views:
Transcription
1 EDS 分析ってなんですか? どのようにすればうまく分析できますか?(EDS 分析の基礎 ) ブルカー エイエックスエス ( 株 ) 山崎巌 Innovation with Integrity
2 目次 1 SEM EDS とは 1-1 走査電子顕微鏡と X 線分析 1-2 微少領域の観察 分析 1-3 SEM で何がわかる 1-4 試料から出てくる情報 2 EDS でどうして元素がわかるの 2-1 X 線 2-2 エックス線の検出法 2-3 EDS のスペクトル 2-4 X 線の放射 : 連続 X 線 2-5 X 線の放射 : 特性 X 線 2-6 特性 X 線の系列 3 EDS ではどんな分析ができますか? 3-1 定性分析 3-2 定量分析 3-3 多点分析 3-4 ラインスキャン 3-5 元素マッピング 4 どのような手順で分析したら良いですか? 試料作製の注意点は? 4-1 分析手順 4-2 試料前処理の注意点 ( 粉末試料 ) 4-3 試料前処理の注意点 ( 導電処理 ) 4-4 試料形状と検出器の位置 5 分析時の SEM 条件は? 5-1 未知試料の分析 5-2 軽元素の分析 (1) 5-3 軽元素の分析 (2) 5-4 微小領域の分析 5-5 加速電圧の設定 ( まとめ ) 5-6 分析時のプローブ電流は? 6 分析時の注意点 6-1 定性分析での注意点 6-2 元素マッピングでの注意点 2
3 1 SEM EDS とは 3
4 1-1 走査型電子顕微鏡と X 線分析 エネルギー分散形 X 線分析装置 (EDS) は 走査型電子顕微鏡 (SEM) に取り付け X 線を検出し試料の元素情報を得る装置です エネルギー分散形 X 線分析装置 (EDS) 走査型電子顕微鏡 (SEM) 4
5 1-2 微小領域の観察 分析 電子顕微鏡はミリオーダーからナノオーダーまで観察ができます 付属の EDS を使用すると同様な領域の元素分析が可能です 100 mm 10 mm 1 mm 100μm 10μm 1μm 100nm 10nm 1nm 肉眼 光学顕微鏡 電子顕微鏡 5
6 1-3 SEM で何がわかる SEM からの情報 MnFeWO 4 KAISi 3 O 8 凹凸によるコントラスト組成差によるコントラスト 実際はどのような元素が含まれているの? 元素情報知る方法は無いの? X 線分析 (EDS) で元素情報が得られます 6
7 1-4 試料から出てくる情報 ( 信号 ) 試料に照射された電子線は 試料表面からある深さまで入り込み各種の電子線や X 線を発生させます 特性 X 線 : 元素情報 組成情報 連続 X 線 ( バックグランド ) 反射電子 : 凹凸情報 組成像 光 : 組成情報 2 次電子 : 凹凸像 組成像 特性 X 線により試料に含まれる元素情報が得られます 7
8 2 EDS でどうして元素が解るの 8
9 2-1 X 線 ラジオ電波 マイクロ波 赤外線 可視光線 波長 10m 200μm 810nm 380nm エネルギー 10-6 ev 10-1 ev 電磁波は波長の違いにより相互作用が異なりそれぞれの特徴ごとに別の名前が付けられています X 線は波長 100nm から 0.1nm の電磁波で紫外線とガンマ線の間にあります 紫外線 100nm 10eV X 線 ガンマ線 0.1nm 10 5 ev 9
10 2-2 X 線の検出法 X 線は太陽光発電と同じ原理で検出されます シリコン半導体に電磁波が入射すると電子 (-) と正孔 (+) の対が生まれ 電圧をかけることにより電流が発生します 発生する電流は X 線のエネルギーに比例します 入射した個々の X 線で発生した電流を計測し X 線のエネルギーに換算します 10
11 2-3 EDS のスペクトル X線カウント数(CPS) 11 O Na Al X 線エネルギー (kev) (CPS: シーピーエス 1 秒当たりのカウント数 ) Si 特性 X 線含有元素を表します面積は元素量の情報を与えます K Ca 連続 X 線 ( バックグランド ) 通常はノイズとして扱われますチャージアップや試料傾斜で形状が変わります 試料 :Albite(NaAlSi 3 O 8 )
12 2-4 X 線の放射 : 連続 X 線 連続 X 線 ( バックグラウンド ): 照射電子線が原子内を通過する際 原子核との作用で失われたエネルギーが X 線として放射されます この X 線はバックグラウンドを形成します
13 2-5 X 線の放射 : 特性 X 線 8 照射電子線が原子内を通過する際 原子内電子と衝突を起こし 原子内電子が弾き飛ばされた場合 弾き飛ばされた電子を補うため外核から電子が移動します この電子はポテンシャルエネルギー差分を X 線として放出します この X 線は原子の種類と 移動した殻の種類によりエネルギーが決まるので 原子の特性を示す特性 X 線として検出されます cps/ev S Mo Cr Ni S C Fe Si Mo Cr Fe Ni kev
14 2-6 特性 X 線の系列 M 5 M 4 M 3 M 2 K 線 K 線 Kα 線 :K 殻の電子が弾き飛ばされ L 殻の電子が移動 M 1 Kβ 線 :K 殻の電子が弾き飛ばされ M 殻の電子が移動 L 3 L 2 L 1 α 1 α 2 β 1 β 2 L 線 K α 1 α 2 β 1 β 2 K 系列 L 系列 L 線 :L 殻の電子が弾き飛ばされ M 殻の電子が移動 14
15 3 EDS ではどんな分析ができますか? 15
16 3-1 定性分析 試料内の含有元素の同定測定されたスペクトルで 特性 X 線のエネルギーがどの元素の特性 X 線に対応するかを調べることで 試料内に含まれる元素の種類を知ることができます 各特性 X 線とデータベースを比較することで元素の確認ができます Si C O Na Al K Ca 16
17 3-2 定量分析 発生する特性 X 線の数は元素の濃度に比例します 各特性 X 線の強度 ( カウント数 ) を調べることで含有元素の濃度を調べることが出来ます 17
18 3-3 多点分析 EDS 側で SEM のスキャンを制御し SEM 画像を取り込み画像上で指定した場所のスペクトルを取得します 18
19 3-4 ラインスキャン SEM 画像で指定したライン上の各元素の濃度分布をプロファイルで観ることができます 19
20 3-5 元素マッピング 各元素の分布を 2 次元的に見ることができます いくつかの元素の重ね合わせた画像も表示できます また ハイパーマップでは各画素のスペクトル情報をデーターベースとして取り込むことができるので 測定後に他の元素のマッピングや 特定部分のスペクトルを取得することができます 合成元素マッピング 元素マッピング 20
21 4 どのような手順で分析をしたら 良いですか? 試料作製の注意点は? 21
22 4-1 分析手順 試料の観察 ( 分析場所の確認 ) 試料の前処理分析条件の設定 EDS 分析 試料中の分析場所を目視や光学顕微鏡を用い確認してください 必要な場合はマーキングを行ってください 抱埋 研磨 試料台への貼り付け 導電性処理 検出器の挿入 試料位置 (WD 傾斜 ) の調整 分析場所への移動 加速電圧, プローブ電流の設定 定性 定量 多点分析 ライン分析 元素マッピング 22
23 4-2 試料前処理の注意点 ( 粉末試料 ) 粉末試料の注意点粉末試料は分析中およびチャンバーリークの際に飛散して EDS 検出器を傷つけることがあります しっかり固定して分析しましょう ふりかけ法 ブロアーやエアーダスターで余分な粉末を吹き飛ばしてから分析してください カーボンテープカーボンペースト カーボンテープ使用の際はシリコン紙で上から抑えると効果的です 23
24 4-3 試料前処理の注意点 ( 導電処理 ) SEM 観察の場合は導電性処理として一般的に Au,Pt,Pt-Pd を試料に蒸着します 青 :Pt 赤 :Au この状態で EDS 分析を行うことはできますが分析結果に影響があります 1 表面の Au,Pt,Pt-Pd に軽元素の特性 X 線が吸収されてしまう 2 微量な P( リン ) や S( 硫黄 ) のピークが隠れてしまう 精度の良い分析のためには C( カーボン ) を蒸着してください 24
25 4-4 試料形状と検出器位置 (1) 対物レンズ EDS 検出器 分析位置が試料で隠れていないか 試料 ワーキングデタンス (WD) 凹凸の著しい試料を分析する場合検出器と試料の位置関係を考慮する必要があります 25
26 4-4 試料形状と検出器位置 (2) 対物レンズ EDS 検出器 ワーキングデタンス (WD) 試料 EDS 検出器側に障害物が無いよう試料をセットしてください 26
27 5 分析時の SEM 条件は 27
28 5-1 未知試料の分析 未知試料の場合は加速電圧を 15kV または 20kV で分析してください ほぼすべての元素の存在が確認できます 加速電圧 20kV 加速電圧 5kV 試料 :SRM348 28
29 5-2 軽元素の分析 (1) 加速電圧を下げることで軽元素の励起効率が上がります 加速電圧 20kV 加速電圧 5kV F Ca F Ca 試料 :CaF 2 29
30 5-3 軽元素の分析 (2) 微量な軽元素を分析する場合はできるだけ加速電圧を下げて分析してください 検出限界が良くなります cps/ev C N O 試料 : ナイロン (N 重量濃度 10% 以下 ) 検出器 :125eV(Mn K) 測定時間 :60 秒加速電圧 : 5 kv 真空度 :30Pa( 低真空無蒸着分析 ) kev 30
31 5-4 微小領域の分析 加速電圧に応じて電子線の散乱領域は変わります 同様にX 線発生領域も加速電圧に応じて変化します 微小領域の分析では加速電圧は低い方が良い結果が得られます 加速電圧 20kV のスペクトル 微小粒子の分析 基盤の CuZn のスペクトル Pb 内での電子線散乱領域 試料 :CuZn 上の Pb 粒子 加速電圧 5kV のスペクトル 1μm 31
32 5-5 加速電圧の設定 ( まとめ ) 加速電圧 低 高 X 線発生量 低 高 測定可能元素 少 多 分析領域 小 大 分析目的に応じて適切な加速電圧を選択してください 32
33 5-6 EDS 分析時のプローブ電流条件 SEM では加速電圧とは別に 照射電流を変えることができます SEM 像観察条件では通常十分な X 線が得られません 通常の SEM 観察より多く電流を取るようにしてください ビーム電流少ない多い SEM 像分解能良い悪い X 線発生量少ない多い 33
34 6 分析時の注意点は 34
35 6-1-1 定性分析での注意点 SUM ピーク濃度の高い元素の場合特性 X 線が 2 つ同時に検出器に入りちょうど 2 倍のエネルギーの場所にピークが現れる現象があります このピークは SUM ピークと呼ばれています 入力カウントを少なくすると SUM ピークは小さくなります 入力カウント :40kcps 入力カウント :5kcps Al(1.486eV) Al SUM ピーク (2.972eV) 35
36 6-1-2 定性分析での注意点 オーバーラップピーク EDS 分析では エネルギーの近いピーク同士が重なり合うことがあります これらの元素の同定は ピーク分離等を行い スペクトルとのフィッティングを観ることで確認できます cps W Si Si: 赤 W: 緑 channel 重なる主な元素 Co-Kα と Cr-Lα F-Kα と Fe-Lα Na-Kα と Zn-Lα Al-Kα と Br-Lα Ti-Kα と Ba-Lα Pb-Lα と As-Kα Si-Kα と W-Lα S-Kα と Mo-Lα と Pb-Mα 36
37 6-2-1 入力カウントについて 元素マッピングでは 照射電流が多いいほど短時間で 解像度の良い像が得られます 試料にダメージ等の 無い場合は出来るだけ照射電流を多くして測定して ください 試料 古銭 入力カウント:1kcps 照射電流 20pA 観察モード 測定時間 5分 C Si 入力カウント:10kcps 照射電流 300pA 測定時間 5分 C Si 入力カウント:50kcps 照射電流 1.3nA 測定時間 5分 C Si 37
38 6-2-2 試料の凹凸について 検出器 カーボンテープ上の球形 SiO 2 のマッピング像です EDS 検出器は写真上方にあります 下地のカーボンの元素マッピングに SiO 2 粒子の影が見られます 凹凸の著しい試料を元素マッピンする場合は影を考慮に入れて分析する必要があります 38
39 6-2-3 吸収の影響について 検出器 カーボンテープ上の球形 SiO 2 の元素マッピング像です 粒子の組成は一様です Si と O の元素マッピング像を比べると 酸素の元素マッピングで粒子の下側で信号が少なくなっているのが分かります これはエネルギーの小さい O の特性 X 線が試料内で Si の特性 X 線より多く吸収されているからです Si 元素マッピング像 O 元素マッピング像 Si,O 合成像 39
40 6-2-3 ナノオーダーマッピング ( 低加速マッピングの効果 ) 加速電圧を下げると電子線散乱領域が小さくなり微小領域の元素の分布が得られます 2.5 x 1E3 Impulse/ ev 1.00 * C N O Ni Cu Ge Si kev N Ni Cu Ge 400nm 試料 : マイクロ SD カード加速電圧 :2.8kV 観察倍率 : 50,000 40
41 まとめ EDS を用いると SEM で元素情報が簡単に得られます SEM の条件を正しく設定することで 精度良い分析が出来ます EDS の性能向上により より精度の良い分析が出来るようになりました 41
42 Copyright 2014 Bruker Corporation. All rights reserved. Innovation with Integrity
化学結合が推定できる表面分析 X線光電子分光法
1/6 ページ ユニケミー技報記事抜粋 No.39 p1 (2004) 化学結合が推定できる表面分析 X 線光電子分光法 加藤鉄也 ( 技術部試験一課主任 ) 1. X 線光電子分光法 (X-ray Photoelectron Spectroscopy:XPS) とは物質に X 線を照射すると 物質からは X 線との相互作用により光電子 オージェ電子 特性 X 線などが発生する X 線光電子分光法ではこのうち物質極表層から発生した光電子
02.参考資料標準試料データ
参考資料 標準試料データ目次 クリソタイル標準試料 JAWE111 108 アモサイト標準試料 JAWE211 113 クロシドライト標準試料 JAWE311 118 クリソタイル標準試料 JAWE121 123 アモサイト標準試料 JAWE221 131 クロシドライト標準試料 JAWE321 139 アンソフィライト標準試料 JAWE411 147 トレモライト標準試料 JAWE511 155
1/8 ページ ユニケミー技報記事抜粋 No.40 p2 (2005) 1. はじめに 電子顕微鏡のはなし 今村直樹 ( 技術部試験一課 ) 物質表面の物性を知る方法として その表面構造を拡大観察するのが一つの手段となる 一般的には光学顕微鏡 (Optical Microscope) が使用されているがより高倍率な像が必要な場合には電子顕微鏡が用いられる 光学顕微鏡と電子顕微鏡の違いは 前者が光 (
<4D F736F F F696E74202D C834E D836A834E83588DDE97BF955D89BF8B5A8F F196DA2E >
7-1 光学顕微鏡 8-2 エレクトロニクス材料評価技術 途による分類 透過型顕微鏡 体組織の薄切切 や細胞 細菌など光を透過する物体の観察に いる 落射型顕微鏡 ( 反射型顕微鏡 ) 理 学部 材料機能 学科 属表 や半導体など 光を透過しない物体の観察に いる 岩 素顕 [email protected] 電 線を使った結晶の評価法 透過電 顕微鏡 査電 顕微鏡 実体顕微鏡拡 像を 体的に
untitled
NPO 2006( ) 11 14 ( ) (2006/12/3) 1 50% % - - (CO+H2) ( ) 6 44 1) --- 2) ( CO H2 ) 2 3 3 90 3 3 2 3 2004 ( ) 1 1 4 1 20% 5 ( ) ( ) 2 6 MAWERA ) MAWERA ( ) ( ) 7 6MW -- 175kW 8 ( ) 900 10 2 2 2 9 -- - 10
IS(A3) 核データ表 ( 内部転換 オージェ電子 ) No.e1 By IsoShieldJP 番号 核種核種半減期エネルギー放出割合核種番号通番数値単位 (kev) (%) 核崩壊型 娘核種 MG H β-/ce K A
IS(A3)- 284 - No.e1 核種核種半減期エネルギー放出割合核種通番数値単位 (kev) (%) 1 1 1 MG-28 20.915 H 29.08 27.0000 β-/ce K Al-28 2 1 2 MG-28 20.915 H 30.64 2.6000 β-/ce L Al-28 3 2 1 SC-44M 58.6 H 270.84 0.0828 EC/CE CA-44 4 2
エネルギー分散型X線分析装置(EDS) 簡易マニュアル
2014/12/12 更新 エネルギー分散型 X 線分析装置 (EDS) 簡易マニュアル 光電子分光分析研究室 連絡先坂入正敏内線 7111 鈴木啓太内線 6882 1 装置使用の前に 以下のルールを守って下さい 研究室内は土足厳禁 飲食厳禁です ゴミはきちんと片づける 装置の故障 不具合を見つけたらすぐにスタッフに連絡 装置を乱暴に扱わない 研究室の物を勝手に持ち出したり 無くしたりしない 貴重品の管理は各自でお願いします
2008JBMIA技術調査小委員会報告書
画像濃度 Ⅴ-6 トナー内部材料分散観察の進化 ( トナー開発における分析技術 ) 河野信明キヤノン株式会社材料プロセス開発センター室長 1. はじめに電子写真用トナーは バインダ樹脂中に着色剤 ワックス 荷電制御剤等を分散した構造を有し 各材料の分散状態はトナー性能に大きく影響する たとえば 着色剤の分散状態は着色力に影響することが知られている 分散良 モグラフィー法や連続断面画像から三次元像を構築する手法で
PowerPoint プレゼンテーション
新 技 術 説 明 会 EDX 分 析 必 見! 進 化 し 続 けるEDX 分 析 株 式 会 社 堀 場 製 作 所 エネルギー 分 散 型 X 線 分 析 装 置 (EDX) 3109-7508-2 EDX 検 出 器 の 進 歩 3109-7508-3 エネルギー 分 散 型 X 線 分 析 法 Energy
Agilent AA ICP ICP-MS ICP-MS AA 55B AA LCD AA PC PC 240 AA / / AA 240FS/280FS AA AA FS 240Z/280Z AA GFAA AA Duo 1 PC AA 2 280FS AA
Agilent Agilent AA 195750 ICP ICP-MS ICP-MS AA 55B AA LCD AA PC PC 240 AA / / AA 240FS/280FS AA AA FS 240Z/280Z AA GFAA AA Duo 1 PC AA 2 280FS AA 1938 HP 1965 HP 1976 GC/MS HP 5992A 1983 GC GC HP 5890A
エネルギー分散型X線分析装置(EDS) 簡易マニュアル
2017/1/30 更新 エネルギー分散型 X 線分析装置 (EDS) 簡易マニュアル 光電子分光分析研究室 連絡先坂入正敏内線 7111 鈴木啓太内線 6882 1 装置使用の前に 以下のルールを守って下さい 研究室内は土足厳禁 飲食厳禁です ゴミはきちんと片づける 装置の故障 不具合を見つけたらすぐにスタッフに連絡 装置を乱暴に扱わない 研究室の物を勝手に持ち出したり 無くしたりしない 貴重品の管理は各自でお願いします
走査電子顕微鏡の原理と応用 ( 観察, 分析 ) Principle and Application of Scanning Electron Microscope/Syunya WATANABE 日立ハイテクノロジーズグローバルアプリケーションセンタ渡邉俊哉 1. はじめに走査電子顕微鏡 (Sca
走査電子顕微鏡の原理と応用 ( 観察, 分析 ) Principl and Application of Scanning Elctron icroscop/syunya WATANABE 日立ハイテクノロジーズグローバルアプリケーションセンタ渡邉俊哉 1. はじめに走査電子顕微鏡 (Scanning Elctron icroscop : SE) はナノテクノロジーからバイオテクノロジーまで幅広い分野で活用されている.
EDS の課題としては,1エネルギー分解能が低いため隣接するピーク同士がオーバーラップするケースが数多く存在し判別を難しくしていること,2バックグラウンドが高いため S/N 比が低く検出下限値が高いこと,3 軽元素の感度が低いこと, などが挙げられる. 検出下限は数千 ppm オーダーであり, エネ
EPMA の基礎技術と最新の FE-EPMA の紹介 Basic Technologies of EPMA and Latest FE-EPMA 坂前浩, 林広司 Hiroshi Sakamae and Hiroshi Hayashi 株式会社島津製作所分析計測事業部 要旨近年,SEM-EDS はその技術革新により大変身近で便利な表面分析装置となったが, 検出下限値が低く定量精度に優れる EPMA(
本日のアウトライン SEM-EDX の分析ノウハウ 原理 最適条件の選び方 定性分析のポイント 元素マップのポイント 新型 SEM 用ウィンドウレス検出器 (X-Max N Extreme) SEM-EDXの分析をさらに発展させる分析装置 CL ラマン分光測定装置 GD-OES 2016 HORIB
株式会社堀場製作所 お悩みの方へ! SEM-EDX を最大限活用する分析テクニックを教えます 2016 年 9 月 8 日 2016 HORIBA, Ltd. All rights reserved. 1 本日のアウトライン SEM-EDX の分析ノウハウ 原理 最適条件の選び方 定性分析のポイント 元素マップのポイント 新型 SEM 用ウィンドウレス検出器 (X-Max N Extreme) SEM-EDXの分析をさらに発展させる分析装置
1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合
1/120 別表第 1(6 8 及び10 関係 ) 放射性物質の種類が明らかで かつ 一種類である場合の放射線業務従事者の呼吸する空気中の放射性物質の濃度限度等 添付 第一欄第二欄第三欄第四欄第五欄第六欄 放射性物質の種類 吸入摂取した 経口摂取した 放射線業 周辺監視 周辺監視 場合の実効線 場合の実効線 務従事者 区域外の 区域外の 量係数 量係数 の呼吸す 空気中の 水中の濃 る空気中 濃度限度
Microsoft Word - note02.doc
年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm
03J_sources.key
Radiation Detection & Measurement (1) (2) (3) (4)1 MeV ( ) 10 9 m 10 7 m 10 10 m < 10 18 m X 10 15 m 10 15 m ......... (isotope)...... (isotone)......... (isobar) 1 1 1 0 1 2 1 2 3 99.985% 0.015% ~0% E
先進材料研究とリアルタイム3DアナリティカルFIB-SEM複合装置“NX9000”
SCIENTIFIC INSTRUMENT NEWS Technical magazine of Electron Microscope and Analytical Instruments. 2016 技術解説 Vol. No.2 SEPTEMBER 59 先進材料研究とリアルタイム 3D アナリティカル FIB-SEM 複合装置 NX9000 Advanced material research
ハピタス のコピー.pages
Copyright (C) All Rights Reserved. 10 12,500 () ( ) ()() 1 : 2 : 3 : 2 4 : 5 : Copyright (C) All Rights Reserved. Copyright (C) All Rights Reserved. Copyright (C) All Rights Reserved. Copyright (C) All
Copyright 2008 All Rights Reserved 2
Copyright 2008 All Rights Reserved 1 Copyright 2008 All Rights Reserved 2 Copyright 2008 All Rights Reserved 3 Copyright 2008 All Rights Reserved 4 Copyright 2008 All Rights Reserved 5 Copyright 2008 All
Microsoft PowerPoint - EDX講習会.ppt
設備機器技術講習会 エネルギー分散型 X 線分析装置 大阪府立産業技術総合研究所機械金属部金属表面処理系 西村崇中出卓男森河務 本日の予定 113:30~14:30 214:30~14:40 314:40~15:20 エネルギー分散型 X 線分析装置について 休憩装置見学 1 班エネルギー分散型 X 線分析装置見学 2 班他の機器見学 1 本日の内容 表面分析方法の種類 エネルギー分散型 X 線分析装置
登録プログラムの名称 登録番号 初回登録日 最新交付日 登録された事業所の名称及び所在地 問い合わせ窓口 JCSS JCSS 年 12 月 1 日 2018 年 5 月 23 日公益社団法人日本アイソトープ協会川崎技術開発センター 神奈川県川崎市川崎区殿町三丁目
登録プログラムの名称 登録番号 初回登録日 最新交付日 登録された事業所の名称及び所在地 問い合わせ窓口 JCSS JCSS0061 1995 年 12 月 1 日 2018 年 5 月 23 日公益社団法人日本アイソトープ協会川崎技術開発センター 210-0821 神奈川県川崎市川崎区殿町三丁目 25 番 20 号法人番号 7010005018674 研究開発課 Tel: 044-589-5494
研修コーナー
l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l
EOS: 材料データシート(アルミニウム)
EOS EOS は EOSINT M システムで処理できるように最適化された粉末状のアルミニウム合金である 本書は 下記のシステム仕様により EOS 粉末 (EOS art.-no. 9011-0024) で造形した部品の情報とデータを提供する - EOSINT M 270 Installation Mode Xtended PSW 3.4 とデフォルトジョブ AlSi10Mg_030_default.job
本日の内容 HbA1c 測定方法別原理と特徴 HPLC 法 免疫法 酵素法 原理差による測定値の乖離要因
HbA1c 測定系について ~ 原理と特徴 ~ 一般社団法人日本臨床検査薬協会 技術運営委員会副委員長 安部正義 本日の内容 HbA1c 測定方法別原理と特徴 HPLC 法 免疫法 酵素法 原理差による測定値の乖離要因 HPLC 法 HPLC 法原理 高速液体クロマトグラフィー 混合物の分析法の一つ 固体または液体の固定相 ( 吸着剤 ) 中で 液体または気体の移動相 ( 展開剤 ) に試料を加えて移動させ
2 1 7 - TALK ABOUT 21 μ TALK ABOUT 21 Ag As Se 2. 2. 2. Ag As Se 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 Sb Ga Te 2. Sb 2. Ga 2. Te 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 3 4
論文の内容の要旨
論文の内容の要旨 2 次元陽電子消滅 2 光子角相関の低温そのまま測定による 絶縁性結晶および Si 中の欠陥の研究 武内伴照 絶縁性結晶に陽電子を入射すると 多くの場合 電子との束縛状態であるポジトロニウム (Ps) を生成する Ps は 電子と正孔の束縛状態である励起子の正孔を陽電子で置き換えたものにあたり いわば励起子の 同位体 である Ps は 陽電子消滅 2 光子角相関 (Angular
FT-IRにおけるATR測定法
ATR 法は試料の表面分析法で最も一般的な手法で 高分子 ゴム 半導体 バイオ関連等で広く利用されています ATR(Attenuated Total Reflectance) は全反射測定法とも呼ばれており 直訳すると減衰した全反射で IRE(Internal Reflection Element 内部反射エレメント ) を通過する赤外光は IRE と試料界面で試料側に滲み出した赤外光 ( エバネッセント波
X線分析の進歩36 別刷
X X X-Ray Fluorescence Analysis on Environmental Standard Reference Materials with a Dry Battery X-Ray Generator Hideshi ISHII, Hiroya MIYAUCHI, Tadashi HIOKI and Jun KAWAI Copyright The Discussion Group
2_R_新技術説明会(佐々木)
% U: 6.58%, Np, Am:.5%, Pu:.% 5.8% Cs 6.5% Sr %.9%Mo 8.74% Tc.9% TODA C 8 H 7 C 8 H 7 N CH C CH N CH O C C 8 H 7 O N MIDOA C 8 H 7 DOODA NTA + HN(C 8 H 7 ) + H O DCC + SOCl + HN(C 8 H 7 ) + Cl TODA (TODA)
取扱説明書 [F-05E]
F-05E 12.11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 a b 22 c d e 23 24 a o c d a b p q b o r s e f h i j k l m g f n a b c d e f g h 25 i j k l m n o p q r s a X b SD 26 27 28 X 29 a b c
F 1 2 dc dz ( V V V sin t 2 S DC AC ) 1 2 dc dc 1 dc {( VS VDC ) VAC} ( VS VDC ) VAC sin t VAC cos 2 t (3.2.2) 2 dz 2 dz 4 dz 静電気力には (3.2.2) 式の右
3-2 ケルビンプローブフォース顕微鏡による仕事関数の定量測定 3-2-1 KFM の測定原理ケルビンプローブフォース顕微鏡 (Kelvin Force Microscopy: KFM) は ケルビン法という測定技術を AFM に応用した計測手法で 静電気力によるプローブ振動の計測を利用して プローブとサンプルの仕事関数差を測定するプローブ顕微鏡の手法である 仕事関数というのは 金属の表面から電子を無限遠まで取り出すのに必要なエネルギーであり
Microsoft PowerPoint - H25環境研修所(精度管理)貴田(藤森修正)
測定技術における課題 1 元素の機器分析 藤森 英治 ( 環境調査研修所 ) 1 まとめと課題 5 ろ液の保存 改正告示法では 溶出液の保存方法は規定していない 測定方法は基本的に JISK0102 工場排水試験法を引用する場合が多く 溶出液の保存についてはそれに準ずる 今回の共同分析では 溶出液の保存について指示していなかった そのため 六価クロムのブラインド標準では六価クロムが三価クロムに一部還元される現象がみられた
JAJP
Agilent 7500ce ORS ICP-MS Glenn Woods Agilent Technologies Ltd. 5500 Lakeside, Cheadle Royal Business Park Stockport UK Agilent 7500ce ICP-MS 5 7500ce (ORS) 1 ORS 7500ce ORS ICP-MS ( ) 7500 ICP-MS (27.12
塗料の研究第147号本体.indd
Observation of Particle Materials in Wet and Dry Paints with Transmission Electron Microscope and Scanning Electron Microscope Yukiko Chitose Masami Hayashi Matoba Yabe 透過型電子顕微鏡 走査型電子顕微鏡による塗料 塗膜中の粒子成分の観察
Microsoft Word - プレス原稿_0528【最終版】
報道関係各位 2014 年 5 月 28 日 二酸化チタン表面における陽電子消滅誘起イオン脱離の観測に成功 ~ 陽電子を用いた固体最表面の改質に道 ~ 東京理科大学研究戦略 産学連携センター立教大学リサーチ イニシアティブセンター 本研究成果のポイント 二酸化チタン表面での陽電子の対消滅に伴って脱離する酸素正イオンの観測に成功 陽電子を用いた固体最表面の改質に道を拓いた 本研究は 東京理科大学理学部第二部物理学科長嶋泰之教授
1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e
No. 1 1 1 H Li Be Na M g B A l C S i N P O S F He N Cl A e K Ca S c T i V C Mn Fe Co Ni Cu Zn Ga Ge As Se B K Rb S Y Z Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb T e I X e Cs Ba F Ra Hf Ta W Re Os I Rf Db Sg Bh
Copyright 2008 NIFTY Corporation All rights reserved. 2
Copyright 2008 NIFTY Corporation All rights reserved. 2 Copyright 2008 NIFTY Corporation All rights reserved. 3 Copyright 2008 NIFTY Corporation All rights reserved. 4 Copyright 2008 NIFTY Corporation
初心者にもできるアメブロカスタマイズ新2016.pages
Copyright All Rights Reserved. 41 Copyright All Rights Reserved. 60 68 70 6 78 80 Copyright All Rights Reserved. FC2 97 Copyright All Rights Reserved. Copyright All Rights Reserved. Copyright All Rights
「高分解能SEM/STEMによるゼオライトの構造解析の最前線」 東京工業大学 資源化学研究所 助教 横井 俊之 先生
SCIENTIFIC INSTRUMENT NEWS Technical magazine of Electron Microscope and Analytical Instruments. 2016 Vol. No.1 M A R C H 59 Characterization of zeolites by advanced SEM/STEM techniques 東京工業大学資源化学研究所助教
- 2 Copyright (C) 2006. All Rights Reserved.
- 2 Copyright (C) 2006. All Rights Reserved. 2-3 Copyright (C) 2006. All Rights Reserved. 70-4 Copyright (C) 2006. All Rights Reserved. ...1...3...7...8 1...9...14...16 2...18...20...21 3...22...23...23...24
電子配置と価電子 P H 2He 第 4 回化学概論 3Li 4Be 5B 6C 7N 8O 9F 10Ne 周期表と元素イオン 11Na 12Mg 13Al 14Si 15P 16S 17Cl 18Ar 価電子数 陽
電子配置と価電子 P11 1 2 13 14 15 16 17 18 1H 2He 第 4 回化学概論 3Li 4Be 5B 6C 7N 8O 9F 10Ne 周期表と元素イオン 11Na 12Mg 13Al 14Si 15P 16S 17Cl 18Ar 1 2 3 4 5 6 7 0 陽性元素陰性元素安定電子を失いやすい電子を受け取りやすい 原子番号と価電子の数 P16 元素の周期表 P17 最外殻の電子配置と周期表
Pick-up プロダクツ プリズム分光方式ラインセンサカメラ用専用レンズとその応用 株式会社ブルービジョン 当社は プリズムを使用した 3CMOS/3CCD/4CMOS/4CCD ラインセンサカメラ用に最適設計した FA 用レンズを設計 製造する専門メーカである 当社のレンズシリーズはプリズムにて
Pick-up プロダクツ プリズム分光方式ラインセンサカメラ用専用レンズとその応用 当社は プリズムを使用した 3CMOS/3CCD/4CMOS/4CCD ラインセンサカメラ用に最適設計した FA 用レンズを設計 製造する専門メーカである 当社のレンズシリーズはプリズムにて発生する軸上色収差 倍率色収差を抑えた光学設計を行い 焦点距離が異なったレンズを使用しても RGB 個々の焦点位置がレンズ間で同じ位置になるよう設計されている
0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生
0 21 カラー反射率 slope aspect 図 2.9: 復元結果例 2.4 画像生成技術としての計算フォトグラフィ 3 次元情報を復元することにより, 画像生成 ( レンダリング ) に応用することが可能である. 近年, コンピュータにより, カメラで直接得られない画像を生成する技術分野が生まれ, コンピューテーショナルフォトグラフィ ( 計算フォトグラフィ ) と呼ばれている.3 次元画像認識技術の計算フォトグラフィへの応用として,
RAA-05(201604)MRA対応製品ver6
M R A 対 応 製 品 ISO/IEC 17025 ISO/IEC 17025は 試験所及び校正機関が特定の試験又は 校正を実施する能力があるものとして認定を 受けようとする場合の一般要求事項を規定した国際規格 国際相互承認 MRA Mutual Recognition Arrangement 相互承認協定 とは 試験 検査を実施する試験所 検査機関を認定する国際組織として ILAC 国際試験所認定協力機構
The world leader in serving science OMNIC ユーザーライブラリベーシックマニュアル サーモフィッシャーサイエンティフィック株式会社
The world leader in serving science OMNIC ユーザーライブラリベーシックマニュアル サーモフィッシャーサイエンティフィック株式会社 目次 1. 概要 3 2. ユーザーライブラリ作成手順 4 3. スペクトルの追加 11 OMNIC User Library Basic Manual rev.1-1 - 1. 概要 このマニュアルは FT-IR( フーリエ変換赤外分光装置
イオンマイクロビームを用いた局所微量元素分析 日本原子力研究開発機構放射線高度利用施設部ビーム技術開発課佐藤隆博
イオンマイクロビームを用いた局所微量元素分析 日本原子力研究開発機構放射線高度利用施設部ビーム技術開発課佐藤隆博 従来技術 電子線マイクロアナライザ (EPMA) 走査型電子顕微鏡 - エネルギー分散型 X 線分光 (SEM-EDS) プローブが電子線 試料から発生する特性 X 線のエネルギー 元素の種類 試料から発生する特性 X 線の強度 元素の量 問題点 SEM-EDS 装置 https://www.jaea.go.jp/04/anz
特長 01 裏面入射型 S12362/S12363 シリーズは 裏面入射型構造を採用したフォトダイオードアレイです 構造上デリケートなボンディングワイヤを使用せず フォトダイオードアレイの出力端子と基板電極をバンプボンディングによって直接接続しています これによって 基板の配線は基板内部に納められて
16 素子 Si フォトダイオードアレイ S12362/S12363 シリーズ X 線非破壊検査用の裏面入射型フォトダイオードアレイ ( 素子間ピッチ : mm) 裏面入射型構造を採用した X 線非破壊検査用の 16 素子 Si フォトダイオードアレイです 裏面入射型フォトダイオードアレ イは 入射面側にボンディングワイヤと受光部がないため取り扱いが容易で ワイヤへのダメージを気にすることなくシ ンチレータを実装することができます
Nov 11
http://www.joho-kochi.or.jp 11 2015 Nov 01 12 13 14 16 17 2015 Nov 11 1 2 3 4 5 P R O F I L E 6 7 P R O F I L E 8 9 P R O F I L E 10 11 P R O F I L E 12 技術相談 センター保有機器の使用の紹介 当センターで開放している各種分析機器や計測機器 加工機器を企業の技術者ご自身でご利用できます
Copyright 2006 KDDI Corporation. All Rights Reserved page1
Copyright 2006 KDDI Corporation. All Rights Reserved page1 Copyright 2006 KDDI Corporation. All Rights Reserved page2 Copyright 2006 KDDI Corporation. All Rights Reserved page3 Copyright 2006 KDDI Corporation.
1-x x µ (+) +z µ ( ) Co 2p 3d µ = µ (+) µ ( ) W. Grange et al., PRB 58, 6298 (1998). 1.0 0.5 0.0 2 1 XMCD 0-1 -2-3x10-3 7.1 7.2 7.7 7.8 8.3 8.4 up E down ρ + (E) ρ (E) H, M µ f + f E F f + f f + f X L
Copyright All Rights Reserved. -2 -!
http://ameblo.jp/admarketing/ Copyright All Rights Reserved. -2 -! Copyright All Rights Reserved. -3- Copyright All Rights Reserved. -4- Copyright All Rights Reserved. -5 - Copyright All Rights Reserved.
Title
SIMS のアーティファクトについて ナノサイエンス株式会社 永山進 1 artifact( アーティファクト ) とは? 辞書を調べると Artifact ( 考古学 ), 人工品 人工遺物 ( 先史時代の単純な器物 宝石 武器など ) 出土品 Artifact ( 技術的なエラー ), 技術的な側面から入り込むデーターにおける望ましくない変化 ( 測定や解析の段階で発生したデータのエラーや解析のゆがみ
Microsoft Word - SISAFM-MeasuringStepsSummary-Rev2J.doc
SIS-AFM 測定の概略手順について Code:0903-QAI-002/1012-Rev.2 Rev.2 2010 年 12 月発行エスアイアイ ナノテクノロジー株式会社 Copyright(C) SII NanoTechnology Inc., 2010 はじめに本書では NanoNavi II/IIs ステーションと下記のいずれかのユニットの組み合わせによるシステムにおいて SIS-AFM(Sampling
Microsoft Word - 卒論レジュメ_最終_.doc
指紋認証のマニューシャ抽出について 澤見研究室 I02I036 兼信雄一 I02I093 柳楽和信 I02I142 吉田寛孝 1. はじめに近年, キャッシュカードや暗証番号が盗用され, 現金が引き出されるような事件が相次いでいる. これらの対向策として人間の体の一部を認証の鍵として利用する生体認証に注目が集まっている. そこで我々は, 生体認証で最も歴史がある指紋認証技術に着目した. 指紋認証方式は,2
航空機複合材部品の紫外線劣化加速評価法の開発,三菱重工技報 Vol.51 No.4(2014)
航空宇宙特集技術論文 10 航空機複合材部品の紫外線劣化加速評価法の開発 Development of Accelerated UV Degradation Test Method for Aircraft Composite Parts *1 堀苑英毅 *2 石川直元 Hideki Horizono Naomoto Ishikawa 航空機の運用期間 (20 年から 30 年 ) にわたる長期的な耐候性については,
自然現象とモデル_ pptx
光と物質の相互作用入門 統合自然科学科 深津 晋 The University of Tokyo, Komb Grdute School of Arts nd Sciences 0. 光は電磁波 振動しながら進行する電磁場 波長 λ γ線 0.1nm 10 nm 380 nm 780 nm 1 µm 10 µm 100 µm 1mm 1cm 1 m 1,000 m 単位の変換関係 X線 真空紫外 深紫外
Microsoft Word - 最終版 バックせどりismマニュアル .docx
ism ISM ISM ISM ISM ISM ISM Copyright (c) 2010 All Rights Reserved. Copyright (c) 2010 All Rights Reserved. Copyright (c) 2010 All Rights Reserved. ISM Copyright (c) 2010 All Rights Reserved. Copyright
C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B
I [email protected] 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld
36 th IChO : - 3 ( ) , G O O D L U C K final 1
36 th ICh - - 5 - - : - 3 ( ) - 169 - -, - - - - - - - G D L U C K final 1 1 1.01 2 e 4.00 3 Li 6.94 4 Be 9.01 5 B 10.81 6 C 12.01 7 N 14.01 8 16.00 9 F 19.00 10 Ne 20.18 11 Na 22.99 12 Mg 24.31 Periodic
QOBU1011_40.pdf
印字データ名 QOBU1 0 1 1 (1165) コメント 研究紹介 片山 作成日時 07.10.04 19:33 図 2 (a )センサー素子の外観 (b )センサー基板 色の濃い部分が Pt 形電極 幅 50μm, 間隔 50μm (c ),(d )単層ナノ チューブ薄膜の SEM 像 (c )Al O 基板上, (d )Pt 電極との境 界 熱 CVD 条件 触媒金属 Fe(0.5nm)/Al(5nm)
<4D F736F F D C82532D E8B5A95F18CB48D655F5F8E878A4F90FC C2E646F63>
技術紹介 6. イオンビームスパッタリング法によるエキシマレーザ光学系用フッ化物薄膜の開発 Development of fluoride coatings by Ion Beam Sputtering Method for Excimer Lasers Toshiya Yoshida Keiji Nishimoto Kazuyuki Etoh Keywords: Ion beam sputtering
富士時報 第82巻第5号(2009年9月)
Vol.82 No.5 2009 i Vol.82 No.5 2009 i Vol.82 No.5 2009 Vol.82 No.5 2009 Vol.82 No.5 2009 Vol.82 No.5 2009 i Vol.82 No.5 2009 Vol.82 No.5 2009 Vol.82 No.5 2009 Vol.82 No.5 2009 Vol.82 No.5 2009 Vol.82 No.5
<4D F736F F D A C5817A8E59918D8CA B8BBB89BB8A778D488BC B8BBB F A2E646F63>
凝集しにくい粒径約 20 nm のコアシェル型ナノ粒子を開発 - 光学フィルムへの応用に期待 - 平成 25 年 1 月 29 日独立行政法人産業技術総合研究所北興化学工業株式会社 ポイント 酸化セリウムとポリマーからなるナノ粒子の粒径を従来の 2 分の 1 以下に このナノ粒子を高濃度に含有させて樹脂フィルムに透明性を維持したまま高屈折率を付与 ナノ粒子の量産化の研究開発を推進し サンプル提供を開始
MP-AES ICP-QQQ Agilent 5100 ICP-OES Agilent 5100 (SVDV) ICP-OES (DSC) 1 5100 SVDV ICP-OES VistaChip II CCD Agilent 7900 ICP-MS 7700 / 10 7900 ICP-MS ICP-MS FTIR Agilent 7900 ICP-MS Agilent Cary 7000 (UMS)
LEDの光度調整について
光測定と単位について 目次 1. 概要 2. 色とは 3. 放射量と測光量 4. 放射束 5. 視感度 6. 放射束と光束の関係 7. 光度と立体角 8. 照度 9. 照度と光束の関係 10. 各単位の関係 11. まとめ 1/6 1. 概要 LED の性質を表すには 光の強さ 明るさ等が重要となり これらはその LED をどのようなアプリケーションに使用するかを決定するために必須のものになることが殆どです
2 Zn Zn + MnO 2 () 2 O 2 2 H2 O + O 2 O 2 MnO 2 2 KClO 3 2 KCl + 3 O 2 O 3 or 3 O 2 2 O 3 N 2 () NH 4 NO 2 2 O + N 2 ( ) MnO HCl Mn O + CaCl(ClO
1 [1]. Zn + 2 H + Zn 2+,. K Ca Na Mg Al Zn Fe Ni Sn Pb H Cu Hg Ag Pt Au H (H + ),,. [2] ( ) ( ) CO 2, S, SO 2, NH 3 () + () () + () FeS Fe S ( ) + ( ) ( ) + ( ) 2 NH 4 Cl + Ca(OH) 2 Ca O + 2 NH 3,.,,.,,.,.
Agilent 5100 ICP-OES ICP-OES Agilent 5100 (SVDV) ICP-OES ICP-OES (DSC) ICP-OES 1 1 Vista Chip II (DSC) (CCI) RF Agilent ICP Expert DSC Agilent
Agilent 5100 ICP-OES ICP-OES Agilent 5100 ICP-OES ICP-OES Agilent 5100 (SVDV) ICP-OES ICP-OES (DSC) ICP-OES 1 1 Vista Chip II (DSC) (CCI) RF Agilent ICP Expert DSC Agilent 5100 3 (SVDV) : (VDV) : SVDV
