Microsoft PowerPoint - ⑦小村講師 2012_10振動コミニュティ_資料.ppt

Size: px
Start display at page:

Download "Microsoft PowerPoint - ⑦小村講師 2012_10振動コミニュティ_資料.ppt"

Transcription

1 IM // 事例に基づいた状態監視 音 振動センサ 計測器 分析器 評価診断 信号処理技術のノウハウ 検出技術 計測技術 信号処理技術 情報処理技術 状態監視技術は, これら各技術の総合したものであり IM 技研 各技術の積で結果が求まる. 何れかの技術が乏しいと期待する結果が得られない. 異常モータの事例 V V H H 67 台中 97 台発見 測定個所と測定方向, V, H,, V, H %, V,, V %, V, V 6 66% V, V 6% H, H 6%

2 障発見率(% )測定点の数故変位は鉛直方向, 水平方向, 軸方向の並進振動で 次元振動 回転軸に対して垂直方向と水平方向の 次元測定で十分 "Using Transducers for Machinery Fault etection", ert Lundgard, LI Engineering, published in Sensors magazine, November, 988, by Helmers Publishing Inc., Peterborough, NH. y 軸 x 軸 ISO799-

3 タンジェシャル振動 振動速度は剛体振動で, 鉛直 vertical 鉛直方向 radial 半径方向, 押し当て方向 horizontal 水平方向 tangential 正接 tangent 方向 axial 軸方向 axial 軸方向 鉛直方向, 水平方向, 軸方向と鉛直軸の回転, 水平軸の回転, 軸方向の回転の 6 次元 水平 軸 タンジェシャル振動 回転機械の振動測定は, 鉛直方向, 水平方向, 軸方向の並進 次元と軸方向の回転の 次元 加速度 水平 水平 鉛直 加速度 振動加速度は弾性波振動で 次元 鉛直 軸 同じ感度の加速度センサーを並列に接続する. 赤の上下方向の振動は打ち消し合う. 青の正接方向の振動は二倍になる. +

4 タンジェシャル振動 配管は, 鉛直方向, 水平方向, の並進 次元と配管の回転の 次元 鉛直 鉛直 水平 水平 vertical 鉛直方向 radial 半径方向, 押し当て方向 horizontal 水平方向 tangential 正接 tangent 方向 axial 軸方向 axial 軸方向 音 振動センサ 計測器 分析器 評価診断 電動機 カップリング 検出技術 計測技術 信号処理技術 情報処理技術 フーリエ (Fourier) 解析ヒルベルト (Hilbert) 変換ケプストル (epstrum) 解析フルスペクトル (Full spectrum) 解析ウェーブレット (Wavelet) 解析 フーリエスペクトルの加工処理振幅確率密度関数の加工処理 破損箇所軸受が多い SKF 設計寿命 / 保全とは回転体軸受の寿命延長

5 () 構造系異常 Fr Fa Fr Fa /8 L = P P=Fr+Fa : : L :. /7

6 倍 / 倍 / 倍 / 倍 / 円周方向 (α) 偏心量 面方向 (β) 偏角量 単位 :mm 回転数新設修理新設修理,8 以下....,8 ~,6 rpm (μ),6 ~ 9, rpm.... 9, ~, rpm.. アンバランス力 ( 遠心力 ) モータ ゆるみは軸受の過剰負荷の原因増す締めは重要な作業 アンバランス力 (F)= 質量 (Δm)x 回転半径 (r) ω 不つり合い (U) アンバランス力 (F)= 不つり合い (U) ω ω F 作用する力の方向 不つり合い (U)= 質量 ( m)x 回転半径 (r) 不つり合い (U)= 総質量 (m)x 偏芯量 (e) r Δm ゆるみだけでは振動しないガタはゆるみ + アンバランスなど

7 アンバランスと軸受寿命 アンバランスと軸受寿命 H L = 6667 MVF RPM ここで : H = 転がり軸受の寿命 ( 時間 ) = 軸受の基本動定格荷重 ( ポンド )( 製造メーカーの仕様 ) L = 軸受に掛かる負荷 ( ポンド ) M = 振動に対抗する質量の重さ ( ポンド ) V = 測定された振動速度 ( インチ /s) F = 振動周波数 (PM か RPM) alancing, Identification and orrection Lance isinger : omputational Systems Incorporated Knoxville, TN 79 H L +.6 = MVF F ここで : H = 転がり軸受の寿命 ( 時間 ) = 軸受の基本動定格荷重 (kg)( 製造メーカーの仕様 ) L = 軸受に掛かる負荷 (kg) M = 振動に対抗する質量の重さ (kg) V = 測定された振動速度 (mm/s) F = 振動周波数 () ISO86- の判定基準振動速度 mm/s (rms) 区分境界の値 (mm/s) クラス Ⅰ クラス Ⅱ クラス Ⅲ クラス Ⅳ アンバランスと軸受寿命の例 = 軸受の基本動定格荷重 L = 軸受に掛かる負荷 M = 振動に対抗する質量の重さ F = 振動周波数 振動速度値軸受寿命 ( 年 ) 軸8. mm/s.88. mm/s.7 7. mm/s.8. mm/s 8.6. mm/s..8 mm/s..8 mm/s 6.. mm/s mm/s 7., kg kg 6, kg 受寿命(年)振動速度 (mm/s)

8 S.J.Shuey 人の指先の振動感度 Power Engineering 誌 97 年 月 構造系異常の絶対判定 (Peak to Peak : ) 7 6 (rpm) S.J.Shuey 人の指先の振動感度 --- = m/s ( ) r T..Rathbone チャート Power Plant Engineering 誌 99 年 月 (Peak to Peak:μ) 9rpm=.9 =μm ( ) V=mm/s ( ) =.m/s ( ) --- = mm/s ( ) r (Peak to Peak: ) 区分おおむね d 間隔 r. 6 6 (rpm) (rpm)

9 IR 一般機械用振動許容チャート (Peak to Peak: ) 6.mm/s 8.mm/s.mm/s.mm/s.mm/s.mm/s.mm/s.mm/s. (rpm) 測定値が振動速度 区分 6d 間隔 M.P.lake 振動新基準チャート つり上げられた状態のスティックシャフト型遠心分離機 多段渦巻ポンプ 特性不明な種々の装置.6 タービン タービン発電機 回転型圧縮機 単段渦巻ポンプ 電動機 送風機一般的な化学装置用機器 ( 重要度の低いもの ). シャフトサスペンド型遠心分離器. リンクサスペンド型遠心分離器 (Peak to Peak : ) mm/s.mm/s.mm/s mm/s m/s mm/s mm/s m/s.m/s 8 (rpm) ISO7 の判定基準振動速度 mm/s (rms) ISO86- の判定基準振動速度 mm/s (rms) 区分境界の値 (mm/s) 年 クラス Ⅰ クラス Ⅱ クラス Ⅲ クラス Ⅳ クラス Ⅰ: kw クラス Ⅱ: kw 7kWkW クラス Ⅲ: クラス Ⅳ: Zone boundary /.7 to. Range of typical zone boundary values r.m.s. vibration velocity (mm/s) Zone boundary /.8 to 9. Zone boundary /. to.7 9

10 フーリエスペクトルの加工処理 対象 アンバランスミスアライメント緩み, ガタ No. kw 8rpm 9.mm/s No. 7rpm.mm/s No. kw 6rpm 7mm/s No. rpm.9mm/s No.6 kw 6rpm.7mm/s No.7 9kW 6rpm.7mm/s a ( f ) ps = p i p ( ) ( fi ) f s = f sd i : a ps No. kw 6rpm 9.9mm/s.. No..kW 6rpm.mm/s sd ( f ) + s( f ) + s( f ) + s( nf ) f = s + r r r r

11 rpm 9kW. Vrms(mm/s) 故障スペクトルの占有度 Vrms(mm/s)..... Vrms(mm/s) (.kw, 6rpm) 故障スペクトルの占有度 v rms :7.8mm/s f sd :.997 (9kW, 6rpm) 故障スペクトルの占有度 v rms :.7mm/s f sd :.9

12 (kw, 8rpm) Vrms(mm/s) 故障スペクトルの占有度 v rms :6.mm/s f sd : (kw, 8rpm) v rms :.mm/s f sd :.88 Vrms(mm/s) 故障スペクトルの占有度 v rms ( )... Vrms(mm/s) Vrms(mm/s) 故障スペクトルの占有度 (kw, 7rpm) v rms :8.mm/s f sd : 故障スペクトルの占有度 (kw, 6rpm) v rms :.mm/s f sd :.99

13 ().8 振幅確率密度関数の加工処理.6.. Vrms(mm/s) 対象 故障スペクトルの占有度 (8rpm) v rms :.6mm/s f sd :.99 転がり軸受 HF,gSE とは HF : High frequency demodulation HFは, この波形のオーバーオール値 Hilbert 変換またはエンベロープ波形 gseは, この波形のオーバーオール値 IR 社外輪欠陥のある振動加速度波形振動加速度のp-p 値の波形 回転数 (N : rpm) 回転数 988rpm X d 転がり軸受の判定基準の例 7 = 危険 :m/s 7 N 判定基準 (m/s (rms)) 危険 注意 注意 :m/s X =. c X d 7 7 軸径 ( : mm) 軸径 mm

14 N 値と振動加速度の関係 (m/s ) m/s. N () 出典 : 昭和エンジニアリング 消費電力 (kw) 出典 : 昭和エンジニアリング σ σ

15 p ( x) ϕ( x) = + r( x) Gram-harlier ( ( ) ) c ( ( ) ) c ( ( ) ) c ( ( ) ) c ( px = c x + x + x + ( x) + ) ϕ ϕ ϕ ϕ ϕ ( x) +!!!! p c c = s = s c = s +s c s s = + Gram-harlier 6 6 c! c! ϕ( x) = e x 6 ( x) = ( x) H ( x) ϕ( x) + H ( x) ϕ( x) H ( x) ϕ( x) + H ( x) ϕ( x) c! c 6! ϕ 6 H n : p ( x) ( x) ( x x) ϕ( x) ( s ) ( x 6x + ) ϕ( ) + s = ϕ + x!! x i σ s s = = n x i i = n x i i= 歪み度 (Skewness) 尖り度 (Kurtosis) 摩耗系劣化パラメータとして極めて有効 Southampton R.M.Steward Gram-harlier

16 68.% eq % Equivalent rms σ eq 正常時の実効値に等価 σ eq

17 現在の実効値 - 正常時の実効値 Sigra Kurtosis c = σ x i β = σ σ eq x i c = β = σ σ eq rpm rpm rpm rpm rpm rpm

18 β 傷付 σ β = σ eq β β 正常 6rpm rpm rpm > β > β β 正常 傷付 x i β = σ eq 6 > β β 6 6 > β β 6 6rpm rpm rpm N β β m/s 8 m/s 8 6 N() β 6 消費電力 (kw) β N() (kw)

19 大野耐一 ( トヨタ自動車 ) が提唱した なぜ なぜ 五回運動 たとえば 機械が動かなくなった場合を考えてみる () なぜ機械がとまったか? オーバーロードがかり ヒューズが切れたからだ () なぜオーバーロードがかかったのか? 軸受部の潤滑が十分ではないからだ () なぜ十分に潤滑しないのか? 潤滑ポンプが十分くみ上げていないからだ () なぜ十分くみ上げないのか? ポンプの軸が摩耗してガタガタになっているからだ () なぜ摩耗したのか? ストレーナー ( 濾過器 ) がついていないので 切粉が入ったからだ スペクトル f r 軸方向 f r f r 斜めはめ込み軸受 ocked earing 位相 : /6π(rad) : /6π(rad) : 8/6π(rad) : /6π(rad) 以上の五回の なぜ を繰り返すことによって 真の原因を発見し 改善することができるようになる なぜ の追求の仕方が足りないと 単なるヒューズやポンプの軸の取替えで終わってしまい 数ヵ月後には同じトラブルが再発することになる バーチャル コーポレーション ( 徳間書店 ) William H.avidow & Michael S.Malone 軸に斜めに取り付けられた転がり軸受は, かなり大きい軸方向の振動を発生させる. 軸受の上下間および左右間で位相が8 異なるひねり運動が起こり, この振動は軸受箱で軸方向の振動として測定される. 通常のカップリングで軸心調整をしたり, 回転体のつり合せを試みてもこの問題を解決できない. 異常に取り付けられた軸受を外し, 正しく取り付け直さなければならない. 内輪表面と外輪表面が平行であるとき軸受は心出しされていると看做される.

20 Rr Rr Rd Rd Rr Rr Rd Rd

<4D F736F F D20837E836A837D E82CC88D98FED E12E646F63>

<4D F736F F D20837E836A837D E82CC88D98FED E12E646F63> 振動分析計 VA-12 を用いた精密診断事例 リオン株式会社 振動分析計 VA-12 を用いた精密診断事例を紹介します 振動分析計 VA-12 は 振動計と高機能 FFT アナライザが一体となったハンディタイプの測定器です 振動計として使用する場合は加速度 速度 変位の同時計測 FFT アナライザとして使用する場合は 3200 ライン分解能 20kHz の連続リアルタイム分析が可能です また カラー液晶に日本語表示がされます

More information

問題 2 資料 No.2 を見て 次の設問に答えなさい < 送風機の断面図 > で示す片吸込み型送風機において 過去に何らかの原因で運転中に羽根車のアンバランスが増大し 軸受損傷に至った経緯がある このアンバランス増大傾向をいち早く捉えるために ポータブル型の振動診断器によって傾向管理を行うことにな

問題 2 資料 No.2 を見て 次の設問に答えなさい < 送風機の断面図 > で示す片吸込み型送風機において 過去に何らかの原因で運転中に羽根車のアンバランスが増大し 軸受損傷に至った経緯がある このアンバランス増大傾向をいち早く捉えるために ポータブル型の振動診断器によって傾向管理を行うことにな 問題 1 資料 No.1 を見て 次の設問に答えなさい < ポンプユニット > で示すポンプユニットは これまでの保全実績からポンプ入力軸の転がり軸受の故障が問題になっている このため 軸受の長寿命化を計画中であるが 今後の設備信頼性維持 ( 突発故障による設備の停止防止 ) の観点から 振動法による設備診断を導入することにした 設備の劣化傾向を < 傾向管理グラフ > に示す太い点線であると仮定した場合

More information

Microsoft PowerPoint - 1_状態監視_資料.ppt [互換モード]

Microsoft PowerPoint - 1_状態監視_資料.ppt [互換モード] 1 (LCC) IT Internet SystemPAMCMMS Web BM : Breakdown Maintenance Planned Maintenance PM : Preventive Maintenance ISO13372 PRM : Predictive Maintenance () RBI ( ) ( ) () RBI 振動状態監視 ( 簡易診断 ) C D 11%4% 2%

More information

Microsoft PowerPoint - 02_資料.ppt [互換モード]

Microsoft PowerPoint - 02_資料.ppt [互換モード] db log db db db log log log db log log log4 y log4 log y log log y log4 log log log y log 4 log log log y log log log log y log log y log log y log y 5V.5 m db db log db db.893 - +..5.779-3 +3.43 db(.)

More information

スライド 1

スライド 1 センサー工学 2012 年 11 月 28 日 ( 水 ) 第 8 回 知能情報工学科横田孝義 1 センサー工学 10/03 10/10 10/17 10/24 11/7 11/14 11/21 11/28 12/05 12/12 12/19 1/09 1/16 1/23 1/30 2 前々回から振動センサーを学習しています 今回が最終回の予定 3 振動の測定教科書 計測工学 の 194 ページ 二つのケースがある

More information

剛体過去問解答例 2 1.1) 長さの棒の慣性モーメントは 公式より l I G = Ml /12 A 点のまわりは平行軸の定理より 2 2 I A = Ml /12 + M ( l / 2) = Ml 2 / 3 B y 2) 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると

剛体過去問解答例 2 1.1) 長さの棒の慣性モーメントは 公式より l I G = Ml /12 A 点のまわりは平行軸の定理より 2 2 I A = Ml /12 + M ( l / 2) = Ml 2 / 3 B y 2) 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると 剛体過去問解答例. 長さの棒の慣性モーメントは 公式より l G l A 点のまわりは平行軸の定理より A l l l B y 壁からの垂直抗力を R, 床からの垂直抗力と摩擦力を N,f とすると 運動方程式は 方向 : R f, y 方向 : y N l 回転 : G { N f R cos } A 静止しているとき 方向の力と 力のモーメントがつり合うので y ~ より R ' また 摩擦力が最大静止摩擦力より大きいとはしごは動き出すので

More information

第6章 実験モード解析

第6章 実験モード解析 第 6 章実験モード解析 6. 実験モード解析とは 6. 有限自由度系の実験モード解析 6.3 連続体の実験モード解析 6. 実験モード解析とは 実験モード解析とは加振実験によって測定された外力と応答を用いてモードパラメータ ( 固有振動数, モード減衰比, 正規固有モードなど ) を求める ( 同定する ) 方法である. 力計 試験体 変位計 / 加速度計 実験モード解析の概念 時間領域データを利用する方法

More information

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録

2009 年 11 月 16 日版 ( 久家 ) 遠地 P 波の変位波形の作成 遠地 P 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに P U () t = S()* t E()* t P() t で近似的に計算できる * は畳み込み積分 (convolution) を表す ( 付録 遠地 波の変位波形の作成 遠地 波の変位波形 ( 変位の時間関数 ) は 波線理論をもとに U () t S() t E() t () t で近似的に計算できる は畳み込み積分 (convolution) を表す ( 付録 参照 ) ここで St () は地震の断層運動によって決まる時間関数 1 E() t は地下構造によって生じる種々の波の到着を与える時間関数 ( ここでは 直達 波とともに 震源そばの地表での反射波や変換波を与える時間関数

More information

研修コーナー

研修コーナー l l l l l l l l l l l α α β l µ l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l

More information

計測コラム emm182号用

計測コラム emm182号用 計測コラム emm182 号用 計測に関するよくある質問から - 第 9 回パワースペクトル密度の計算方法 当計測コラムでは 当社お客様相談室によくお問い合わせいただくご質問をとりあげ 回答内容をご紹介しています 今回は FFT 解析により得られたパワースペクトルからパワースペクトル密度 (PSD) を計算する方法をご紹介します ランダム信号などの周期的ではない信号 ( 連続スペクトルをもつ信号 )

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 スペシャル補習 http://orito-buturi.com/ NO.3 今日の目的 : 1 微分方程式をもう一度 三角関数の近似について学ぶ 3 微分の意味を考える 5. 起電力 の電池, 抵抗値 の抵抗, 自己インダクタンス のコイルとスイッチを用いて右図のような回路をつくった 始めスイッチは 開かれている 時刻 t = でスイッチを閉じた 以下の問に答えよ ただし, 電流はコイルに

More information

Microsoft Word - note02.doc

Microsoft Word - note02.doc 年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm

More information

円筒ころ軸受 円筒ころ軸受 E 形円筒ころ軸受複列円筒ころ軸受四列円筒ころ軸受 1. 形式 構造及び特徴 ころと軌道面が線接触しており, ラジアル荷重の負荷能力が大きく, ころは内輪又は外輪のつばで案内されているので構造上高速回転にも適する また分離形であることから内輪, 外輪ともしまりばめを必要と

円筒ころ軸受 円筒ころ軸受 E 形円筒ころ軸受複列円筒ころ軸受四列円筒ころ軸受 1. 形式 構造及び特徴 ころと軌道面が線接触しており, ラジアル荷重の負荷能力が大きく, ころは内輪又は外輪のつばで案内されているので構造上高速回転にも適する また分離形であることから内輪, 外輪ともしまりばめを必要と 円筒ころ軸受 E 形円筒ころ軸受複列円筒ころ軸受四列円筒ころ軸受 1. 形式 構造及び特徴 ころと軌道面が線接触しており, ラジアル荷重の負荷能力が大きく, ころは内輪又は外輪のつばで案内されているので構造上高速回転にも適する また分離形であることから内輪, 外輪ともしまりばめを必要とする場合にも取付け, 取外しは比較的容易である 円筒ころ軸受には標準形以外に主要寸法が同じで高負荷容 量のE 形,

More information

画像処理工学

画像処理工学 画像処理工学 画像の空間周波数解析とテクスチャ特徴 フーリエ変換の基本概念 信号波形のフーリエ変換 信号波形を周波数の異なる三角関数 ( 正弦波など ) に分解する 逆に, 周波数の異なる三角関数を重ねあわせることにより, 任意の信号波形を合成できる 正弦波の重ね合わせによる矩形波の表現 フーリエ変換の基本概念 フーリエ変換 次元信号 f (t) のフーリエ変換 変換 ( ω) ( ) ωt F f

More information

物理演習問題

物理演習問題 < 物理 > =0 問 ビルの高さを, ある速さ ( 初速 をとおく,において等加速度運動の公式より (- : -= t - t : -=- t - t (-, 式よりを消去すると t - t =- t - t ( + - ( + ( - =0 0 t t t t t t ( t + t - ( t - =0 t=t t=t t - 地面 ( t - t t +t 0 より, = 3 図 問 が最高点では速度が

More information

データシート, 型式 4503B...

データシート, 型式 4503B... Torque トルク変換器デュアルレンジオプション付 型式 0B... トルク変換器型式 0B... は 回転角度のセンサを内蔵した 歪ゲージ式トルク変換器です デジタル測定信号処理機能を備えており アナログ信号とデジタル信号の出力が可能です 高応答 : 10kHz( 周波数応答 ) 最高回転数 0,000 rpm 精度等級第 1レンジ :0.0 第 レンジ :0.1/0. デュアルレンジ ( 第

More information

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co 16 I ( ) (1) I-1 I-2 I-3 (2) I-1 ( ) (100 ) 2l x x = 0 y t y(x, t) y(±l, t) = 0 m T g y(x, t) l y(x, t) c = 2 y(x, t) c 2 2 y(x, t) = g (A) t 2 x 2 T/m (1) y 0 (x) y 0 (x) = g c 2 (l2 x 2 ) (B) (2) (1)

More information

機構学 平面機構の運動学

機構学 平面機構の運動学 問題 1 静止座標系 - 平面上を運動する節 b 上に2 定点,Bを考える. いま,2 点の座標は(0,0),B(50,0) である. 2 点間の距離は 50 mm, 点の速度が a 150 mm/s, 点 Bの速度の向きが150 である. 以下の問いに答えよ. (1) 点 Bの速度を求めよ. (2) 瞬間中心を求めよ. 節 b a (0,0) b 150 B(50,0) 問題 1(1) 解答 b

More information

ACモーター入門編 サンプルテキスト

ACモーター入門編 サンプルテキスト 技術セミナーテキスト AC モーター入門編 目次 1 AC モーターの位置付けと特徴 2 1-1 AC モーターの位置付け 1-2 AC モーターの特徴 2 AC モーターの基礎 6 2-1 構造 2-2 動作原理 2-3 特性と仕様の見方 2-4 ギヤヘッドの役割 2-5 ギヤヘッドの仕様 2-6 ギヤヘッドの種類 2-7 代表的な AC モーター 3 温度上昇と寿命 32 3-1 温度上昇の考え方

More information

形式 :PDU 計装用プラグイン形変換器 M UNIT シリーズ パルス分周変換器 ( レンジ可変形 ) 主な機能と特長 パルス入力信号を分周 絶縁して単位パルス出力信号に変換 センサ用電源内蔵 パルス分周比は前面のスイッチで可変 出力は均等パルス オープンコレクタ 電圧パルス リレー接点パルス出力

形式 :PDU 計装用プラグイン形変換器 M UNIT シリーズ パルス分周変換器 ( レンジ可変形 ) 主な機能と特長 パルス入力信号を分周 絶縁して単位パルス出力信号に変換 センサ用電源内蔵 パルス分周比は前面のスイッチで可変 出力は均等パルス オープンコレクタ 電圧パルス リレー接点パルス出力 計装用プラグイン形変換器 M UNIT シリーズ パルス分周変換器 ( レンジ可変形 ) 主な機能と特長 パルス入力信号を分周 絶縁して単位パルス出力信号に変換 センサ用電源内蔵 パルス分周比は前面のスイッチで可変 出力は均等パルス オープンコレクタ 電圧パルス リレー接点パルス出力を用意 密着取付可能 アプリケーション例 容積式流量計のパルス信号を単位パルスに変換 機械の回転による無接点信号を単位パルスに変換

More information

DVIOUT

DVIOUT 第 章 離散フーリエ変換 離散フーリエ変換 これまで 私たちは連続関数に対するフーリエ変換およびフーリエ積分 ( 逆フーリエ変換 ) について学んできました この節では フーリエ変換を離散化した離散フーリエ変換について学びましょう 自然現象 ( 音声 ) などを観測して得られる波 ( 信号値 ; 観測値 ) は 通常 電気信号による連続的な波として観測機器から出力されます しかしながら コンピュータはこの様な連続的な波を直接扱うことができないため

More information

/ RA-2200 AS/AH / 1 / RA-2200DS/DH / 1 RA-2200AS/DS300mm 500mmRA-2200AH/DH mm Z 2 1 P2 2 P2 3 1 Z ROUNDPAK

/ RA-2200 AS/AH / 1 / RA-2200DS/DH / 1 RA-2200AS/DS300mm 500mmRA-2200AH/DH mm Z 2 1 P2 2 P2 3 1 Z ROUNDPAK Catalog No.15001 (6) / RA-2200 AS/AH / 1 / RA-2200DS/DH / 1 RA-2200AS/DS300mm 500mmRA-2200AH/DH 3 3 20 40 112 mm Z 2 1 P2 2 P2 3 1 Z ROUNDPAK / 0.02+3.5H/10000m 0.02+3.5X /10000m /A.A.T Automatic Adjustment

More information

2 Hermite-Gaussian モード 2-1 Hermite-Gaussian モード 自由空間を伝搬するレーザ光は次のような Hermite-gaussian Modes を持つ光波として扱う ことができる ここで U lm (x, y, z) U l (x, z)u m (y, z) e

2 Hermite-Gaussian モード 2-1 Hermite-Gaussian モード 自由空間を伝搬するレーザ光は次のような Hermite-gaussian Modes を持つ光波として扱う ことができる ここで U lm (x, y, z) U l (x, z)u m (y, z) e Wavefront Sensor 法による三角共振器のミスアラインメント検出 齊藤高大 新潟大学大学院自然科学研究科電気情報工学専攻博士後期課程 2 年 214 年 8 月 6 日 1 はじめに Input Mode Cleaner(IMC) は Fig.1 に示すような三角共振器である 懸架鏡の共振などにより IMC を構成する各ミラーが角度変化を起こすと 入射光軸と共振器軸との間にずれが生じる

More information

5. 5.1,, V, ,, ( 5.1), 5.2.2,,,,,,,,,, 5.2.3, 5.2 L1, L2, L3 3-1, 2-2, 1-3,,, L1, L3, L2, ,,, ( 5.3),,, N 3 L 2 S L 1 L 3 5.1: 5.2: 1

5. 5.1,, V, ,, ( 5.1), 5.2.2,,,,,,,,,, 5.2.3, 5.2 L1, L2, L3 3-1, 2-2, 1-3,,, L1, L3, L2, ,,, ( 5.3),,, N 3 L 2 S L 1 L 3 5.1: 5.2: 1 5. 5.1,,, 5.2 5.2.1,, ( 5.1), 5.2.2,,,,,,,,,, 5.2.3, 5.2 L1, L2, L3 31, 22, 13,,, L1, L3, L2, 0 5.2.4,,, ( 5.3),,, N 3 L 2 S L 1 L 3 5.1: 5.2: 1 D C 1 0 0 A C 2 2 0 j X E 0 5.3: 5.5: f,, (),,,,, 1, 5.2.6

More information

<4D F736F F D20836F F837D FC96E52E646F63>

<4D F736F F D20836F F837D FC96E52E646F63> AUX Design Advanced Unique X for Balance Rolling Winding Runou-Insp. 289-1 Kamishibuare Ashikaga Tochigi JAPAN Phone & Fax:0284-71-8955 E-mail: [email protected] バランシングマシンの原理と実際 Uc PL P1 PR m1 m2 U3 L

More information

nsg04-28/ky208684356100043077

nsg04-28/ky208684356100043077 δ!!! μ μ μ γ UBE3A Ube3a Ube3a δ !!!! α α α α α α α α α α μ μ α β α β β !!!!!!!! μ! Suncus murinus μ Ω! π μ Ω in vivo! μ μ μ!!! ! in situ! in vivo δ δ !!!!!!!!!! ! in vivo Orexin-Arch Orexin-Arch !!

More information

アンギュラ玉軸受 アンギュラ玉軸受 4 点接触玉軸受複列アンギュラ玉軸受. 構造及び特徴. アンギュラ玉軸受 アンギュラ玉軸受は, 非分離軸受で, 玉と内輪 外輪との接触点を結ぶ直線がラジアル方向に対してある角度 ( 接触角 ) をもっている ( 図 参照 ) 接触角と接触角記号を表 に示す ラジア

アンギュラ玉軸受 アンギュラ玉軸受 4 点接触玉軸受複列アンギュラ玉軸受. 構造及び特徴. アンギュラ玉軸受 アンギュラ玉軸受は, 非分離軸受で, 玉と内輪 外輪との接触点を結ぶ直線がラジアル方向に対してある角度 ( 接触角 ) をもっている ( 図 参照 ) 接触角と接触角記号を表 に示す ラジア アンギュラ玉軸受 アンギュラ玉軸受 4 点接触玉軸受複列アンギュラ玉軸受. 構造及び特徴. アンギュラ玉軸受 アンギュラ玉軸受は, 非分離軸受で, 玉と内輪 外輪との接触点を結ぶ直線がラジアル方向に対してある角度 ( 接触角 ) をもっている ( 図 参照 ) 接触角と接触角記号を表 に示す ラジアル荷重と, 一方向のアキシアル荷重を負荷することができる またラジアル荷重が作用するとアキシアル分力が生じるので一般に二個対向させて用いられる

More information

< B837B B835E82C982A882AF82E991CF905593AE90AB8CFC8FE382C98AD682B782E988EA8D6C8E40>

< B837B B835E82C982A882AF82E991CF905593AE90AB8CFC8FE382C98AD682B782E988EA8D6C8E40> 1 / 4 SANYO DENKI TECHNICAL REPORT No.10 November-2000 一般論文 日置洋 Hiroshi Hioki 清水明 Akira Shimizu 石井秀幸 Hideyuki Ishii 小野寺悟 Satoru Onodera 1. まえがき サーボモータを使用する機械の小型軽量化と高応答化への要求に伴い サーボモータは振動の大きな環境で使用される用途が多くなってきた

More information

Microsoft PowerPoint - LectureB1_17woAN.pptx

Microsoft PowerPoint - LectureB1_17woAN.pptx 本講義の範囲 都市防災工学 後半第 回 : 導入 確率過程の基礎 千葉大学大学院工学研究院都市環境システムコース岡野創 http://oko-lb.tu.chib-u.c.jp/oshibousi/. ランダム振動論 地震動を不規則波形 ( 確率過程 ) と捉えて, 構造物の地震応答を評価する理論. 震源モデルによる地震動評価 断層の動きを仮定して, 断層から発せられる地震動を評価する方法 ( 運動学的モデル

More information

3.3 モータ運転の留意点 ギヤモータをインバータで運転する場合 ギヤモータをインバータで運転する場合 以下のような注意事項があります 出力軸トルク特性に対する注意事項ギヤモータの出力軸トルク 9544 モータ出力 (kw) SI 単位系 T G = (N m) 出力軸回転数 (r/min) < ギ

3.3 モータ運転の留意点 ギヤモータをインバータで運転する場合 ギヤモータをインバータで運転する場合 以下のような注意事項があります 出力軸トルク特性に対する注意事項ギヤモータの出力軸トルク 9544 モータ出力 (kw) SI 単位系 T G = (N m) 出力軸回転数 (r/min) < ギ 3.3 モータ運転の留意点 ギヤモータをインバータで運転する場合 ギヤモータをインバータで運転する場合 以下のような注意事項があります 出力軸トルク特性に対する注意事項ギヤモータの出力軸トルク 9544 モータ出力 (kw) SI 単位系 T G = (N m) 出力軸回転数 (r/min) < ギヤで回転数を変えた場合 > トルク モータ出力軸トルク 9544 モータ出力 (kw) SI 単位系

More information

H4

H4 機種構成一覧表 3 4 56 GA GA 57 58 59 60 端子箱 ブレーキ不付きブレーキ付き 0.4 2.2 0.4 0.75 1.5 3.7 3.7 5.5 7.5 5.5 11 11 ブレーキ仕様表 出力 () 定格制御許容制動ライニング寿命電磁石ストローク (mm) 電源電圧概略電流 (A) ブレーキ慣性整流ユニットモーメント型式トルク仕事率 ( 総制動仕事量 ) 単相 (V) J:k

More information

エラー動作 スピンドル動作 スピンドルエラーの計測は 通常 複数の軸にあるセンサーによって行われる これらの計測の仕組みを理解するために これらのセンサーの 1つを検討する シングル非接触式センサーは 回転する対象物がセンサー方向またはセンサー反対方向に移動する1 軸上の対象物の変位を測定する 計測

エラー動作 スピンドル動作 スピンドルエラーの計測は 通常 複数の軸にあるセンサーによって行われる これらの計測の仕組みを理解するために これらのセンサーの 1つを検討する シングル非接触式センサーは 回転する対象物がセンサー方向またはセンサー反対方向に移動する1 軸上の対象物の変位を測定する 計測 LION PRECISION TechNote LT03-0033 2012 年 8 月 スピンドルの計測 : 回転数および帯域幅 該当機器 : スピンドル回転を測定する静電容量センサーシステム 適用 : 高速回転対象物の回転を計測 概要 : 回転スピンドルは 様々な周波数でエラー動作が発生する これらの周波数は 回転スピード ベアリング構成部品の形状のエラー 外部影響およびその他の要因によって決定される

More information

軸受内部すきまと予圧 δeff =δo (δf +δt ) (8.1) δeff: 運転すきま mm δo: 軸受内部すきま mm δf : しめしろによる内部すきまの減少量 mm δt: 内輪と外輪の温度差による内部すきまの減少量 mm (1) しめしろによる内部すきまの減少量しめしろを与えて軸受

軸受内部すきまと予圧 δeff =δo (δf +δt ) (8.1) δeff: 運転すきま mm δo: 軸受内部すきま mm δf : しめしろによる内部すきまの減少量 mm δt: 内輪と外輪の温度差による内部すきまの減少量 mm (1) しめしろによる内部すきまの減少量しめしろを与えて軸受 軸受内部すきまと予圧 8. 軸受内部すきまと予圧 8. 1 軸受内部すきま軸受内部すきまとは, 軸又はハウジングに取り付ける前の状態で, 図 8.1に示すように内輪又は外輪のいずれかを固定して, 固定されていない軌道輪をラジアル方向又はアキシアル方向に移動させたときの軌道輪の移動量をいう 移動させる方向によって, それぞれラジアル内部すきま又はアキシアル内部すきまと呼ぶ 軸受内部すきまを測定する場合は,

More information

Microsoft PowerPoint - 第3回2.ppt

Microsoft PowerPoint - 第3回2.ppt 講義内容 講義内容 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 次元ベクトル 関数の直交性フーリエ級数 次元代表的な対の諸性質コンボリューション たたみこみ積分 サンプリング定理 次元離散 次元空間周波数の概念 次元代表的な 次元対 次元離散 ベクトルの直交性 3

More information

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2

第 4 週コンボリューションその 2, 正弦波による分解 教科書 p. 16~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問 1. 以下の図にならって,1 と 2 の δ 関数を図示せよ δ (t) 2 第 4 週コンボリューションその, 正弦波による分解 教科書 p. 6~ 目標コンボリューションの演習. 正弦波による信号の分解の考え方の理解. 正弦波の複素表現を学ぶ. 演習問題 問. 以下の図にならって, と の δ 関数を図示せよ. - - - δ () δ ( ) - - - 図 δ 関数の図示の例 δ ( ) δ ( ) δ ( ) δ ( ) δ ( ) - - - - - - - -

More information

ギリシャ文字の読み方を教えてください

ギリシャ文字の読み方を教えてください 埼玉工業大学機械工学学習支援セミナー ( 小西克享 ) 慣性モーメント -1/6 テーマ 01: 慣性モーメント (Momet of ietia) コマ回しをすると, 長い時間回転させるには重くて大きなコマを選ぶことや, ひもを早く引くことが重要であることが経験的にわかります. 遊びを通して, 回転の運動エネルギーを増やせば, 回転の勢いが増すことを学習できるので, 機械系の学生にとってコマ回しも大切な体験学習のひとつと言えます.

More information

320DRR…J…^_0728

320DRR…J…^_0728 2 3 103kW (140PS) / 1,800min -1 (1,800rpm) Advanced Combustion Emission Reduction Technology 7%UP 6%UP 2%UP 4 5 600mm 312C 320D 885mm 1,350mm R=2,000mm 320D 320D RR RR 320D RR 6 7 500mm 120kg 1,430kg 2,150kg

More information

ディジタル信号処理

ディジタル信号処理 ディジタルフィルタの設計法. 逆フィルター. 直線位相 FIR フィルタの設計. 窓関数法による FIR フィルタの設計.5 時間領域での FIR フィルタの設計 3. アナログフィルタを基にしたディジタル IIR フィルタの設計法 I 4. アナログフィルタを基にしたディジタル IIR フィルタの設計法 II 5. 双 次フィルタ LI 離散時間システムの基礎式の証明 [ ] 4. ] [ ]*

More information

1. ベアリングユニットの構造と特徴 Tベアリングユニットはシール付きラジアル玉軸受と, さまざまな形状と材質の軸受箱を組み合わせたもので, 軸受外径面と軸受箱内径面は球面のため調心性がある ユニット用玉軸受は,T 深溝玉軸受の62,63 系列の内部構造, 内部潤滑用のグリースの封入, 合成ゴムシー

1. ベアリングユニットの構造と特徴 Tベアリングユニットはシール付きラジアル玉軸受と, さまざまな形状と材質の軸受箱を組み合わせたもので, 軸受外径面と軸受箱内径面は球面のため調心性がある ユニット用玉軸受は,T 深溝玉軸受の62,63 系列の内部構造, 内部潤滑用のグリースの封入, 合成ゴムシー ベアリングユニット 1. ベアリングユニットの構造と特徴 Tベアリングユニットはシール付きラジアル玉軸受と, さまざまな形状と材質の軸受箱を組み合わせたもので, 軸受外径面と軸受箱内径面は球面のため調心性がある ユニット用玉軸受は,T 深溝玉軸受の62,63 系列の内部構造, 内部潤滑用のグリースの封入, 合成ゴムシール付 き, 止めねじなどの軸固定装置を持っていることを基本仕様としている 軸受箱は鋳鉄製を基本材料としてさまざまな形状がある

More information

第 2 章 構造解析 8

第 2 章 構造解析 8 第 2 章 構造解析 8 2.1. 目的 FITSAT-1 の外郭構造が, 打ち上げ時の加速度等によって発生する局所的な応力, 及び温度変化によってビスに発生する引っ張り応力に対して, 十分な強度を有することを明らかにする. 解析には SolidWorks2011 を用いた. 2.2. 適用文書 (1)JMX-2011303B: JEM 搭載用小型衛星放出機構を利用する小型衛星への構造 フラクチャコントロール計画書

More information

1 911 9001030 9:00 A B C D E F G H I J K L M 1A0900 1B0900 1C0900 1D0900 1E0900 1F0900 1G0900 1H0900 1I0900 1J0900 1K0900 1L0900 1M0900 9:15 1A0915 1B0915 1C0915 1D0915 1E0915 1F0915 1G0915 1H0915 1I0915

More information

RMS(Root Mean Square value 実効値 ) 実効値は AC の電圧と電流両方の値を規定する 最も一般的で便利な値です AC 波形の実効値はその波形から得られる パワーのレベルを示すものであり AC 信号の最も重要な属性となります 実効値の計算は AC の電流波形と それによって

RMS(Root Mean Square value 実効値 ) 実効値は AC の電圧と電流両方の値を規定する 最も一般的で便利な値です AC 波形の実効値はその波形から得られる パワーのレベルを示すものであり AC 信号の最も重要な属性となります 実効値の計算は AC の電流波形と それによって 入門書 最近の数多くの AC 電源アプリケーションに伴う複雑な電流 / 電圧波形のため さまざまな測定上の課題が発生しています このような問題に対処する場合 基本的な測定 使用される用語 それらの関係について理解することが重要になります このアプリケーションノートではパワー測定の基本的な考え方やパワー測定において重要な 以下の用語の明確に定義します RMS(Root Mean Square value

More information

Mott散乱によるParity対称性の破れを検証

Mott散乱によるParity対称性の破れを検証 Mott Parity P2 Mott target Mott Parity Parity Γ = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 t P P ),,, ( 3 2 1 0 1 γ γ γ γ γ γ ν ν µ µ = = Γ 1 : : : Γ P P P P x x P ν ν µ µ vector axial vector ν ν µ µ γ γ Γ ν γ

More information

Microsoft PowerPoint _量子力学短大.pptx

Microsoft PowerPoint _量子力学短大.pptx . エネルギーギャップとrllouゾーン ブリルアン領域,t_8.. 周期ポテンシャル中の電子とエネルギーギャップ 簡単のため 次元に間隔 で原子が並んでいる結晶を考える 右方向に進行している電子の波は 間隔 で規則正しく並んでいる原子が作る格子によって散乱され 左向きに進行する波となる 波長 λ が の時 r の反射条件 式を満たし 両者の波が互いに強め合い 定在波を作る つまり 式 式を満たす波は

More information

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k 63 3 Section 3.1 g 3.1 3.1: : 64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () 3 9.8 m/s 2 3.2 3.2: : a) b) 5 15 4 1 1. 1 3 14. 1 3 kg/m 3 2 3.3 1 3 5.8 1 3 kg/m 3 3 2.65 1 3 kg/m 3 4 6 m 3.1. 65 5

More information

円筒歯車の最適歯面修整の設計例 適正な歯面修整で負荷容量の増大を目指すー 目次 1. はじめに 2 2. ` 解析例 ( はすば歯車の例 ) 歯車諸元 (C 面取り ) 歯車諸元 (R 面取り ) 最適歯面修整 歯先修整 + 歯先

円筒歯車の最適歯面修整の設計例 適正な歯面修整で負荷容量の増大を目指すー 目次 1. はじめに 2 2. ` 解析例 ( はすば歯車の例 ) 歯車諸元 (C 面取り ) 歯車諸元 (R 面取り ) 最適歯面修整 歯先修整 + 歯先 円筒歯車の最適歯面修整の設計例 適正な歯面修整で負荷容量の増大を目指すー 2019.02.25 目次 1. はじめに 2 2. ` 解析例 ( はすば歯車の例 ) 2 2.1 歯車諸元 (C 面取り ) 2 2.2 歯車諸元 (R 面取り ) 7 2.3 最適歯面修整 9 2.4 歯先修整 + 歯先 C 12 2.5 歯先修整 + 歯先 R 14 2.6 解析結果の比較 16 3. 修整歯形 + 歯先

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

ÿþŸb8bn0irt

ÿþŸb8bn0irt 折戸の物理 演習プリント N.15 43. 目的 : 電磁誘導は, 基本を理解すれば問題はそれほど難しくない! ということを学ぶ 問 1 の [ ] に適切な数値または数式を入れ, 問 に答えよ 図 1 のように, 紙面に垂直で一様な磁界が 0 の領域だけにある場合について考える 磁束密度は Wb/m で, 磁界は紙面の表から裏へ向かっている 図のように,1 辺の長さが m の正方形のコイル を,

More information

1

1 鉄筋コンクリート柱のせん断破壊実験 1 2 2-1 4 CS- 36N 2% CS-36A2 4% CS-36A4 2 CS-36HF -1 F C28 =36N/mm 2-1 CS-36N 普通コンクリート 36NC 2-3 CS-36A2 石炭灰 2% コンクリート 36CA2 2-4 2% CS-36A4 石炭灰 4% コンクリート 36CA4 2-5 4% CS-36HF 高流動コンクリート

More information

技術解説_有田.indd

技術解説_有田.indd Acceleration / G 2 18 16 14 12 1 8 6 4 2 Damping : 1. Period / s XY.1.1 1. 6533 283 3333 423 155 15 (X) 26.12 Hz 15 12 (Y) 28.32 Hz (Z) 43.98 Hz GS Yuasa Technical Report 211 年 6 月 第8巻 水平方向 X_3G 1.7e+7

More information

お問合せはフリーコール 寸法図 CAD 図面がホームページよりダウンロード出来ます P.15 スライダタイプ 2 次元 CAD 1 モータ エンコーダケーブルを接続します ケーブルの詳細は巻末 59 ページをご参照下さい 2 原点復帰

お問合せはフリーコール 寸法図 CAD 図面がホームページよりダウンロード出来ます   P.15 スライダタイプ 2 次元 CAD 1 モータ エンコーダケーブルを接続します ケーブルの詳細は巻末 59 ページをご参照下さい 2 原点復帰 スライダタイプ -AR 型式項目 AR 20 アームタイプ本体幅 0mm 2V モータ折り返し仕様 シリーズタイプエンコーダ種類モータ種類ストローク適応コントローラケーブル長オプション SAD : アルミベース I: インクリメンタル 20 : 10 : 10mm 50:50mm SSD : 鉄ベース仕様 20W 5 : 5mm A: アブソリュート :mm 仕様 (50mmピッチ毎設定) 型式項目の内容は前付

More information

鋳鉄製ピロー形ユニット UCP 形円筒穴形, 止ねじ式 B S N1 H1 H N H2 L1 J L A 軸径 12 50mm 軸径ユニット 1 寸法取付け軸受の呼び番号ボルト呼び番号基本動基本静 mm mm の呼び定格荷重定格荷重 kn H L J A N N1 H1 H2 L1 B S Cr

鋳鉄製ピロー形ユニット UCP 形円筒穴形, 止ねじ式 B S N1 H1 H N H2 L1 J L A 軸径 12 50mm 軸径ユニット 1 寸法取付け軸受の呼び番号ボルト呼び番号基本動基本静 mm mm の呼び定格荷重定格荷重 kn H L J A N N1 H1 H2 L1 B S Cr 鋳鉄製ピロー形ユニット UCP 形円筒穴形, 止ねじ式 2 軸径 12 50mm 軸径ユニット 1 寸法取付け軸受の呼び番号ボルト呼び番号基本動基本静 mm mm の呼び定格荷重定格荷重 k 2 Cr Cor 12 UCP201 30.2 127 95 38 13 16 14 62 42 31 12.7 M10 UC201D1 12.8 6.65 15 UCP202 30.2 127 95 38 13

More information

PowerPoint プレゼンテーション

PowerPoint プレゼンテーション 状態監視技術導入の取組み 日本原子力発電 発電管理室平成 21 年 3 月 目 次 Ⅰ. 状態監視技術導入の目的 Ⅱ. 状態監視技術の導入スケジュール Ⅲ. 状態監視技術の信頼性 Ⅲ 1. 状態監視技術について Ⅲ 2. 活動プロセス Ⅲ 3. 診断技術者 Ⅳ. 今後の課題 1 Ⅰ. 状態監視技術導入の目的 適切な保全とは 劣化予測 ( 予知保全 ) 技術を持ち 機器の運転状態を適宜確認し 適切な時期に

More information

19年度一次基礎科目計算問題略解

19年度一次基礎科目計算問題略解 9 年度機械科目 ( 計算問題主体 ) 略解 基礎科目の解析の延長としてわかる範囲でトライしてみたものです Coprigh (c) 7 宮田明則技術士事務所 Coprigh (c) 7 宮田明則技術士事務所 Ⅳ- よってから は許容荷重として は直径をロ - プの断面積 Ⅳ- cr E E E I, から Ⅳ- Ⅳ- : q q q q q q q q q で絶対値が最大 で絶対値が最大モーメントはいずれも中央で最大となる

More information

三菱シリアルインターフェース搭載ロータリエンコーダ

三菱シリアルインターフェース搭載ロータリエンコーダ 製品概要 三菱シリアルインターフェース搭載ロータリエンコーダ 2014.6 三菱高速シリアルインターフェース搭載ロータリエンコーダ 本製品概要に記載されているロータリエンコーダは 三菱高速シリアルインタフェース (Generation 2 4 線式 ) を搭載した三菱社製制御装置に対応しています 機械設計本資料で紹介しているロータリエンコーダは 例えば 工作機械のサーボ駆動軸や主軸での使用に適しています

More information

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1 Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) µ = lim xk( k = autocorrelation function R( t, t + τ) = lim ( ) ( + τ) xk t xk t k = V p o o R p o, o V S M R realization

More information

vecrot

vecrot 1. ベクトル ベクトル : 方向を持つ量 ベクトルには 1 方向 2 大きさ ( 長さ ) という 2 つの属性がある ベクトルの例 : 物体の移動速度 移動量電場 磁場の強さ風速力トルクなど 2. ベクトルの表現 2.1 矢印で表現される 矢印の長さ : ベクトルの大きさ 矢印の向き : ベクトルの方向 2.2 2 個の点を用いて表現する 始点 () と終点 () を結ぶ半直線の向き : ベクトルの方向

More information

untitled

untitled ( ) c a sin b c b c a cos a c b c a tan b a b cos sin a c b c a ccos b csin (4) Ma k Mg a (Gal) g(98gal) (Gal) a max (K-E) kh Zck.85.6. 4 Ma g a k a g k D τ f c + σ tanφ σ 3 3 /A τ f3 S S τ A σ /A σ /A

More information

Microsoft PowerPoint - 口頭発表_折り畳み自転車

Microsoft PowerPoint - 口頭発表_折り畳み自転車 1 公道走行を再現した振動試験による折り畳み自転車の破損状況 ~ 公道での繰り返し走行を再現した結果 ~ 2 公道走行を想定した試験用路面について 九州支所製品安全技術課清水寛治 目次 1. 折り畳み自転車のフレームはどのように破損するのか公道の走行振動を再現する自転車用ロードシミュレータについて繰り返し走行を想定した折り畳み自転車の破損部の特徴 ~ 公道による振動を繰り返し再現した結果 ~ 2.

More information

Microsoft Word - 4_構造特性係数の設定方法に関する検討.doc

Microsoft Word - 4_構造特性係数の設定方法に関する検討.doc 第 4 章 構造特性係数の設定方法に関する検討 4. はじめに 平成 年度 年度の時刻歴応答解析を実施した結果 課題として以下の点が指摘 された * ) 脆性壁の評価法の問題 時刻歴応答解析により 初期剛性が高く脆性的な壁については現在の構造特性係数 Ds 評価が危険であることが判明した 脆性壁では.5 倍程度必要保有耐力が大きくなる * ) 併用構造の Ds の設定の問題 異なる荷重変形関係を持つ壁の

More information

加振装置の性能に関する検証方法 Verification Method of Vibratory Apparatus DC-X デジタルカメラの手ぶれ補正効果に関する測定方法および表記方法 ( 光学式 ) 発行 一般社団法人カメラ映像機器工業会 Camera & Imaging Pr

加振装置の性能に関する検証方法 Verification Method of Vibratory Apparatus DC-X デジタルカメラの手ぶれ補正効果に関する測定方法および表記方法 ( 光学式 ) 発行 一般社団法人カメラ映像機器工業会 Camera & Imaging Pr 加振装置の性能に関する検証方法 Verification Method of Vibratory Apparatus DC-X011-2012 デジタルカメラの手ぶれ補正効果に関する測定方法および表記方法 ( 光学式 ) 発行 一般社団法人カメラ映像機器工業会 Camera & Imaging Products Association 目 次 1. まえがき ------------------------------------------------------------------------------------------------------

More information

Microsoft PowerPoint - ce07-13b.ppt

Microsoft PowerPoint - ce07-13b.ppt 制御工学 3 第 8 章 : フィードバック制御系の設計法 8. 設計手順と性能評価キーワード : 設計手順, 性能評価 8. ID 補償による制御系設計キーワード : ( 比例 ),I( 積分 ),D( 微分 ) 8.3 進み 遅れ補償による制御系設計キーワード : 遅れ補償, 進み補償 学習目標 : 一般的な制御系設計における手順と制御系の性能評価について学ぶ. ループ整形の考え方を用いて, 遅れ補償,

More information

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と

フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 と フィードバック ~ 様々な電子回路の性質 ~ 実験 (1) 目的実験 (1) では 非反転増幅器の増幅率や位相差が 回路を構成する抵抗値や入力信号の周波数によってどのように変わるのかを調べる 実験方法 図 1 のような自由振動回路を組み オペアンプの + 入力端子を接地したときの出力電圧 が 0 となるように半固定抵抗器を調整する ( ゼロ点調整のため ) 図 1 非反転増幅器 2010 年度版物理工学実験法

More information

θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ φ mg θ f J mg f π J mg π J J 4π f mg 4π f () () /8

θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ φ mg θ f J mg f π J mg π J J 4π f mg 4π f () () /8 [N/m] m[g] mẍ x (N) x. f[hz] f π ω π m ω πf[rd/s] m ω 4π f [Nm/rd] J[gm ] J θ θ (gm ) θ. f[hz] f π ω π J J ω 4π f /8 θ T [N] φ T os φ mg T sin φ mg tn φ T sin φ mg tn φ θ 0 sin θ tn θ θ sin φ tn φ φ θ

More information

Microsoft PowerPoint - CSA_B3_EX2.pptx

Microsoft PowerPoint - CSA_B3_EX2.pptx Computer Science A Hardware Design Excise 2 Handout V2.01 May 27 th.,2019 CSAHW Computer Science A, Meiji University CSA_B3_EX2.pptx 32 Slides Renji Mikami 1 CSAHW2 ハード演習内容 2.1 二次元空間でのベクトルの直交 2.2 Reserved

More information

Micro Fans & Blowers Innovation in Motion マイクロファン & ブロワー 有限会社シーエス技研 PTB 事業部東京オフィス 千葉県市原市辰巳台西

Micro Fans & Blowers Innovation in Motion マイクロファン & ブロワー 有限会社シーエス技研 PTB 事業部東京オフィス 千葉県市原市辰巳台西 www.pelonistechnologies.com Innovation in Motion マイクロファン & ブロワー 有限会社シーエス技研 PTB 事業部東京オフィス 290-0004 千葉県市原市辰巳台西 4-13-1-9-1 104-0041 東京都中央区新富 1-5-5-406 Tel:0436-98-2341 Fax:0436-98-2336 Tel:03-3206-6832 Fax:03-3206-6829

More information

形式 :WYPD 絶縁 2 出力計装用変換器 W UNIT シリーズ パルスアイソレータ ( センサ用電源付 2 出力形 ) 主な機能と特長 パルス入力信号を絶縁して各種のパルス出力信号に変換 オープンコレクタ 電圧パルス リレー接点パルス出力を用意 センサ用電源内蔵 耐電圧 2000V AC 密着

形式 :WYPD 絶縁 2 出力計装用変換器 W UNIT シリーズ パルスアイソレータ ( センサ用電源付 2 出力形 ) 主な機能と特長 パルス入力信号を絶縁して各種のパルス出力信号に変換 オープンコレクタ 電圧パルス リレー接点パルス出力を用意 センサ用電源内蔵 耐電圧 2000V AC 密着 絶縁 2 出力計装用変換器 W UNIT シリーズ パルスアイソレータ ( センサ用電源付 2 出力形 ) 主な機能と特長 パルス入力信号を絶縁して各種のパルス出力信号に変換 オープンコレクタ 電圧パルス リレー接点パルス出力を用意 センサ用電源内蔵 耐電圧 2000V AC 密着取付可能 アプリケーション例 フィールド側のパルス信号を直流的に絶縁してノイズ対策を行う パルス出力の種類を変換 ( 例

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l 1 1 ϕ ϕ ϕ S F F = ϕ (1) S 1: F 1 1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l : l r δr θ πrδr δf (1) (5) δf = ϕ πrδr

More information

表 4.2 歯車係数 fz f まがりばかさ歯車では, ねじれ角の方向, 回転方向及び駆動側か従動側かによって荷重の向きが異なる 分離力 (Ks) 及びアキシアル荷重 (Ka) は図 4.5に示す方向を正としている 回転方向とねじれ角の方向は歯車の大端面からみて定義することになっており, 図 4.5

表 4.2 歯車係数 fz f まがりばかさ歯車では, ねじれ角の方向, 回転方向及び駆動側か従動側かによって荷重の向きが異なる 分離力 (Ks) 及びアキシアル荷重 (Ka) は図 4.5に示す方向を正としている 回転方向とねじれ角の方向は歯車の大端面からみて定義することになっており, 図 4.5 4. 軸受荷重の計算 軸受荷重を算定するためには, 軸受が支持している軸系に作用している荷重を決定する必要がある 軸系に作用する荷重には, 回転体の自重, 機械が仕事をするために生じる荷重及び動力伝達による荷重などがあり, これらは理論的に数値計算できるものもあるが, 計算が困難な場合も多い 軸受の主要な用途である動力伝達軸について作用する荷重の計算方法を示す 4. 1 軸系に作用する荷重 4. 1.

More information

FANUC i Series CNC/SERVO

FANUC i Series CNC/SERVO + Series CNC/SERVO * * 2 * * 3 Series 0+-MODEL F * * * Series 30+/31+/32+/35+-MODEL B * Power Motion +-MODEL A * PANEL +H * PANEL +H Pro * MT-LINK+ * MT-LINKi 4 サーボラインアップ @*-B series SERVO α*-bシリーズサーボは

More information

Microsoft PowerPoint EM2_15.ppt

Microsoft PowerPoint EM2_15.ppt ( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 導体表面の電界強度 () 外部電界があっても導体内部の電界は ( ゼロ ) になる () 導体の電位は一定 () 導体表面は等電位面 (3) 導体表面の電界は導体に垂直 導体表面と平行な成分があると, 導体表面の電子が移動 導体表面の電界は不連続

More information

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数

数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 . 三角関数 基本関係 t cot c sc c cot sc t 還元公式 t t t t t t cot t cot t 数学 数学 t t t t t 加法定理 t t t 倍角公式加法定理で α=β と置く. 三角関数 数学. 三角関数 5 積和公式 6 和積公式 数学. 三角関数 7 合成 t V v t V v t V V V V VV V V V t V v v 8 べき乗 5 6 6

More information

JA PXA 遠心力ポンプ 仕様 仕吐出量 Q max = 500 L/min 圧力 H max = 250 m 温度範囲 T = -10 C ~ +80 C 粘度 ν max = 20 mm 2 /s Quality Management DIN EN ISO 9001:2008 w

JA PXA 遠心力ポンプ 仕様 仕吐出量 Q max = 500 L/min 圧力 H max = 250 m 温度範囲 T = -10 C ~ +80 C 粘度 ν max = 20 mm 2 /s Quality Management DIN EN ISO 9001:2008 w 1-6062-JA 遠心力ポンプ 仕様 仕吐出量 Q max = 500 L/min 圧力 H max = 250 m 温度範囲 T = -10 C ~ + C 粘度 ν max = 20 mm 2 /s Qualiy Managemen DIN EN ISO 9001:8 www.spandaupumpen.jp Environmenal Managemen DIN EN ISO 101 Healh

More information

Chap. 1 NMR

Chap. 1   NMR β α β α ν γ π ν γ ν 23,500 47,000 ν = 100 Mz ν = 200 Mz ν δ δ 10 8 6 4 2 0 δ ppm) Br C C Br C C Cl Br C C Cl Br C C Br C 2 2 C C3 3 C 2 C C3 C C C C C δ δ 10 8 6 4 δ ppm) 2 0 ν 10 8 6 4 δ ppm) 2 0 (4)

More information

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように

2 図微小要素の流体の流入出 方向の断面の流体の流入出の収支断面 Ⅰ から微小要素に流入出する流体の流量 Q 断面 Ⅰ は 以下のように定式化できる Q 断面 Ⅰ 流量 密度 流速 断面 Ⅰ の面積 微小要素の断面 Ⅰ から だけ移動した断面 Ⅱ を流入出する流体の流量 Q 断面 Ⅱ は以下のように 3 章 Web に Link 解説 連続式 微分表示 の誘導.64 *4. 連続式連続式は ある領域の内部にある流体の質量の収支が その表面からの流入出の合計と等しくなることを定式化したものであり 流体における質量保存則を示したものである 2. 連続式 微分表示 の誘導図のような微小要素 コントロールボリューム の領域内の流体の増減と外部からの流体の流入出を考えることで定式化できる 微小要素 流入

More information