ii (Preface) Mach number: M; : M = V/a 0.3 5% km/h( M=0.4) (thermodynamics) ( SST: supersonic transport (trade-off) ( ) (fluid dynamics) (compr

Size: px
Start display at page:

Download "ii (Preface) Mach number: M; : M = V/a 0.3 5% km/h( M=0.4) (thermodynamics) ( SST: supersonic transport (trade-off) ( ) (fluid dynamics) (compr"

Transcription

1 Incompressible Fluid Dynamics Yoshiaki NAKAMURA Professor of Chubu University Emeritus Professor of Nagoya University April, 2014

2 ii (Preface) Mach number: M; : M = V/a 0.3 5% km/h( M=0.4) (thermodynamics) ( SST: supersonic transport (trade-off) ( ) (fluid dynamics) (compressible fluid dynamics) M = 0 M = 0 V = 0 M = 0 0 (sound speed: a) (viscosity) (vorticity) (potential flow) ( )

3 iii (lift)

4

5 v ()

6 vi

7 1 1 (Incompressible Fluid Dynamics) 1.1 (incompressible fluid) (pressure) (volume) (density) (liquid) (air) (gas) (state equation) ρ = (1.1) ρ (nonexpansion) 273K 999.8kg/m 3 313K 992.2kg/m 3 40 C 0.8% (isopicnic fluid) 1.2 (governing equation)

8 div v = v = u x + v y + w z = 0 (1.2) v v = (u, v, w) u, v, w x, y, z (velocity component) 0 v+ u u+ v 1.1: 2 0 (u + δu)δy uδy + (v + δv)δx vδx = (u + u v δx)δy uδy + (v + δy)δx vδx x y ( u = x + v ) δxδy (1.3) y u x + v = 0 div v = 0 (1.4) y () u ρu divρ v = 0 (1.5) div v = 0 (1.5)

9 (Navier-Stokes equations ) (Euler equations; Leonhard Euler 1757 ) ( u ρ t + u u x + v u y + w u ) = ρx p z x ( v ρ t + u v x + v v y + w v ) = ρy p z y ( w ρ t + u w x + v w y + w w ) = ρz p z z (x ) (1.6) (y ) (1.7) (z ) (1.8) (X, Y, Z) (body force) (gravitational force) (X, Y, Z) = (g x, g y, g z ) g (gravitaional acceleration) g = (g x, g y, g z ) 1.6) 1.8 (unsteady term) 4 (convective terms) (energy equation) ρ (kinetic energy) (1/2)v 2 gh (g h p/ρ (internal energy) e i de i = C(T ) dt (1.9) C(T ) (specific heat) 1kg 1K (J) (SI J/(kg K)) e i = CT (1.10)

10 4 1 (first law of thermodynamics) dq = de i + pdv (1.11) dq v (; specific volume) v = 1/ρdv = 0 dq = de i (1.12) : h (enthalpy) h e i + p ρ (1.13) 1.2: H 0 = 1 2 v2 + e i + p + gy (1.14) ρ H 0 (total enthalpy) (gravitational potential energy) H 0 = 1 2 v2 + e i + p ρ () (1.15) Q W W < 0 Q + W = H 02 H 01 (1.16) H 01 H 02 H 02 = H 01 (1.17)

11 (external force) (conservative force) X = (X, Y, Z) X = grad Ω = Ω (1.18) ()Ω grad = (gradient) (differential operator) = ( / x, / y, / z) X = Ω x, Y = Ω y, Z = Ω z (1.19) X = g x, Y = g y, Z = g z Ω = g x x + g y y + g z z (1.20) (1.14) H 0 = 1 2 v2 + e i + p ρ Ω (1.21) y g y = g Ω = gy (1.14) (1.21) 1.3 streamline () (pathline particle path) δx δs = u V, δy δs = v V, δz δs = w V (1.22) s δs s x = x(s), y = y(s), z = z(s) V V = u 2 + v 2 + w 2 δt δx u = δy v = δz w 1.22u u/ x = δt (1.23) u u x = V x u s x (1.24)

12 : x ( u u x + v u y + w u z = V x u s x + V y u s y + V z u s z ( u x = V x s + u y y s + u ) z z s = V u s (1.25) (1.25) u = u(x(s), y(s), z(s)) (1.26) u u x + v u y + w u z = V u s (1.27) V = (u, v, w) δ s = (δx, δy, δz) y z u u x + v u y + w u z u v x + v v y + w v z u w x + v w y + w w z = V u s = V v s = V w s (1.28) (1.29) (1.30) x, y, z ρv u s ρv v s ρv w s = p x = p y = p z (1.31) (1.32) (1.33)

13 δx, δy, δz ρv u s ρv v s ρv w s ρ (1.22) s p δx = δx (1.34) x p δy = δy (1.35) y δz = pδz (1.36) z V u s u V δs = 1 ρ V v s v V δs = 1 ρ V w s w V δs = 1 ρ ( u v2 2 + w2 2 ) δs = 1 ρ p δx x (1.37) p δy y (1.38) p δz z (1.39) p δs (1.40) s ( u 2 + v 2 + w 2 ) δs = 1 s 2 ρ p s Ω δs + δs (1.41) s ( V 2 ) dp s 2 + ρ Ω = 0 (1.42) (barotropic fluid) () p ρ p = p(ρ) (1.43) F (p) F (p) = p dp ρ(p) (1.44)

14 8 1 F (p) s F s = F p p s = 1 p ρ s (1.45) 1.44 p dp s ρ(p) = 1 p ρ s (1.46) () (1.42) (Bernoulli s equation; Daniel Bernoulli 1738 ) 1 2 V 2 + p Ω = (1.47) ρ y Ω Ω = gy (1.48) () (hydraulic head) (1.47) (1.48) g 1 2 V 2 + p ρ + gy = C 1 = const (1.49) 1 V 2 2 g + p ρg + y = C 2 = const (1.50) (velocity head) (pressure head) (elevation head) (total head) (1atm) 10m () (1.47) p ρ V 2 = p ρv 2 (1.51)

15 () p 0 p ρ V 2 = p ρv 2 = p 0 (1.52) () (pressure coefficient) C p = p p (1/2)ρ V 2 (1.53) C p = p p (1/2)ρ V 2 ( ) 2 V = 1 (1.54) V C p 1 C p 1 () () [ ] v ρ + ( v ) v = p (1.55) t ( v ) v ( A B) = ( A ) B + ( B ) A + A rot B + B rot A (1.56) rot rot = A = v, B = v ( ) v v 2 2 = 2( v ) v + 2 v ω ( v ) v = v ω (1.57) 2 ω = v ω = 0 (1.57) (1.55) [ ( )] v v 2 ρ t + = p (1.58) 2 v = Φ (1.58) [ ρ Φ ( )] v 2 t + = p (1.59) 2

16 10 1 (1.59) ( Φ t + v2 2 + p ) = 0 Φ ρ t + v2 2 + p = const (1.60) ρ Φ/ t = 0 () Q W = 0) 1.16 Q = H 02 H ( 01 1 = 2 v2 + e i + p ) ρ Ω = e i2 e i1 + 2 ( 1 ( 1 2 v2 + p ρ Ω 2 v2 + e i + p ) ρ Ω 1 ) ( 1 2 v2 + p ) ρ Ω 2 1 (1.61) 1.47 Q = e i2 e i1 = C(T 2 T 1 ) (1.62) (1.10) (calorically perfect gas) 1.4 ϕ ( ) 2 2 ϕ = x y z 2 ϕ = 0 (1.63) P(x, y, z) ϕ ( ϕ ϕ(x, y, z) = 1 ) ds + ϕ ( 1 ) ds (1.64) n 4πr ν 4πr S S n ν ( n = (n 1, n 2, n 3 ) x, y, ), z ( ) ν = (n 1, n 2, n 3 ),, x 1 y 1 z 1 (1.65)

17 : n = (n 1, n 2, n 3 ) S r P(x, y, z) (x 1, y 1, z 1 ) r = (x x 1 ) 2 + (y y 1 ) 2 + (z z 1 ) 2 (1.66) (1.64) : 1 ( 1 ) 4πr ν 4πr (1.67) (1.64) ( ϕ(x, y, z) = C 1 1 ) ds + 4πr S S C 2 ν ( 1 ) ds (1.68) 4πr C 1, C source v r < 0 (sink) (diffusion) (potential flow) ω ω = rot u = u (1.69) ω = (ξ, η, ζ) ξ = w y v z, η = u z w x, ζ = v x u y (1.70)

18 : 0 w y v z = 0, u z w x = 0, v x u y = 0 (1.71) ϕ u ϕ x, v ϕ y, w ϕ z (1.72) V = ϕ = grad ϕ, V = (u, v, w) (1.73) (polar coordinates) v r r σ σ ϕ v r σ = 4πr 2 v r (1.74) v r = σ 4πr 2 (1.75) v r = ϕ r (1.76) ϕ r = σ 4πr 2 (1.77) ϕ ϕ = σ 4πr (1.78)

19 σ (sink) x = x 1, y = y 1, z = z 1 σ = u x + v y + w = div v (1.79) z σ 0 = u x + v y + w = div v (1.80) z () (1.79) Q S Gauss () div v dv = n v ds (1.81) (1.79) (1.81) σ dv = n v ds (1.82) σ () 1.72 (1.79) ϕ σ = 2 ϕ x ϕ y ϕ z 2 (1.83) 2 ϕ = σ (1.84) (partial differential equation) (Poisson equation) Q σ = 0 2 ϕ = 0 (1.85) (Laplace equation) ϕ ϕ(x, y, z) = 1 σ(ξ, η, ζ) dξdηdζ 4π r = 1 σ(ξ, η, ζ) dξdηdζ (1.86) 4π (x ξ)2 + (y η) 2 + (z ζ) 2

20 14 1 (x, y, z) P (ξ, η, ζ) σ () ) (M < 1) x M ϕ (1 M 2 ) 2 ϕ x ϕ y ϕ z 2 = 0 (1.87) ϕ V = U i + grad ϕ ( i x ) (1.88) β = 1 M 2 (1.87) β2 ỹ = βy, 2 ϕ x ϕ ỹ ϕ z 2 = 0 (1.89) z = βz 1.78 ϕ = (x, y, z) σ 4π x 2 + ỹ 2 + z 2 (1.90) ϕ = σ 4π x 2 + β 2 (y 2 + z 2 ) = σ 4π x 2 + (1 M 2 )(y 2 + z 2 ) (1.91) ϕ (surface of the second order) (ellipsoid) ( ) ( 2 x + σ/4πϕ y σ/4πϕ β ) 2 + ( z σ/4πϕ β ) 2 = 1 (1.92) ψ = constϕ = const

21 (M > 1) x M (M 2 1) 2 ϕ x 2 2 ϕ y 2 2 ϕ z 2 = 0 (1.93) β = M 2 1 β 2 ỹ = βy, 2 ϕ x 2 2 ϕ ỹ 2 2 ϕ z 2 = 0 (1.94) z = βz i 2 ϕ x ϕ (iβy) ϕ (iβz) 2 = 0 (1.95) ϕ 1.78 ϕ = σ 4π x 2 + (iβy) 2 + (iβz) 2 = σ 4π x 2 β 2 (y 2 + z 2 ) (1.96) ϕ hyperboloid of two sheets ( ) ( 2 x σ/4πϕ y σ/4πϕ β ) 2 ( z σ/4πϕ β ) 2 = 1 (1.97) ψ = constϕ = const 1.6 (doublet) x ( a, 0, 0) (a, 0, 0) (singular) (1.78) r 1, r 2 ϕ = σ + σ (1.98) 4πr 1 4πr 2 r 1 = { (x + a) 2 + y 2 + z 2} 1/2, r2 = { (x a) 2 + y 2 + z 2} 1/2 (1.99) r = { (x ξ) 2 + y 2 + z 2} 1/2 (1.100)

22 16 1 r 1, r 2 ( ) ( ) = + r 1 r ξ=0 ξ r ( ) ( ) = + r 2 r ξ r (1.98) (1.101) ξ=0 ϕ(x, y, z) = 2σa 4π 1 ξ r = 1 r r 2 ξ = x ξ r 3 ( a) + O(a 2 ) ξ=o (+a) + O(a 2 ) ξ=o ( ) 1 + O(a 3 ) (1.101) ξ r ξ=o ( ) 1 = x ξ r ξ=0 r 3 (1.102) a 0, σ, σa = µ = const (1.103) ϕ(x, y, z) = µ x 2π r 3 (1.104) x (1.104) ϕ(x, y, z) = µ 1 x 2π r 2 r = µ cos θ 2π r 2 (1.105) θ r x (2.43) () (1.67) 2 2 ν = x 1 ν ( 1 4πr r 2 = (x x 1 ) 2 + (y y 1 ) 2 + (z z 1 ) 2 ϕ = 1 4π ( 1 r 2 ) ) = ( 1 ) x 1 4πr r = x x 1 x 1 r r = 1 ( 1 ) ( ) x x1 x 1 4π r 2 r 2 x 1 = 0 ϕ = 1 ( 1 ) (x ) 4π r 2 = 1 ( x ) r 4π r 3 (1.106) (1.107) (1.108) (1.109) 2

23 (vortex) core (Rankine ) (θ ) V = v θ (v r = 0) (vortex core) solid rotation v θ = ωr (1.110) ω (angular velocity) z ζ (x, y, z) (r, θ, z) ζ = v x u y = 1 v θ r r r 1 v r r θ (1.111) v r 0 ζ = 1 r v θ r r = 2ω (1.112) 2 () r (v θr) = 0 (1.113) v θ = C r (1.114) C ωa = C a C = ωa 2 (1.115) v θ = ωr (1.116) v θ = ωa2 r (1.117)

24 : ( ) ρ v2 θ = p r r (1.118) v θ 1.117r p 0 p = ρω2 a r 2 (1.119) p = 0 at r (1.120) p = ρω2 2 r2 + p 0 (1.121) p 0 r = 0r = a p 0 p 0 = ρω 2 a 2 (1.122) p = ρω2 a 2 2 ) (2 r2 a 2 (1.123)

25 : 1.8 circulation Γ = v d s (1.124) Stokes Γ = ( v) ds = (rot v) ds = ω d S (1.125) ω = rot v = v (1.126) lift (Kuta-Joukovski camber (Lord Kelvin) DδΓ Dt = D (uδx + vδy + wδz) (1.127) Dt Duδx Dt = Du δx + udδx Dt Dt = Du δx + uδu (1.128) Dt

26 20 1 Dδx Dt = δu, Dδx Dt = δ Dx Dt Dδy Dt = δv, = δu (1.129) Dδz Dt = δw (1.130) ( D Du (uδx) = δx + uδu = X 1 ) p δx + uδu (1.131) Dt Dt ρ x (x ) x, y, z D Dt (uδx) = D Dt (vδy) = D Dt (wδz) = Du Dt = X 1 p ρ x (1.132) ( X 1 ) p δx + uδu, (1.133) ρ x ( Y 1 ) p δy + vδv, (1.134) ρ y ( Z 1 ) p δz + wδw (1.135) ρ z D Dt (uδx + vδy + wδz) = Xδx + Y δy + Zδz 1 ρ δp + δ u2 + v 2 + w 2 2 X Ω X = (X, Y, Z) = ( Ω x, Ω y, Ω ) z (1.136) (1.137) DδΓ Dt = δω 1 ρ δp + δ u2 + v 2 + w 2 2 (1.138) A A [ DΓ dp Dt = Ω ρ + u2 + v 2 + w 2 ] A = 0 (1.139) 2 (Thomson) (Lord Kelvin) (1867) A

27 Helmholtz, 1858) C 0 Γ = 0 Qü Â Èü Ê C QŠÇ 1.8: Γ = ω nds ωs

28 22 1 Γ = Γ 1 2 Γ 2 QŠÇ Γ 1 1.9: ω = (ξ, η, ζ) div v = v = u x + v y + w z = 0 (1.140) ξ = w y v z, η = u z w x, ζ = v x u y (1.141) v = 0 E v = E (1.142) 0 () B B = 0 A B = A (1.143) () E = (E, F, G) (1.144) (1.142) u = G y F z, v = E z G x, w = F x E y (1.145)

29 ξ = ( E x x + F y + G ) 2 E (1.146) z η = ( E y x + F y + G ) 2 F (1.147) z ζ = ( E z x + F y + G ) 2 G (1.148) z E x + F y + G z = 0 (1.149) 2 E = ξ, 2 F = η, 2 G = ζ (1.150) (1.86) E, F, G E(x, y, z) = 1 ξ(x1, y 1, z 1 ) dx 1 dy 1 dz 1 (1.151) 4π r F (x, y, z) = 1 η(x1, y 1, z 1 ) dx 1 dy 1 dz 1 (1.152) 4π r G(x, y, z) = 1 ζ(x1, y 1, z 1 ) dx 1 dy 1 dz 1 (1.153) 4π r (x 1, y 1, z 1 ) P (x, y, z) r r = (x x 1 ) 2 + (y y 1 ) 2 + (z z 1 ) 2 (1.154) E(x, y, z), F (x, y, z), G(x, y, z) (x, y, z) (u, v, w) noslip condition) u = 0, v = 0, w = 0 (1.155) u = dx dt, v = dy dt, w = dz dt (1.156)

30 24 1 (slip condition) 0 V n = 0 (1.157) n V n 0 V 1.10: V B V B n = V n (1.158) n ) ( p d 2 ) n = x dt 2, d2 y dt 2, d2 z dt 2 n (1.159) n

31 25 2 (functions of a complex variable) ψ ϕ () (complex number plane) z = x + iy (2.1) i i = 1 x y W (z) f(z) W (z) = f(z) = ϕ + iψ (2.2) ϕ ψ dw dz = lim W z 0 z = lim f(z + z) f(z) z 0 z (2.3) z 0 x : y P f(z) df/dz f(z) (regular) f(z) dw dz = lim x, y 0 [ϕ(x + x, y + y) ϕ(x, y)] + i[ψ(x + x, y + y) ψ(x, y)] x + i y

32 26 2 Q(x+ƒ x,y+ƒ y) ƒ y P (x,y) ƒ x 2.1: = lim x, y 0 = lim x, y 0 ( ) ϕ ϕ x x + y y + i ( ) ϕ x + i ψ x x + x + i y x + i y ( ) ψ ψ x x + y y ( ϕ y + i ψ y ) y (2.4) x : y ( ) ( ) ϕ ϕ x + i ψ : x y + i ψ = 1 : i (2.5) y ϕ x = ψ y, ϕ y = ψ x (2.6) (the Cauchy-Riemann equations) f(z) (differentiable) (necessary and sufficient condition) f(z) ϕ ψ (Laplace s equation) 2 ϕ x ϕ y 2 = 0, 2 ψ x ψ y 2 = 0 (2.7) ϕ ψ 2.7 ϕ =0 v x u y = 0 u = ϕ x, v = ϕ y ψ (2.8) u x v y = 0 u = ψ y, v = ψ x (2.9)

33 () 2 (plane flow) (axisymmetric flow) 3 () () (2.8) (2.9) v = ϕ = grad ϕ, v = ψ k (2.10) k (x, y, z) z () () (harmonic) (harmonic function) () W z z = x x z = iy dw dz = ϕ x + i ψ = u iv (2.11) x dw dz = ϕ iy + i ψ iy = i ϕ y + ψ = iv + u (2.12) y dw dz = u iv (2.13) (conjugate velocity) W (z) z dw dz = dw d z = u + iv (2.14) dw dz dw dz = dw dz dw d z = (u iv)(u + iv) = u2 + v 2 (2.15) 2.2 (uniform flow) x y U W = Uz (2.16)

34 28 2 (2.2) (2.1) W = ϕ + iψ = U(x + iy) ϕ = Ux, ψ = Uy (2.17) (u, v) u = ϕ x = ψ y = U, v = ϕ y = ψ x = 0 (2.18) α dw dz = u iv = U cos α iu sin α = U(cos α i sin α) = Ue iα (2.19) α W = Ue iα z (2.20) z ze iα (2.21) U α U sinα U cosα 2.2: α () e iθ = cos θ + i sin θ (2.22) 2.3 (source flow) W W = m ln z (2.23) 2π

35 z (r, θ) z = re iθ (2.24) ψ ϕ ϕ = m 2π ln r, ψ = m 2π θ (2.25) 2.3: (r) v r (θ) v θ v r = ϕ r = 1 ψ r θ = m 2πr, v θ = 1 ϕ r θ = ψ r = 0 (2.26) r = ψ = (2.25) θ = ψ = const ϕ = const () (r, θ) v = 1 r 2π 0 rv r r + 1 r v θ θ = 0 rv r = ψ θ, v r r dθ = v r 2πr = v θ = ψ r (2.27) m 2πr = m (2.28) 2πr (2.23) m m (sink) 2.4 superimpose (ϕ ψ

36 30 2 ) (m > 0) (m < 0) (2.16) (2.23) W = Uz + m ln z (2.29) 2π 2.4: dw dz = u iv = U + m 1 2π z z = re iθ u = U + m 2π cos θ, v = m sin θ r 2π r 0 u = v = 0 θ = π r s = m 2πU ( (x, y) = m ) 2πU, 0 ( 0) 0 (2.30) (2.31) (2.32) (2.33) ( (x, y) = 0, m ) 2πU () (2.34) 2.5 x = a m x = a m W = W source + W sink = m 2π m ln(z + a) + 2π ln(z a) = m 2π ln z + a z a (2.35)

37 : m 0 () () ( a 0 )2.35 W = m 2π ln z + a z a = m ( 2π ln 1 + 2a ) z a (2.36) a 2a/(z a) << 1 (Taylor expansion) W = m 2π 2a z a (2.37) a 0 0 a () a a(0) m( ) µ (2.38) W = µ π 1 z (2.39) doublet µ

38 32 2 ψ=ˆê è 2.6: (2.36) (2.39) W = m 2π ln z + a z a = m ln(z + a) ln(z a) 2a (2.40) 2π 2a a 0 W = 2am ( ) d ln(z + b) 2π db () b=0 = 2µ 1 2π z = µ 1 π z (2.41) (2.39) ϕ ψ W = µ (cos θ i sin θ) (2.42) πr ϕ = µ πr cos θ, ψ = µ sin θ (2.43) πr ( x x x (counterclockwise) α W W = µ 1 π ze iα (2.44) y α = π/2 () (vortex) W = iγ ln z (2.45) 2π

39 i (r, θ) W = Γ 2π θ iγ ln r (2.46) 2π ϕ = Γ 2π θ, ψ = Γ ln r (2.47) 2π (2.25) θ ln r (2.45) i ψ = const r = const (v r, v θ ) v r = ϕ r = 1 ψ r θ = 0, v θ = 1 r ϕ θ = ψ r = Γ 2πr (2.48) θ v θ ds = Γ 2πr = Γ (2.49) 2πr Γ (circulation) Γ Γ () (polar coordinates) ψ div v = r (rv r) + θ v θ = 0 (2.50) rv r = ψ θ, v θ = ψ r (2.51) 1 r r (rv θ) 1 r ϕ v r θ = 0 (2.52) () rv θ = ϕ θ, v r = ϕ r (2.53) ()

40 () (corner) W = Cz n (2.54) z = re iθ W = ϕ + iθ ϕ ψ ϕ = Cr n cos nθ, ψ = Cr n sin nθ (2.55) ψ = ψ = 0 sin nθ = 0 (2.56) nθ = 0, nθ = π (2.57) θ c θ c = π/n (2.58) n θ c n > 1 0 < θ c < π n < 1 π < θ c v θ = 1 r ϕ θ = Cnrn 1 sin nθ, v r = ϕ r = Cnrn 1 cos nθ (2.59) θ = 0 v r (z = 0) r 0 n > 1 v r 0 n < 1 v r () () (wedge) 2.7

41 2.8. () 35 ƒõ0 Šp ƒõˆê è ƒ c Ì Ì Šp ƒõˆê è ƒõ ƒ c Ì a) n>1 Ìê b) 1>n>1/2 Ìê 2.7: () a) (half-angle ) δ δ = π θ c δ = π/2 θ c = π/2 δ ()

42

43 37 3 (complex function) (potential flow) (r, θ) 2 ϕ = 2 ϕ r ϕ r r ϕ r 2 θ 2 = 0 (3.1) ϕ v r = ϕ r, v θ = 1 r ϕ θ (3.2) 3.1 (separation of variables) ϕ = R(r)Θ(θ) (3.3) 3.1 Θ d2 R dr 2 + Θ r dr dr + R d 2 Θ r 2 dθ 2 = 0 (3.4) r 2 d 2 R R dr 2 + r dr R dr = 1 d 2 Θ Θ dθ 2 = n2 (3.5) r θ n 2 n n 0 θ 2π θ d 2 Θ dθ 2 = n2 Θ (3.6)

44 38 3 Θ = a 1 sin nθ + b 1 cos nθ (3.7) a 1 b 1 θ 3.7θ θ + 2π n 3.3 T (r) S(r) 3.5 ϕ = T (r) cos nθ + S(r) sin nθ (3.8) r 2 d 2 R R dr 2 + r dr R dr n2 = 0 (3.9) d 2 R dr r dr dr n2 r 2 R = 0 (3.10) R = r m (3.11) 3.9 m 2 = n 2 m = ±n (3.12) R = r n or R = r n (3.13) (3.8) T (r) S(r) T = A n r n + B n r n, S = C n r n + D n r n (3.14) n 0 ϕ 3.8 ϕ = {(A n r n + B n r n ) cos nθ + (C n r n + D n r n ) sin nθ} (3.15) n=0 n = 0 ϕ 3.2 n = 0 n 1 ϕ = {(A n r n + B n r n ) cos nθ + (C n r n + D n r n ) sin nθ} (3.16) n=1

45 U (v n ) r=a = (v r ) r=a = U cos θ (3.17) v n v θ y -Ucosθ U ˆÚ x o θ θ U x 3.1: 0 (stationary state) ( ) ϕ = U cos θ, r r=a ( ) ϕ = 0 (3.18) r r ϕ r = (A n nr n 1 B n nr n 1 ) cos nθ + (C n nr n 1 D n nr n 1 ) sin nθ (3.19) n=1

46 40 3 r ϕ/ r 0 n 1 r n r n 3.16 ϕ = A n = 0, C n = 0 (3.20) r n (B n cos nθ + D n sin nθ) (3.21) n= r (3.18) ( ) ϕ = r r=a a n 1 n(b n cos nθ + D n sin nθ) = U cos θ (3.22) n=1 2 3 ϕ 3.21 n = 1 B 1 = Ua 2 (3.23) n 1 D n = 0 (3.24) n 2 B n = 0 (3.25) ϕ = Ua 2 cos θ r (3.26) Cauchy-Riemann ϕ r = 1 ψ r θ, 1 r ϕ θ = ψ r () (2.4) (3.27) ψ ψ = Ua 2 sin θ r W (3.27) (3.28) W = ϕ + iψ = Ua 2 cos θ r iua 2 sin θ r = Ua2 r (cos θ i sin θ) = Ua2 Ua2 = reiθ z (3.29) 2 (doublet) 2.39 U

47 : 2 x ( (3.2) ) W = µ π 1 z (3.30) µ π = a2 U (3.31) µ = πa 2 U (3.32) 3.4 ψ = 0 ψ = 0 ψ = 0 3.3:

48 42 3 W (3.29) (Uz) W = Uz + a2 U z (3.33) z = re iθ W = ϕ + iψ ψ ϕ ϕ = U ) (r + a2 cos θ, r 3.34ψ = 0 ψ = U ) (r a2 sin θ (3.34) r r = a θ = 0, π (3.35) (v θ ) r=a = ( ) 1 ϕ = 2U sin θ (3.36) r θ r=a (argument)θ θ 3.4: θ θ = π/2 2 3/2 3 c p p p c p p p 1 2 ρu 2 = 1 ( vθ ) 2 = 1 4 sin 2 θ (3.37) U

49 θ = 0 θ = πc p = 1 θ = π/2 θ = 3π/2 3 (3.5) : (r, θ, ϕ) ( = 2 = 1 r 2 r Φ ( r 2 r ) + Φ(r, θ) = U Φ = 0 (3.38) 1 r 2 sin θ ( sin θ ) + θ θ ) (x + a3 2r 2 cos θ 1 r 2 sin 2 θ 2 ϕ 2 (3.39) (3.40) x U ) Φ(r, θ) = U (1 + a3 2r 3 r cos θ (3.41) (r, θ) ( 3.1 ) v r = Φ r = U v θ = 1 r Φ θ = U (1 a3 r 3 (1 + a3 ) cos θ (3.42) ) 2r 3 sin θ (3.43) (v θ ) r=a = 3 U sin θ (3.44) 2

50 44 3 c p = sin2 θ (3.45) C p = 5/4 C p = 3 () (1.78) 3 2 ((x, y, z) = ( a, 0, 0) (a, 0, 0) a 0 ψ = 0 œ b Ý _ œ ψ = 0 Γ = 0 Ìê œ b Ý _ œ ψ = 0 ψ = 0 - Γ < 4ƒÎaU Ìê 3.6: 3.5 (circulation) ) W (z) = U (z + a2 i Γ z 2π ln z a (3.46) a Γ ( 0 )

51 (v θ ) r=a U Γ = 2 sin θ + Γ 2πaU = 0 (3.47) Γ = 4πaU sin θ (3.48) Γ (real number) 1 sin θ 1 0 Γ 4πaU (Γ < 0) (3.49) Γ (Γ 0) Γ > 0 Ψ Ψ Ψ Ψ 3.7: Γ = 4πaU θ = π/2 Γ < 4πaU ( 3.7 ) 3.46 z 0 ) dw (1 dz = U a2 z 2 i Γ 1 2π z = 0 (3.50)

52 46 3 z = i Γ 2π ± Γ2 4π + 4U 2 a 2 2 2U (3.51) (the Magnus effect) ϕ 3.46 ) ϕ = U (r + a2 cos θ + Γ r 2π θ (3.52) θ v θ = 1 r ϕ θ = 1 r { U ) (r + a2 sin θ + Γ } r 2π r = a (v θ ) r=a = 2U sin θ + Γ 2πa p p = 1 2 ρu ρ(v θ) 2 r=a = 1 ( [1 2 ρu 2 2 sin θ + Γ ) ] 2 2πaU (3.53) (3.54) (3.55) C p C p = p p ( (1/2)ρU 2 = 1 2 sin θ + Γ ) 2 (3.56) 2πaU () (lift)l (drag)d (Kutta- Joukovski theorem; (5.45) L = ρuγ, D = 0 (3.57) Γ Γ

53 α W z ze iα ln z/a 3.8: α α W = U (ze iα + a2 e iα ) i Γ z 2π ln z a (3.58) O z 0 W = U(z z 0 )e iα + U a2 e iα i Γ z z 0 2π ln z z 0 a (3.59)

54

55 49 4 (conformal mapping) z = f(ζ) (4.1) z ζ (4.1) z = x + iy, ζ = ξ + iη (4.2) x = x(ξ, η), y = y(ξ, η) (4.3) W (ζ) = ϕ + iψ ζ z η ~ ƒœ`ó y o ƒä ½ Ê ξ ÏŠ o ƒì ½ Ê x 4.1: 4.1 f (ζ) 0 ζ c 1 ζ = ζ 1 (s) = ξ 1 (s) + i η 1 (s) (4.4) s s

56 50 4 η 0 s S 0 t 1 œ ζ 0 ƒä ½ Ê C1 ξ ŽÊ œ ÏŠ y 0 t' 1 C' 1 œ z 0 Z ½ Ê x 4.2: ( dξ1 (s) t 1 =, dη ) 1(s) ds ds t 1 c 1 s s (4.5) dξ dη 2 1 = ds 2 (4.6) t 1 dζ 1 (s) ds = dξ 1(s) ds + i dη 1(s) ds = cos θ 1 (s) + i sin θ 1 (s) = e iθ 1(s) (4.7) θ 1 (s) ζ t 1 ξ (argument) ƒå t 1 ƒæ1 C1 ƒì 4.3: (argument) z z = f(ζ) (4.8) f ζ z z z = z 1 (s) = f(ζ 1 (s)) = x 1 (s) + i y 1 (s) (4.9)

57 s z C 1 ζ dz 1 (s) ds = dx 1(s) ds + i dy 1(s) ds z = f(ζ) ( ) dz 1 (s) df(ζ) = dζ 1 ds dζ ds = f (ζ 1 (s)) e iθ 1(s) ζ 1 (s) (4.10) (4.11) z = z 0 (4.11) (argument) { } dz1 (s) arg = arg {f (ζ 0 )} + θ 1 (s 0 ) (4.12) ds z=z 0 ζ θ 1 z arg {f (ζ 0 )} ζ ζ 0 C 2 C 1 { } dz2 (s) arg = arg {f (ζ 0 )} + θ 2 (s 0 ) (4.13) ds : () { } { } dz2 (s) dz1 (s) arg arg = θ 2 (s 0 ) θ 1 (s 0 ) (4.14) ds ds z (C 1 C 2) ζ (C 1 C 2 )

58 52 4 f (ζ 0 ) = f (ζ 0 ) ζ z z = f(ζ) = ζ + a2 ζ (4.15) a (Joukovski transformation) 4.15 z 2a (ζ a)2 = z + 2a (ζ + a) 2 (4.16) z = x + iy (z ), ζ = ξ + iη (ζ) (4.17) x = ξ + ζ (r, θ) ξa2 ξ 2 + η 2, y = η ηa2 ξ 2 + η 2 (4.18) ξ = r cos θ, η = r sin θ (4.19) z ζ ) ) x = cos θ (r + a2, y = sin θ (r a2 r r (4.20) () 4.15z = f(ζ) f (ζ) = 1 a2 ζ 2 = ζ2 a 2 ζ 2 (4.21) f (ζ) = 0 ζ = a, ζ = a (4.22) ()

59 h q x 4.5: Joukovski transformation ζ a ζ = ae iθ (4.23) z z = 2a cos θ (4.24) 2a 4a ζ 0 θ π P (θ) z P B A π θ 2π P z A B () A B (singular point) ζ (imaginary axis) O M(0, f) A( a, 0) B(a, 0)

60 54 4 r=b A œ (-a,0) η M œ f o β œ ƒä ½ Ê B (a,0) ξ A' œ (-2a,0) y 2f o D' O' z ½ Ê B' œ (2a,0) x 4.6: ζ z b a b = a 2 + f 2 = a = a sec β (4.25) cos β β B M BM (real axis; ξ ) ζ P (4.7) (inscribed angle) ζ a ζ ( a) = ζ a ζ + a = r 1e iϕ1 r 2 e = r 1 e i(ϕ1 ϕ2) (4.26) iϕ2 r 2 ϕ 1 ϕ 2 = ϕ = const (4.27) z 2a (ζ a)2 = z + 2a (ζ + a) 2 = ( r1 r 2 ) 2 e i2 ϕ (4.28) ζ = a z = 2a, ζ = a z = 2a (4.29)

61 ƒä ½ Ê A (-a,0) œ P (ƒä) œ r 2 r ϕ 1 ϕ 2 ϕ 1 œ B (a,0) z ½ Ê σ A' œ œ (-2a,0) (z) λ 2 σ 2 λ 1 œ p' σ 1 (2a,0) B' x 4.7: (4.7) z P σ = σ 1 σ z 2a z + 2a = λ 1e iσ1 λ 2 e iσ 2 = λ 1 λ 2 e i(σ 1 σ 2 ) = λ 1 λ 2 e i σ (4.30) λ 1 λ 2 = ( r1 r 2 ) 2, σ = 2 ϕ = const (4.31) P P A B (circular arc) ζ z (4.6) M (central angle) AMB = 2 ϕ z D A D B = 2 ϕ MOB D O B ( MOB D O B ) D O O B = MO OB D O = MO OB O B = f 2a = 2f (4.32) a o z circular arc 2f camber (camber ratio)γ γ = 2f 4a = 1 2 f a = 1 tan β (4.33) 2

62 56 4 r=b A œ (-a,0) η M œ 2ƒ ƒó fo œ ƒä ½ Ê B (a,0) ξ y D' z ½ Ê A' œ (-2a,0) 2f o 2ƒ ƒó O' B' œ (2a,0) x 4.8: β (thickness ratio) ζ M d B(a, 0) c c = a + d (4.34) d = ϵa, ϵ 1 (4.35) c c = a + ϵa = (1 + ϵ)a (4.36) P ζ = ϵa + ce iθ (4.37) z = ζ + a2 ζ = a 2 (ceiθ ϵa) + ce iθ ϵa (4.38)

63 ζ Lœ r=c η (-d,0) A œ œ (-a,0) M c o ƒ œ B (a,0) ξ y z L œ A' œ (-2a,0) o B' œ (2a,0) x 4.9: θ θ z (conjugate) z θ 0 (θ 0) x z zx (symmetric airfoil) chord lengthl l = 2a + z L (4.39) z L z L = ζ L + a2 = a(1 + 2ϵ) a ζ L 1 + 2ϵ ζ L = ϵa (1 + ϵ)a = (1 + 2ϵ)a 4.40 ϵ (4.40) z z L 2a(1 + 2ϵ 2 ) (4.41) dy dθ = 0 (4.42) ϵ θ = 2π/3(ζ ) z 1/4 t max t max = 3 3aϵ (4.43)

64 58 4 τ τ = t max l ϵ θ = 0 x = 2aϵ x = 0 t max x 0 3 : (4.43) t max = 3 3 ϵ 1.3ϵ (4.44) 4 t(x 0) 4aϵ (4.45) : ϵ η r=c A œ ƒä 0 (-a,0) œ N d f œ o M β B (a,0) œ ξ y A' œ (-2a,0) o B' œ (2a,0) x 4.10: (the second quadrant) BM N(ζ = ζ 0 ) N BN = c c c = a 2 + f 2 + d = MN = d (4.46) a + d = a sec β + d (4.47) cos β

65 P N ζ 0 ζ = ζ 0 + ce iθ (4.48) ζ 0 = a c cos β + ic sin β (4.49) z = ζ 0 + ce iθ + a 2 ζ 0 + ce iθ (4.50) f β d f d (trailing edge angle) 0 (camber line; cusp d/a 4.3 (trailing edge angle) 0 (Karman-Trefftz transformation) z na z + na = ( ) n ζ a (4.51) ζ + a n = 2 ζ a z na A( a, 0) B(a, 0) B A C u A B C l b b = a cos β (4.52) ζ B A P (4.11) ζ a = r 1 e iϕ1, ζ ( a) = ζ + a = r 2 e iϕ2 (4.53)

66 z A B (λ, σ) z na = λ 1 e iσ 1, z + na = λ 2 e iσ 2 (4.54) Cu A (-a,0) œ œ P r 2 r 1 ϕ 2 ϕ 1 œ B (a,0) A' œ œ (-na,0) Cu' λ 2 σ λ 2 1 œ p' σ 1 (na,0) B' x 4.11: 2 ( λ 1 λ 2 = ( r1 r 2 λ 1 e iσ1 λ 2 e iσ2 = ( ) n r1 e iϕ1 (4.55) r 2 e iϕ2 P ) n, σ 1 σ 2 = nϕ 1 nϕ 2 = n(ϕ 1 ϕ 2 ) (4.56) ϕ 1 ϕ 2 = const (4.57) 4.56 σ 1 σ 2 = const (4.58) z P A B C l C l 4.12 (ϕ 2 π) (ϕ 1 π) = ϕ 2 ϕ 1 = const (4.59) ϕ 2 ϕ ) σ 1 σ 2 = const (4.60)

67 ϕ 2 ϕ 1 Aœ (-a,0) r2 Cl ƒór1 œ P œ B (a,0) Cl' λ 2 ` λ 1 œ p' σ 1 σ œ 2 œ A' σ ` 2 (na,0) B' x σ 2 (-na,0) 4.12: 2 ( σ 2 2π σ 2 = σ 2 + 2π (4.61) σ 1 ( σ 2 + 2π) = const (4.62) σ 1 σ 2 = const (4.63) P z (double circular arc airfoil) π ϕ u + ϕ l = π (4.64) ϕ 2 ϕ 1 = (ϕ 2 π) (ϕ 1 π) = ϕ l (4.65) σ 1 σ 2 = n(ϕ 1 ϕ 2 ) = n ϕ l (4.66)

68 σ 2 σ σ 1 ( σ 2 + 2π) = n ϕ l (4.67) C u σ 1 σ 2 = 2π n ϕ l (4.68) ϕ 1 ϕ 2 = ϕ u (4.69) σ 1 σ 2 = n ϕ u (4.70) σ 1 σ 2 = 2π n ϕ l = 2π n (π ϕ u ) = 2π nπ + n ϕ u (4.71) (4.71) (4.70) n = 2 C u = C l 0) n : ϵ B σ 2 0 (σ 1 ) u = n ϕ u (4.72) B σ ϵ (σ 1 ) l = 2π n π + n ϕ u (4.73) ϵ = (σ 1 ) l (σ 1 ) u = (2π n π + n ϕ u ) n ϕ u = (2 n)π (4.74) n = 2 ϵ = 0 0 ϵ n 4.74 n = 2π ϵ π (4.75)

69 z 2π ϵ π a z + 2π ϵ π a = ( ) 2π ϵ ζ a π ζ + a (4.76) (Karman-Trefftz transformation) []

70

71 65 5 (force) (moment) 5.1 (F x, F y ) ( F x, F y ) (reaction) p p Fy Fx V=(u,v) p S p 5.1: control surfaces (momentum) x ρu(udy vdx) = pdy F x (5.1) S S y ρv(udy vdx) = pdx F y (5.2) S S ρ(udy vdx) (mass flow) x uy v

72 66 5 S S ds dx v u dy 5.2: F x F y F x = pdy ρu(udy vdx) (5.3) F y = pdx ρv(udy vdx) (5.4) p ρv 2 = p 0 (5.5) p (static pressure)v 2 = u 2 + v 2 p 0 (total pressure) (5.3) 5.4) 1 F x = 2 ρ( u2 + v 2 )dy + ρuvdx (5.6) 1 F y = 2 ρ(u2 v 2 )dx ρuvdy (5.7) x y p 0 dx = 0, p 0 dy = 0 (5.8) F x F y F x if y = i ρ [(u 2 v 2 ) i2uv]dz (5.9) 2 u, v dw dz = u iv, ( ) 2 dw = u 2 v 2 i2uv (5.10) dz

73 ) F x if y = i ρ 2 Γ ( ) 2 dw dz (5.11) dz (Blasius) (Blasius formula of force) W (z) Γ (dw/dz) 2 iρ/2 F (conjugate) F F F = F x if y = i ρ 2 ( ) 2 dw dz (5.12) dz x F x y F y δf x = pdy ρu(udy vdx) (5.13) δf y = pdx ρv(udy vdx) (5.14) 5.3: (pitching moment) δm (x 0, y 0 ) (pitch down) δm = (x x 0 )δf y (y y 0 )δf x (5.15)

74 M = (x x 0 )[pdx ρv(udy vdx)] (y y 0 )[ pdy ρu(udy vdx)] (5.16) p 5.5 M = 1 2 ρ [(u 2 v 2 ){(x x 0 )dx (y y 0 )dy} + 2uv{(y y 0 )dx + (x x 0 )dy}] (5.17) u, v W Blasius (5.11) z 0 = x 0 + iy 0 ( ) 2 dw (z z 0 )dz (5.18) dz ( ) 2 dw (z z 0 )dz = (u iv) 2 {x x 0 + i(y y 0 )}(dx + idy) (5.19) dz (real part, Re) { (dw ) 2 Re (z z 0 )dz} = {(u 2 v 2 )(x x 0 )+2uv(y y 0 )}dx { 2uv(x x 0 )+(u 2 v 2 )(y y 0 )}dy dz (5.20) (5.17) (5.17) (5.18) ) 2 (z z 0 )dz} M = 1 2 ρ Re { (dw dz (5.21) () (F x, F y ) (x, y) M = xf y yf x (5.22) F x if y i(f x if y )(x + iy) = xf y yf x + i(xf x + yf y ) (5.23) Re[i(F x if y )(x + iy)] = xf y yf x (5.24)

75 Re M F x if y Blasius [ M = Re i i ρ ( ) 2 dw zdz] 2 dz Γ (5.25) M = ρ 2 Re [ Γ ( ) 2 dw zdz] dz (5.26) z 0 M = ρ 2 Re [ Γ ( ) 2 dw (z z 0 )dz] dz (5.27) () δ M = {(x x 0 ) + i(y y 0 )} {δf x iδf y } (5.28) δ M = (x x 0 )δf x + (y y 0 )δf y + i { (x x 0 )δf y + (y y 0 )δf x } (5.29) 5.15 δm { δm = Im δ M } { = Re i δ M } (5.30) δf (5.12) δf x iδf y = i ρ 2 ( ) 2 dw dz (5.31) dz 5.3 ( dw/dz dw dz = a 0 + a 1 z + a 2 z 2 + a 3 z 3 + (5.32) () (Laurent expansion) (singular) f(z) a f(z) = n= c n (z a) n (5.33)

76 70 5 c n () c n = 1 f(ζ) dζ (5.34) 2πi c (ζ 1) n+1 (5.32) z a 0 a 0 = U e iα (5.35) Γ dw dz dz = (u iv)(dx + idy) = (udx + vdy) + i Γ (udy vdx) (5.36) 2 udy vdx = V nds = 0 (5.37) V = (u, v) n () Γ dw dz dz = (udx + vdy) = V d s = Γ (5.38) () udy vdx = V nds = V (d s k) k () () Residue Theorem5.32 dw dz dz = 2πia 1 (5.39) (a 1 dw/dz z = 0 ) a 1 2πia 1 = Γ a 1 = i Γ 2π (5.40) 5.32 Blasius F x if y = F e iβ = i ρ 2 ( ) 2 dw dz dz

77 = i ρ ( a 0 + a 1 2 z + a ) 2 2 z 2 + dz = 2πi(2a 0 a 1 ) ( = 2ρπU e iα i Γ ) 2π (5.41) F x if y = F e iβ = ρu Γe i(α+π/2) (5.42) Γ < 0 (Kutta-Joukovski) Kutta(Germany) 1902 JoukovskiRussia 1906 F β F = ρu Γ, β = α + π 2 (5.43) 5.4: F = ρu Γ (5.44) L D 0 ( L = ρu Γ, D = 0 (5.45) () lift (drag) d Alembert s paradox 5.32 a 0, a dw dz = U e iα i Γ 1 2π z (5.46) W = U e iα z i Γ ln z (5.47) 2π

78 : 1 (uniform flow) 2 (vortex) 1 (bound vortex)

79 stagantion point 2 6.1: adverse pressure gradient (conservation of angular momentum)

80 : z ζ z = ζ + a2 ζ a z = z(ζ) z u iv = dw dz = dw dζ dz dζ ζ (parameter) (6.1) (6.2) W (ζ) z = z(ζ), W = W (z) = W (z(ζ)) = W (ζ) (6.3) e iα W (ζ) = U(ζ ζ 0 )e iα + Ua 2 i Γ ζ ζ 0 2π ln ζ ζ 0 a (6.4) ζ 0 ζ 0 = 0 u iv = Ue iα Ua 2 e iα ζ i Γ 2 2πζ (6.5) 1 a2 ζ 2 ζ = a z z = 2a ( 0 (singularity) 0 ( Kutta, Kutta condition ) Ue iα Ue iα i Γ 2πa = 0 (6.6)

81 Γ Γ = 4πUa sin α (6.7) Γ (clockwise) 6.2 (trailing edge) (6.5) 0/0 (L Hôpital s rule) ζ 2Ue iα a 2 1 ζ + iγ 3 2π Γ (6.7) ζ a 1 ζ 2 2a 2 ζ 3 (6.8) u iv = U cos α (6.9) u = U cos α, v = 0 (6.10) U cos α 0 U α z=-2a u= U cos α z=2a 6.3: u = U cos(θ/2 α), x = 2a cos θ (6.11) cos(θ/2) 0 θ π π θ 2π C p = 1 cos2 (θ/2 α) cos 2, x = 2a cos θ (6.12) θ/2 ()

82 L = ρu Γ (6.13) Γ (6.7) L C L C L = sin α α L = 4πρU 2 a sin α (6.14) L 1 2 ρu (4a 2 1) = 2π sin α (6.15) C L 2πα (6.16) C Lα (6.15) α C Lα dc L dα = 2π cos α (6.17) α C Lα 2π (6.18) () C Lα (M < 1) C Lα = 2π 1 M 2 (6.19) (M > 1) C Lα = 4 M 2 1 (6.20) (M = 0)

83 z = 0 M = 2π n2 1 ρu 2 a 2 sin 2α (6.21) 3 n = 2 () (6.21) M = 2πρU 2 a 2 sin 2α (6.22) C M C M = M 1 2 ρu 2 (4a)(4a) = 1 4 π sin 2α (6.23) ( 4a U L z=-2a α M œ x L ½  z=2a α C 6.4: x L L cos α = M x L = a (6.24) x L C = 4a center of pressure x cp = 1 4 C (6.25) (C) 1/4 (1/4)C aerodynamic center (1/4)C

84 78 6 () α 0 0 (couple) () 6.5 (flat plate airfoil) (circular arc airfoil) (camber effect) ( z = ζ + a2 ζ (6.26) e iα w(ζ) = U(ζ ζ 0 )e iα + Ub 2 i Γ ζ ζ 0 2π ln ζ ζ 0 b (6.27) a b b a = b cos β (6.28) ( 4.25 ) ζ 0 f ζ 0 = if (6.29) ( 4.6 ) 6.5: Γ Γ = 4πbU sin(α + β) (6.30) L L = ρuγ = 4πbρU 2 sin(α + β) (6.31)

85 sin 4πaρU 2 b/a sin β 0 0 α = β (zero lift angle of attack) C L L C L = (1/2)ρU 2 (4a 1) sin(α + β) = 2π(b/a) sin(α + β) = 2π = 2π(sin α + cos α tan β) (6.32) cos β α 1 C L 2π(α + tan β) (6.33) α 1, β 1 (dc L /dα) C L 2π(α + β) (6.34) dc L dα = 2π b cos(α + β) = 2π(cos α sin α tan β) (6.35) a dc L 2π(1 α tan β) (6.36) dα α 1, β 1 dc L dα 2π(1 αβ) 2π (6.37) αβ ϵ 2 M() M = 2a 2 U 2 ρπ sin 2α + 4πρfbU 2 sin α sin(α + β) (6.38) 1 b = a sec β, f = a tan β M = 2a 2 U 2 ρπ sin 2α {1 tan β(tan α + tan β)} (6.39) (β > 0) C M C M = M sin 2α (1/2)ρU 2 = π (4a) π 2 fb sin α sin(α + β) (6.40) a2

86 80 6 x = 0 x L x L = M L cos α = 2a2 U 2 ρπ sin 2α {1 tan β(tan α + tan β)} 4πbρU 2 sin(α + β) cos α { } cos α sin β = a 1 {1 tan β(tan α + tan β)} (6.41) sin(α + β) x L a β = 0( b = a) x L = a x cp = C/4 () α 1, β 1

87 81 7 (thin airfoil theory) Φ = 2 Φ x Φ y 2 = 0 (7.1) V = Φ (7.2) V V = V + q 7.1: V (x, y) = V + q(x, y) (7.3) V q U(x, y) = V cos α + u(x, y), V (x, y) = V sin α + v(x, y) (7.4) α q = (u, v) q = ϕ, u(x, y) = ϕ x, ϕ v(x, y) = y (7.5) Φ = V + ϕ (7.6)

88 82 7 Φ = (xv cos α + yv sin α) + ϕ (7.7) 7.1 ϕ 2 ϕ = 2 ϕ x ϕ y 2 = 0 (7.8) 7.2 Φ F = 0 (7.9) F (x, y) = 0 (7.10) F Φ = V (7.11) 0 ( V + ϕ) F = 0 (7.12) ϕ 0 (7.13) 7.12 (V cos α + u) F x + (V sin α + v) F y = 0 (7.14) y = η u (x) :, y = η l (x) : (7.15) y = η(x) (7.16) (7.10) η(x) y = 0 (7.17) F = η(x) y (7.18)

89 (x, y) F F = 0 (7.19) F x y (7.18) F x = dη dx, F y = 1 (7.20) 7.14y v v = (V cos α + u) dη dx V sin α (7.21) α u U, v U (7.22) F x F y (7.23) V cos α V, V sin α V α (7.24) u F x = u dη dx 1 (7.25) v(x, η(x)) = V dη dx V α, 0 x l (7.26) () () y v(x, η(x)) x y = 0 ( ) v v(x, η(x)) = v(x, 0) + η(x) + (7.27) y x,0

90 84 7 v O(ϵ), η O(ϵ) 2 (ϵ 2 ) O(ϵ) v(x, η(x)) v(x, 0) (7.28) 7.26 v(x, 0) = V dη dx V α (7.29) v(x, +0) = V dη u dx V α () (7.30) v(x, 0) = V dη l dx V α () (7.31) 7.29 ϕ ϕ 1, ϕ 2 ( ) 2 ϕ1 dη ϕ 1 = 0; = V (7.32) y x,0 dx ( ) 2 ϕ2 ϕ 2 = 0; = V α (7.33) y A 0 2. B: α 1. A (mean camber function) (thickness function) x,0 η c = 1 2 (η u + η l ) (7.34) η t = 1 2 (η u η l ) (7.35) η u = η c + η t, η l = η c η t (7.36) ( ) ϕ1 y ( ) ϕ1 y x,+0 x, 0 ( dηc = V dx + dη ) t dx ( dηc = V dx dη t dx ) at y = +0 (7.37) at y = 0 (7.38)

91 ( ) ( ϕ1 dηc = V y x,±0 dx ± dη ) t dx (7.39) camber 0 3. α superimpose p p = p + ρ 2 V (1 2 V 2 ) V 2 (7.40) C p p p (1/2)ρV 2 (7.41) 7.40 V C p = 1 V 2 V 2 (7.42) V 2 = ( V + q) ( V + q) (7.43) V q V = (V cos α, V sin α), q = (u, v) (7.44)

92 86 7 α 7.43 V 2 ( V V ) 2 ( u = cos α + v ) ( ) 2 ( ) 2 u v sin α + + (7.45) V V V V cos α 1, sin α α, (7.46) (u 2 + v 2 )/V ( V V ) 2 ( u = v ) α u (7.47) V V V C p p = p ρv u (7.48) C p = p p (1/2)ρV 2 = 2 u V (7.49) C p u (superpose superimpose) ϕ = 0 (7.50) x v(x, ±0) = ϕ y (x, ±0) = ±V dη t dx for 0 x l (7.51) ϕ = 0 (7.52) y v(x, +0) = v(x, 0) (7.53)

93 x (ξ, 0) σ ξ = 0 ξ = l ϕ ϕ(x, y) = 1 2π y l 0 σ(ξ) ln[(x ξ) 2 + y 2 ] 1/2 dξ (7.54) φ(x,y) r œ P(x,y) σ(ξ) ( ξ,0 ) x ξ 7.2: x y u = ϕ/ x, v = ϕ/ y u(x, y) = 1 2π v(x, y) = 1 2π l 0 l 0 x ξ σ(ξ) (x ξ) 2 dξ (7.55) + y2 y σ(ξ) (x ξ) 2 dξ (7.56) + y2 σ σ(ξ) v [ ] 1 l y v(x, ±0) = lim σ(ξ) y ±0 2π (x ξ) 2 + y 2 dξ dη t = ±V dx 0 (7.57) ξ x 0 ξ = x ξ σ(ξ) )ξ = x 1 v = lim y ±0 2π x+ϵ x ϵ y σ(ξ) (x ξ) 2 dξ = ±σ(x) + y2 2 (7.58) σ(x) = 2v(x, +0) = 2V dη t dx (7.59)

94 ϕ(x, y) = V π u(x, y) = V π v(x, y) = V π l 0 l 0 l 0 dη t dx ln[(x ξ)2 + y 2 ] 1/2 dξ (7.60) dη t dx dη t dx x ξ (x ξ) 2 dξ (7.61) + y2 y (x ξ) 2 dξ (7.62) + y2 ()7.58 ξ = x A = x+ϵ x ϵ y σ(ξ) (x ξ) 2 + y B = x x ϵ (x ξ)/y = t x+ϵ dξ σ(x) 2 x ϵ y x (x ξ) 2 dξ = 2σ(x) + y2 x ϵ y (x ξ) 2 + y 2 dξ (7.63) y (x ξ) 2 + y 2 dξ = 1 x y y 2 dξ (7.64) x ϵ 1 + {(x ξ)/y} B = y y 2 0 ϵ/y y 1 + t 2 dt = tan 1 ϵ y A = 2σ(x) tan 1 ϵ y (7.65) (7.66) y 0 A = 2σ(x) π 2 = πσ(x) (7.67) lim y 0 () 1 2π l 0 y σ(x) σ(ξ) (x ξ) 2 dξ = + y2 2 (7.68) C p u(x, y) C p (x, y) = 2 (7.69) V C p (x, 0) = 2 u(x, 0) V (7.70)

95 l/2 œ œ ƒæx œ x=0 x=l/2 x=l x 7.3: 7.61u(x, 0) u(x, 0) = V π l ξ = x singularity u(x, 0) dη t /dx θ ϕ 0 dη t dx (ξ) 1 dξ (7.71) x ξ x = l 2 (1 + cos θ) ξ = l (1 + cos ϕ) (7.72) 2 0 θ π π θ 0 θ, ϕ x 7.71 x ξ = l 2 (cos θ cos ϕ), dξ = l sin ϕdϕ (7.73) 2 u(θ) = V π π 0 dη t dx (ϕ) sin ϕ dϕ (7.74) cos ϕ cos θ 7.74 (Poisson s integral formula) dη t /dx(θ) θ odd function θ A n A n = 2 π π 0 dη t dx (θ) = A n sin nθ (7.75) n=1 dη t (θ) sin nθdθ (n = 1, 2, ) (7.76) dx 7.74u(θ)/V conjugate Fourier series) u(θ) V = A n cos nθ (7.77) n=1

96 90 7 dƒå dx t ƒæ<0 0 ƒæ>0 ƒæ 7.4: [] [] u C p C p = 2u(θ) V = 2 A n cos nθ (7.78) C p θ cos θ n=1 R = 2m (cambered plate) 0 ϕ 2 ϕ = 0 (7.79) v(x, ±0) = ϕ y (x, ±0) = V dη c for 0 x l (7.80) dx ϕ = 0 for r (7.81) y = η c (x) 0 (7.80) Kutta condition u = ϕ/ x, v = ϕ/ y

97 y φ(x,y) r œ P(x,y) γ(ξ) ( ξ,0 ) x ξ 7.5: ϕ(x, y) = 1 2π l u(x, y) = ϕ x = 1 2π 0 γ(ξ) tan 1 l v(x, y) = ϕ y = 1 2π 0 l y dξ (7.82) x ξ y γ(ξ) (x ξ) 2 dξ (7.83) + y2 0 x ξ γ(ξ) (x ξ) 2 dξ (7.84) + y2 γγ C p u(x, ±0) u(x, ±0) C p (x, ±0) = 2 (7.85) V 1 u(x, ±0) = lim y ±0 2π l y γ(ξ) (x ξ) 2 dξ (7.86) + y2 u(x, ±0) = ± γ(x) 2 (7.87) C p (x, ±0) = γ(x) V (7.88)

98 L = l p C p L = ρ 2 V 2 0 l 0 [p(x, 0) p(x, +0)]dx (7.89) [C p (x, 0) C p (x, +0)]dx (7.90) (7.88) l L = ρv γ(x)dx (7.91) 0 (7.91) l 0 γ(x)dx = Γ (7.92) L = ρv Γ(x) (7.93) Γ circulation (7.91) C L = L (1/2)ρV S 2 = 2 1 V l l 0 γ(x)dx (7.94) S S = l 1 C L (7.90) C L = 1 l l 0 [C p (x, 0) C p (x, +0)]dx (7.95) M = l 0 = 1 2 ρv 2 [p(x, +0) p(x, 0)]xdx (7.96) l 0 (C p (x, +0) C p (x, 0))xdx (7.97) l = ρv γ(x)xdx (7.98) 0

99 C M = M (1/2)ρV Sl 2 = 2 1 V l 2 l 0 γ(x)xdx (7.99) S S = l 1 l C M 7.97 C M = 1 l l 2 [C p (x, +0) C p (x, 0)]xdx (7.100) γ(x) y v x l v(x, ±0) = lim y ±0 y ±0 [ 1 2π 1 2π l 0 l 0 ] x ξ γ(ξ) (x ξ) 2 + y 2 dξ 1 γ(ξ) x ξ dξ = V dη c dx = V dη c dx Cauchy (principal value) (7.101) (7.102) Kutta γ(x = l) = 0 (7.103) I = l 0 γ(ξ) dξ x ξ x θ ξ ϕ (7.104) x = l 2 (1 + cos θ), ξ = l (1 + cos ϕ) (7.105) 2 I = π 0 sin ϕ γ(ϕ) dϕ (7.106) cos ϕ cos θ

100 94 7 π 0 cos nϕ sin nθ dϕ = π cos ϕ cos θ sin θ (n = 0, 1, 2, ) (7.107) n = γ(θ) = K sin θ I θ ϕ 1 π π 0 π 0 γ(ϕ) 2V x θ dϕ cos ϕ cos θ = 0 (7.108) (7.109) sin ϕ cos ϕ cos θ dϕ = dη c (θ) (7.110) dx (7.110) γ/2v dη c /dx Cinjugate Fourier Series dη c /dx θ θ B n B n = 2 π dη c dx (θ) = B B n cos nθ (7.111) π dη c dx n=1 cos nθdθ (n = 0, 1, 2, ) (7.112) 1 π γ(ϕ) sin ϕ π 0 2V cos ϕ cos θ dϕ = B B n cos nθ (7.113) n= γ(θ) = γ 1 (θ) + γ 2 (θ) + γ 1 (θ) K sin θ (7.114) 1 π π 0 γ 1 (ϕ) 2V γ 2 (θ) sin ϕ cos ϕ cos θ dϕ = B n cos nθ (7.115) 1 1 π π 0 γ 2 (ϕ) 2V sin ϕ cos ϕ cos θ dϕ = B 0 2 (7.116)

101 γ 1 (θ) γ 1 (θ) = 2V n=1 B n sin nθ (7.117) γ 1 sin nθ π π 0 sin nϕ 2V sin ϕ dϕ (7.118) cos ϕ cos θ sin nϕ sin ϕ = 1 (cos(n + 1)ϕ cos(n 1)ϕ) (7.119) { 1 π cos(n + 1)ϕ 4πV cos ϕ cos θ dϕ 0 π 0 } cos(n 1)ϕ cos ϕ cos θ dϕ (7.120) { } 1 sin(n + 1)θ sin(n 1)θ π π 4πV sin θ sin θ 1 = {sin(n + 1)θ sin(n 1)θ} 4V sin θ 1 = {2 cos nθ sin θ} 4V sin θ cos nθ = (7.121) 2V γ V B n n n = 1 π cos ϕ cos ϕ cos θ dϕ = π or 1 π π 0 cos ϕ dϕ = 1 (7.122) cos ϕ cos θ γ(θ) γ(θ) = 2V 1 γ 2 (θ) = V B 0 cos θ sin θ B n sin nθ + V B 0 sin θ ( ) K + cos θ V B 0 (7.123) (7.124)

102 96 7 K γ(θ = 0) = 0 ( B 0 1 cos θ γ(θ) = 2V 2 sin θ K = V B 0 (7.125) + ) B n sin nθ n=1 (7.126) γ(θ)b n B n Cp [ ] C p (θ) = C p [x(θ), ±0] = γ(θ) B 0 1 cos θ = ±2 + B n sin nθ V 2 sin θ C L = 1 V π C M = 1 2V 0 π n=1 (7.127) γ(θ) sin θdθ (7.128) 0 γ(θ)(1 + cos θ) sin θdθ (7.129) C L = (B 0 + B 1 )π (7.130) π C M = B B π B π 2 4 = π 4 (B 0 + B 1 ) + π 4 (B 1 + B 2 ) (7.131) C M = C L 4 + π 4 (B 1 + B 2 ) (7.132) 1/4 B 1 + B 2 0 1/4C 2 π/4 (B 1 + B 2 ) C mac X ac = C/4 X cp X cp C = 1 4 π B 1 + B 2 = 1 ( 1 + B ) 1 + B 2 4 C L 4 B 0 + B 1 (7.133)

103 ϕ 2 ϕ = 0 (7.134) v(x, ±0) = ϕ y (x, ±0) = V α (0 x l) (7.135) ϕ = 0 at infinity (7.136) α y U sin α y 0 ϕ/ x ϕ/ y γ(x) v(x, ±0) = 1 2π l 0 γ(ξ) dξ x ξ = V α (7.137) γ(x = l) = 0 (7.138) θ ϕ x = l 2 (1 + cos θ), ξ = l (1 + cos ϕ) (7.139) 2 1 π π 0 π 0 sin ϕ γ(ϕ) cos ϕ cos θ dϕ = 2V α (7.140) γ(ϕ) 2V α sin ϕ dϕ = π (7.141) cos ϕ cos θ (7.107) γ(θ) = 2V α 1 (K + cos θ) (7.142) sin θ x = l(θ = 0) sin θ = 0 0 K = 1 (7.143) γ(θ = 0) = 0 γ(θ) = 2V α cos θ 1 sin θ (7.144)

104 98 7 C p C p (θ) = 2α 1 cos θ = 2α tan(θ/2) (7.145) sin θ 0 θ π C L = 1 V π C M = 1 2V 0 π γ(θ) sin θdθ = 2πα (7.146) 0 γ(θ)(1 + cos θ) sin θdθ = π 2 α = C L 4 (7.147) 1/4 (center of pressure) 0 α 0 (aerodynamic center) 0 C mac = 0 x cp x ac C l C mac C mac () x cp = x ac C mac C l (7.148) (aerodynamic center) (C L ) (C D ) C mac 0 trim () 7.7 dη ± dx = dη c dx ± dη t dx (7.149) θ ± dη dx (θ) = dη c dx (θ) ± dη t (θ) 0 θ π (7.150) dx dη dx (θ) = B B n cos nθ ± A n sin nθ (7.151) n=1 n=1

105 A n, B n A n = π 2 B n = π 2 π 0 π 0 dη (θ) sin nθdθ dx (n = 1, 2, ) (7.152) dη (θ) cos nθdθ dx (n = 0, 1, 2, ) (7.153) α [ ( C p = 2 α B ) ] 0 tan θ 2 2 B n sin nθ ± A n cos nθ n=1 n=1 (7.154) 0 θ π (lift slope) ( C L = 2πα (B 0 + B 1 )π = 2π α B ) 0 + B 1 2 dc L dα 1. A n (7.155) = 2π (7.156) α 0 = B 0 + B 1 2 (7.157) C M = [2πα (B 0 + B 1 )π] π 4 (B 1 + B 2 ) = C L 4 + π 4 (B 1 + B 2 ) (7.158) C L 1/4 1/4 C M = π 4 (B 1 + B 2 ) (7.159)

106 100 7 C M α dc M dα < 0 (7.160) 7.6 C M = 0 (α = α e ) α > α e C M < 0 α < α e C M > 0 7.6: C L α (7.160) δc L δα dc M dc L < 0 (7.161) : 3 (C Lα ) (C Lα = dc L /dα 2 C Lα = 2π 3 3 C Lα 2πAR C Lα = ( ) (7.162) (AR)2 β 2 η 1 + tan2 Λ max,t 2 β 2 AR β = 1 M 2 Λ max,t η η = C lα 2π/β (7.163)

107 C lα 2 η η = (lift slope)c Lα (aerodynamic derivatives) 3 β C nβ C nβ > 0 β C nβ < 0

108

109 rectangular wing tapered wingswept wing (delta wing) (sweep) 8.1: (MAC) Aspect Ratio AR = b2 (8.1) S S b spans = b c AR = b c c chord length (8.2)

110 104 8 ( 1) (Bombardier) Dash8(Q400) AR = 12.8B787 AR 10B AR = 9.45Cessna 172) AR = 7.3 B747 AR = 7 F15 AR = 3 AR = 1.8 ASW-19B AR = 20.4 () ( 2) (tail) () mean chord c = b AR (8.3) 8.2: (MAC) (MAC: Mean Aerodynamic Chord) ( 8.2 ) (rootchord : C r ) (tipchord) (C t ) A B AB C C (MAC) B747 MAC=8.3m ( 1) (C Lα ) (C Lmax ) ()

111 ( 2) (leading edge separation vortex) (vortex lift) () () (tail) (horizontal tail) (vertical tail) (stability) (control) (trim) () 8.2 (finite wing theory) Prandtl(1918) Γ Γ(±b/2) = 0 L Γ (y ) y = 0 Γ trailing vortex sheet Lanchester( ) trailing vortex sheet Prandtl Prandtl rolling up bound vortex sheet ( p = p u p l 0) free vortex sheet ( p = 0)

112 106 8 V ƒã Ê ƒ p 0 ƒ º Ê gq QƒV[ƒgã Ê ƒ p=0 gq QƒV[ƒg º Ê 8.3: a single bound vortex linelifting line lifting line theory V q q V V downwash velocity, w w R resultant velocity V R V R = V + w (8.4) 3 w y w = w(y) (8.5) V R = V R (y) = V w(y) k (8.6) k z x z

113 V y Γ (y) w(y) 8.4: (y = y) y) Γ(y) V V R Prandtl dy Kutta-Joukovski j y δ F (y) = ρ V R (y) jγ(y)dy (8.7) 2 V V R y Γ(y) = K(y)V R (y)α R (y) (8.8) V R α R (y) y = y V R (y) (zero lift line) K K(y) = 1 2 [ ] dcl (y) c(y) = 1 dα R 2 a 0(y)c(y) (8.9) c(y) (chord length)a 0 (y) (lift slope) Γ Γ = 4πUa sin α πucα = 1 2πUcα (8.10) 2 c = 4a C Lα = 2π Γ = 1 2 dc L Ucα (8.11) dα

114 108 8 α R (y) = α(y) α i (y) (8.12) α(y) : V α i (y) : V R V induced angle of attack w(y) V Prandtl 1 w(y) α i = tan (8.13) V α i = w(y) V (8.14) α R (y) = α(y) w(y) V (8.15) Γ(y) = 1 ( 2 a 0(y)c(y)V R (y) α w ) V (8.16) w(y) Γ(y) x η γdy x y w(y) = 1 4π b/2 b/2 γ(η) dη (8.17) η y 2 4 ( x ) (0 x ) γ(y) γ(y) = dγ dy Γ y dγ/dy < 0 (8.18) 8.17 w(y) = 1 4π b/2 b/2 (8.18) dγ(y) dy (η) 1 dη (8.19) y η w > 0 z w(y) Γ(y) Γ(y) w(y) 8.15α R (y) 11) [ Γ(y) = K(y)V R (y) α(y) 1 4πV b/2 b/2 ] dγ(y) dy (η) 1 y η dη (8.20)

115 w(y) V V R V [ Γ(y) K(y) V α(y) 1 ] b/2 dγ(y) 4π dy (η) 1 y η dη b/2 (8.21) 8.9 K(y) = 1 2 a 0(y)C(y) (8.22) 8.21Γ(y) Prandtl Γ(y) Γ(y) a 0 (y) α Γ Γ ( Γ b ) ( ) b = Γ = 0 (8.23) 2 2 Γ Γ (y) -b/2 b/2 y 8.5: 8.3 (aerodynamic force) 3 (Lift) (Drag) L V y D V 5 downwash V R F V R D i (induced drag) () (8.19) downwash winglet % winglet

116 110 8 δ L δf α i δd i V α i w V R 8.6: 5 7% () δy δl(y) = δf (y) cos α i δf (y) (8.24) δd i (y) = δf (y) sin α i δf (y)α i (y) α i δl(y) (8.25) α i cos α i 1, 8.7 sin α i α i δl(y) δf (y) = ρv R Γdy ρv Γdy (8.26) δd i (y) = α i δl = ρv α i Γdy = ρwγdy (8.27) b/2 L = ρv Γ(y)dy (8.28) D i = b/2 b/2 b/2 α i (y)δl(y) = ρv b/2 b/2 b/2 α i (y)γ(y)dy = ρ w(y)γ(y)dy (8.29) b/2 Γ(y) L D induced drag downwash

117 M = b/2 b/2 b/2 b/2 y j ( iδd i + kδl) = k yδd i + i yδl (8.30) b/2 b/2 x () rolling moment b/2 b/2 M R = yδl = ρv Γ(y)ydy (8.31) b/2 b/2 z yawing moment M y = b/2 b/2 b/2 yδdi = ρ w(y)γ(y)ydy (8.32) b/2 Γ(y) M R M y (8.31) M R > 0 (8.32) body axis coordinates (x, y, z) x (longitudinal axis) y (lateral axis) z vertical axis x y x y (pitching moment)z wind axis coordinates(x w, y w, z w ) x w z w y w x w z w 8.4 Γ(y) Γ(y) = Γ 0 1 (2y/b) 2 or Γ 2 (y) Γ y2 (b/2) 2 = 1 (8.33)

118 112 8 w 8.19 w(y) = Γ [ b/2 0 πb 2 1 b/2 ( ) ] 2 1/2 2η η dη (8.34) b y η η = y (singular) y = b 2 cos θ, η = b cos ϕ (8.35) 2 b/2 y b/2 θ = π w(θ) = Γ π 0 cos ϕ dϕ (8.36) 2πb 0 cos θ cos ϕ (7.107) π w w(y) = Γ 0 2b downwash α i = const. (8.37) w 8.27 D i δd i (y) = ρw(y)γ(y)dy = ργ 0 Γ(y)δy (8.38) 2b b/2 D i = ρ w(y)γ(y)dy = ργ b/2 0 Γ(y)dy (8.39) b/2 2b b/2 L (8.39) b/2 L = ρv Γ(y)dy (8.40) b/2 α i = w/v D i = Γ 0 2bV L (8.41) D i = α i L (8.42)

119 b/2 b/2 Γ(y)dy = πbγ 0 4 (8.43) (8.40) (8.41) L = π 4 ρv Γ 0 b (8.44) D i = L D i C L = C Di = L 2 (π/2)ρv 2 b 2 (8.45) b/2 L = ρv Γdy = π 4 ρv Γ 0 b (8.46) b/2 D i = w L = Γ 0 L = π V 2b V 8 ργ2 0 (8.47) L (1/2)ρV S 2 = π b 2 S D i (1/2)ρV S 2 = π 4S Γ 0 (8.48) V ) 2 = 1 S π b 2 C2 L = 1 CL 2 (8.49) π AR AR = b 2 /S S (plan form area of wing) B747 7B ( Γ0 C L C D polar diagram) V C L = πarc Di (8.50) C D = C D0 + C2 L πear (8.51) C D0 0 e Osswald efficiency factor 0.8 [] w w = Γ 0 2b (8.52)

120 114 8 L L = π 4 ρv Γ 0 b (8.53) Γ 0 w V = w = 4L 2πρV b 2 (8.54) w 4L = V 2πρV b 2 2 (8.55) L (1/2)ρV S 2 (1/2)ρV S πρV 2 b 2 (8.56) w S = C L V πb 2 = C L πar AR AR = b 2 /S (8.57) () D i = ρ 4π b/2 b/2 b/2 b/2 Γ(y) dγ dηdy dη y η = ρ b/2 b/2 Γ(y) 4π b/2 b/2 y θ θ dγ dη dη dy (8.58) y η y = b cos θ (8.59) 2 Γ(y) = U b n=1 A n sin nθ (8.60) η ϕ Γ(η) η = b cos ϕ (8.61) 2 Γ(η) = U b A n sin nϕ (8.62) n=1 dγ/dη dγ dη = dγ dγ dϕ dϕ dη = dϕ dη dϕ = U b n=1 A nn cos nϕ ( b/2) sin ϕ (8.63) dη = ( b/2) sin ϕdϕ, dy = ( b/2) sin θdθ, y η = (b/2)(cos θ cos ϕ) (8.64)

121 b/2 y b/2 π θ 0, b/2 η b/2 π ϕ 0 (8.65) 8.58 D i = ρu 2 b 2 4π π 0 A m sin mθ sin θ m=1 π 0 cos nϕ A n n dϕdθ (8.66) cos θ cos ϕ n=1 (7.107) π cos nϕ nθ dϕ = ( π)sin cos θ cos ϕ sin θ 0 (8.67) D i = ρu 2 b 2 4 n=1 na 2 n π 0 sin 2 nθdθ = πρu b 2 2 na 2 n (8.68) 8 n = n=1 Γ(y) = Γ 0 sin θ (8.69) n = 1 n 2 D i () GA(Genetic Algorithm) Γ Γ(y) = 1 2 a 0(y)C(y) [V α(y) w(y)] (8.70) C(y) a 0 (y) α(y) Γ(y) Γ(y) Γ(y) = Γ 0 1 (2y/b)2 = 1 2 a 0(y)C(y) [ V α(y) Γ ] 0 2b a 0 (y), C(y), α(y) (8.71) (geometrical angle of attack) a 0 (y), α(y)

122 C(y) Γ(y) C(y) = (1/2)a 0 (y) [V α(y) (Γ 0 /2b)] = Γ 0 1 (2y/b) 2 (1/2)a 0 (y) [V α(y) (Γ 0 /2b)] (8.72) C(y) = const Γ(y) (8.73) const Γ 0, V, α, b, a 0 untwisted) C(y) elliptic wing ( ( 35 40% (Hermann Glauert 1926) 8.6 (x = x w ) x : y z L D K.Kusunose K.Kusunose: A Wake Integration Method for Airplane Drag Prediction, Tohoku University Press, : (MAC)

123 L L = ρ U yξdydz ρ U (1 2 M ) 2 w u dydz (8.74) w w U U +M 2 γp w sdydz ρ M 2 w Hdydz + O( 3 ) (8.75) R U U w ρ, U y ξ x (ξ = w/ y v/ z) u = U U w s H L = ρ U yξdydz ρ U 2 w u dydz + O( 3 ) (8.76) U U w w w () D (y z ) D = w ψ s P R dydz + ρ w 2 ψξdydz P w 2 ( ) 2 s ψξdydz (8.77) R 2 ψ y ψ = ξ (8.78) z2 ξ x ( ω = rot v (8.77) 1 (profile drag) 2 (induced drag) 3

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

II ( ) (7/31) II (  [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re II 29 7 29-7-27 ( ) (7/31) II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I Euler Navier

More information

i

i 009 I 1 8 5 i 0 1 0.1..................................... 1 0.................................................. 1 0.3................................. 0.4........................................... 3

More information

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x n= n 2 = π2 6 3 2 28 + 4 + 9 + = π2 6 2 f(z) f(z) 2 f(z) = u(z) + iv(z) * f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x f x = i f y * u, v 3 3. 3 f(t) = u(t) + v(t) [, b] f(t)dt = u(t)dt

More information

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco post glacial rebound 3.1 Viscosity and Newtonian fluid f i = kx i σ ij e kl ideal fluid (1.9) irreversible process e ij u k strain rate tensor (3.1) v i u i / t e ij v F 23 D v D F v/d F v D F η v D (3.2)

More information

KENZOU

KENZOU KENZOU 2008 8 9 5 1 2 3 4 2 5 6 2 6.1......................................... 2 6.2......................................... 2 6.3......................................... 4 7 5 8 6 8.1.................................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

I

I I 6 4 10 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2) 3 215 4 27 1 1 u u(x, t) u tt a 2 u xx, a > (1) D : {(x, t) : x, t } u (, t), u (, t), t (2) u(x, ) f(x), u(x, ) t 2, x (3) u(x, t) X(x)T (t) u (1) 1 T (t) a 2 T (t) X (x) X(x) α (2) T (t) αa 2 T (t) (4)

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

215 11 13 1 2 1.1....................... 2 1.2.................... 2 1.3..................... 2 1.4...................... 3 1.5............... 3 1.6........................... 4 1.7.................. 4

More information

数学の基礎訓練I

数学の基礎訓練I I 9 6 13 1 1 1.1............... 1 1................ 1 1.3.................... 1.4............... 1.4.1.............. 1.4................. 3 1.4.3........... 3 1.4.4.. 3 1.5.......... 3 1.5.1..............

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

b3e2003.dvi

b3e2003.dvi 15 II 5 5.1 (1) p, q p = (x + 2y, xy, 1), q = (x 2 + 3y 2, xyz, ) (i) p rotq (ii) p gradq D (2) a, b rot(a b) div [11, p.75] (3) (i) f f grad f = 1 2 grad( f 2) (ii) f f gradf 1 2 grad ( f 2) rotf 5.2

More information

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) = 1 9 8 1 1 1 ; 1 11 16 C. H. Scholz, The Mechanics of Earthquakes and Faulting 1. 1.1 1.1.1 : - σ = σ t sin πr a λ dσ dr a = E a = π λ σ πr a t cos λ 1 r a/λ 1 cos 1 E: σ t = Eλ πa a λ E/π γ : λ/ 3 γ =

More information

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT I (008 4 0 de Broglie (de Broglie p λ k h Planck ( 6.63 0 34 Js p = h λ = k ( h π : Dirac k B Boltzmann (.38 0 3 J/K T U = 3 k BT ( = λ m k B T h m = 0.067m 0 m 0 = 9. 0 3 kg GaAs( a T = 300 K 3 fg 07345

More information

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b. 2009 7 9 1 2 2 2 3 6 4 9 5 14 6 18 7 23 8 25 9 26 10 29 11 32 12 35 A 37 1 B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t),

More information

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2 9 E B 9.1 9.1.1 Ampère Ampère Ampère s law B S µ 0 B ds = µ 0 j ds (9.1) S rot B = µ 0 j (9.2) S Ampère Biot-Savart oulomb Gauss Ampère rot B 0 Ampère µ 0 9.1 (a) (b) I B ds = µ 0 I. I 1 I 2 B ds = µ 0

More information

i 18 2H 2 + O 2 2H 2 + ( ) 3K

i 18 2H 2 + O 2 2H 2 + ( ) 3K i 18 2H 2 + O 2 2H 2 + ( ) 3K ii 1 1 1.1.................................. 1 1.2........................................ 3 1.3......................................... 3 1.4....................................

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d S I.. http://ayapin.film.s.dendai.ac.jp/~matuda /TeX/lecture.html PDF PS.................................... 3.3.................... 9.4................5.............. 3 5. Laplace................. 5....

More information

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α 2 ), ϕ(t) = B 1 cos(ω 1 t + α 1 ) + B 2 cos(ω 2 t

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

20 4 20 i 1 1 1.1............................ 1 1.2............................ 4 2 11 2.1................... 11 2.2......................... 11 2.3....................... 19 3 25 3.1.............................

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 4 1 1.1 ( ) 5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1 da n i n da n i n + 3 A ni n n=1 3 n=1

More information

Preface) compressible fluid dynamics) ) density) Reynolds number; ) Mach number) 0.3 5% 5% 300km M = km M = 0.41 M = shock wave) 0 wave

Preface) compressible fluid dynamics) ) density) Reynolds number; ) Mach number) 0.3 5% 5% 300km M = km M = 0.41 M = shock wave) 0 wave Compressible Fluid Dynamics Yoshiaki NAKAMURA Professor of Chubu University Emeritus Professor of Nagoya University 014 4 April, 014 Preface) compressible fluid dynamics) ) density) Reynolds number; )

More information

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb r 1 r 2 r 1 r 2 2 Coulomb Gauss Coulomb 2.1 Coulomb 1 2 r 1 r 2 1 2 F 12 2 1 F 21 F 12 = F 21 = 1 4πε 0 1 2 r 1 r 2 2 r 1 r 2 r 1 r 2 (2.1) Coulomb ε 0 = 107 4πc 2 =8.854 187 817 10 12 C 2 N 1 m 2 (2.2)

More information

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 (

36 3 D f(z) D z f(z) z Taylor z D C f(z) z C C f (z) C f(z) f (z) f(z) D C D D z C C 3.: f(z) 3. f (z) f 2 (z) D D D D D f (z) f 2 (z) D D f (z) f 2 ( 3 3. D f(z) D D D D D D D D f(z) D f (z) f (z) f(z) D (i) (ii) (iii) f(z) = ( ) n z n = z + z 2 z 3 + n= z < z < z > f (z) = e t(+z) dt Re z> Re z> [ ] f (z) = e t(+z) = (Rez> ) +z +z t= z < f(z) Taylor

More information

2019 1 5 0 3 1 4 1.1.................... 4 1.1.1......................... 4 1.1.2........................ 5 1.1.3................... 5 1.1.4........................ 6 1.1.5......................... 6 1.2..........................

More information

KENZOU Karman) x

KENZOU Karman) x KENZO 8 8 31 8 1 3 4 5 6 Karman) 7 3 8 x 8 1 1.1.............................. 3 1............................................. 5 1.3................................... 5 1.4 /.........................

More information

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d A 2. x F (t) =f sin ωt x(0) = ẋ(0) = 0 ω θ sin θ θ 3! θ3 v = f mω cos ωt x = f mω (t sin ωt) ω t 0 = f ( cos ωt) mω x ma2-2 t ω x f (t mω ω (ωt ) 6 (ωt)3 = f 6m ωt3 2.2 u ( v w) = v ( w u) = w ( u v) ma22-9

More information

21 2 26 i 1 1 1.1............................ 1 1.2............................ 3 2 9 2.1................... 9 2.2.......... 9 2.3................... 11 2.4....................... 12 3 15 3.1..........

More information

第1章 微分方程式と近似解法

第1章 微分方程式と近似解法 April 12, 2018 1 / 52 1.1 ( ) 2 / 52 1.2 1.1 1.1: 3 / 52 1.3 Poisson Poisson Poisson 1 d {2, 3} 4 / 52 1 1.3.1 1 u,b b(t,x) u(t,x) x=0 1.1: 1 a x=l 1.1 1 (0, t T ) (0, l) 1 a b : (0, t T ) (0, l) R, u

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

untitled

untitled 20010916 22;1017;23;20020108;15;20; 1 N = {1, 2, } Z + = {0, 1, 2, } Z = {0, ±1, ±2, } Q = { p p Z, q N} R = { lim a q n n a n Q, n N; sup a n < } R + = {x R x 0} n = {a + b 1 a, b R} u, v 1 R 2 2 R 3

More information

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat / Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiation and the Continuing Failure of the Bilinear Formalism,

More information

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z B 4 24 7 9 ( ) :,..,,.,. 4 4. f(z): D C: D a C, 2πi C f(z) dz = f(a). z a a C, ( ). (ii), a D, a U a,r D f. f(z) = A n (z a) n, z U a,r, n= A n := 2πi C f(ζ) dζ, n =,,..., (ζ a) n+, C a D. (iii) U a,r

More information

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977

More information

構造と連続体の力学基礎

構造と連続体の力学基礎 II 37 Wabash Avenue Bridge, Illinois 州 Winnipeg にある歩道橋 Esplanade Riel 橋6 6 斜張橋である必要は多分無いと思われる すぐ横に道路用桁橋有り しかも塔基部のレストランは 8 年には営業していなかった 9 9. 9.. () 97 [3] [5] k 9. m w(t) f (t) = f (t) + mg k w(t) Newton

More information

Z: Q: R: C: 3. Green Cauchy

Z: Q: R: C: 3. Green Cauchy 7 Z: Q: R: C: 3. Green.............................. 3.............................. 5.3................................. 6.4 Cauchy..................... 6.5 Taylor..........................6...............................

More information

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2 No.2 1 2 2 δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i δx j (5) δs 2 = δx i δx i + 2 u i δx i δx j = δs 2 + 2s ij δx i δx j

More information

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou (Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fourier) (Fourier Bessel).. V ρ(x, y, z) V = 4πGρ G :.

More information

II 2 II

II 2 II II 2 II 2005 yugami@cc.utsunomiya-u.ac.jp 2005 4 1 1 2 5 2.1.................................... 5 2.2................................. 6 2.3............................. 6 2.4.................................

More information

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt S I. x yx y y, y,. F x, y, y, y,, y n http://ayapin.film.s.dendai.ac.jp/~matuda n /TeX/lecture.html PDF PS yx.................................... 3.3.................... 9.4................5..............

More information

( 12 ( ( ( ( Levi-Civita grad div rot ( ( = 4 : 6 3 1 1.1 f(x n f (n (x, d n f(x (1.1 dxn f (2 (x f (x 1.1 f(x = e x f (n (x = e x d dx (fg = f g + fg (1.2 d dx d 2 dx (fg = f g + 2f g + fg 2... d n n

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy f f x, y, u, v, r, θ r > = x + iy, f = u + iv C γ D f f D f f, Rm,. = x + iy = re iθ = r cos θ + i sin θ = x iy = re iθ = r cos θ i sin θ x = + = Re, y = = Im i r = = = x + y θ = arg = arctan y x e i =

More information

第5章 偏微分方程式の境界値問題

第5章 偏微分方程式の境界値問題 October 5, 2018 1 / 113 4 ( ) 2 / 113 Poisson 5.1 Poisson ( A.7.1) Poisson Poisson 1 (A.6 ) Γ p p N u D Γ D b 5.1.1: = Γ D Γ N 3 / 113 Poisson 5.1.1 d {2, 3} Lipschitz (A.5 ) Γ D Γ N = \ Γ D Γ p Γ N Γ

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0 79 4 4.1 4.1.1 x i (t) x j (t) O O r 0 + r r r 0 x i (0) r 0 x i (0) 4.1 L. van. Hove 1954 space-time correlation function V N 4.1 ρ 0 = N/V i t 80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t

More information

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x ( II (1 4 ) 1. p.13 1 (x, y) (a, b) ε(x, y; a, b) f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a x a A = f x (a, b) y x 3 3y 3 (x, y) (, ) f (x, y) = x + y (x, y) = (, )

More information

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n 003...............................3 Debye................. 3.4................ 3 3 3 3. Larmor Cyclotron... 3 3................ 4 3.3.......... 4 3.3............ 4 3.3...... 4 3.3.3............ 5 3.4.........

More information

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,,

2 R U, U Hausdorff, R. R. S R = (S, A) (closed), (open). (complete projective smooth algebraic curve) (cf. 2). 1., ( ).,. countable ( 2 ) ,,.,, 15, pp.1-13 1 1.1,. 1.1. C ( ) f = u + iv, (, u, v f ). 1 1. f f x = i f x u x = v y, u y = v x.., u, v u = v = 0 (, f = 2 f x + 2 f )., 2 y2 u = 0. u, u. 1,. 1.2. S, A S. (i) A φ S U φ C. (ii) φ A U φ

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

2007 5 iii 1 1 1.1.................... 1 2 5 2.1 (shear stress) (shear strain)...... 5 2.1.1...................... 6 2.1.2.................... 6 2.2....................... 7 2.2.1........................

More information

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 第 3 版 1 刷発行時のものです. 最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/052093 このサンプルページの内容は, 第 3 版 1 刷発行時のものです. i 3 10 3 2000 2007 26 8 2 SI SI 20 1996 2000 SI 15 3 ii 1 56 6

More information

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0 0 < t < τ I II 0 No.2 2 C x y x y > 0 x 0 x > b a dx

More information

Email: kawahiraamath.titech.ac.jp (A=@) 27 2 25 . 2. 3. 4. 5. 3 4 5 ii 5 50 () : (2) R: (3) Q: (4) Z: (5) N: (6) : () α: (2) β: (3) γ, Γ: (4) δ, : (5) ϵ: (6) ζ: (7) η: (8) θ, Θ: (9) ι: (0) κ: () λ, Λ:

More information

量子力学 問題

量子力学 問題 3 : 203 : 0. H = 0 0 2 6 0 () = 6, 2 = 2, 3 = 3 3 H 6 2 3 ϵ,2,3 (2) ψ = (, 2, 3 ) ψ Hψ H (3) P i = i i P P 2 = P 2 P 3 = P 3 P = O, P 2 i = P i (4) P + P 2 + P 3 = E 3 (5) i ϵ ip i H 0 0 (6) R = 0 0 [H,

More information

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq 49 2 I II 2.1 3 e e = 1.602 10 19 A s (2.1 50 2 I SI MKSA 2.1.1 r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = 3 10 8 m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq F = k r

More information

KENZOU

KENZOU KENZOU 2008 8 2 3 2 3 2 2 4 2 4............................................... 2 4.2............................... 3 4.2........................................... 4 4.3..............................

More information

『共形場理論』

『共形場理論』 T (z) SL(2, C) T (z) SU(2) S 1 /Z 2 SU(2) (ŜU(2) k ŜU(2) 1)/ŜU(2) k+1 ŜU(2)/Û(1) G H N =1 N =1 N =1 N =1 N =2 N =2 N =2 N =2 ĉ>1 N =2 N =2 N =4 N =4 1 2 2 z=x 1 +ix 2 z f(z) f(z) 1 1 4 4 N =4 1 = = 1.3

More information

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 74 Re, bondar laer (Prandtl) Re z ω z = x (5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b) (5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V

More information

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4 35-8585 7 8 1 I I 1 1.1 6kg 1m P σ σ P 1 l l λ λ l 1.m 1 6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m

More information

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4 1. k λ ν ω T v p v g k = π λ ω = πν = π T v p = λν = ω k v g = dω dk 1) ) 3) 4). p = hk = h λ 5) E = hν = hω 6) h = h π 7) h =6.6618 1 34 J sec) hc=197.3 MeV fm = 197.3 kev pm= 197.3 ev nm = 1.97 1 3 ev

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

ψ(, v = u + v = (5.1 u = ψ, v = ψ (5.2 ψ 2 P P F ig.23 ds d d n P flow v : d/ds = (d/ds, d/ds 9 n=(d/ds, d/ds ds 2 = d 2 d v n P ψ( ψ

ψ(, v = u + v = (5.1 u = ψ, v = ψ (5.2 ψ 2 P P F ig.23 ds d d n P flow v : d/ds = (d/ds, d/ds 9 n=(d/ds, d/ds ds 2 = d 2 d v n P ψ( ψ KENZOU 28 8 9 9/6 4 1 2 3 4 2 2 5 2 2 5.1............................................. 2 5.2......................................... 3 5.2.1........................................ 3 5.2.2...............................

More information

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z I 1 m 2 l k 2 x = 0 x 1 x 1 2 x 2 g x x 2 x 1 m k m 1-1. L x 1, x 2, ẋ 1, ẋ 2 ẋ 1 x = 0 1-2. 2 Q = x 1 + x 2 2 q = x 2 x 1 l L Q, q, Q, q M = 2m µ = m 2 1-3. Q q 1-4. 2 x 2 = h 1 x 1 t = 0 2 1 t x 1 (t)

More information

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r 2 1 (7a)(7b) λ i( w w ) + [ w + w ] 1 + w w l 2 0 Re(γ) α (7a)(7b) 2 γ 0, ( w) 2 1, w 1 γ (1) l µ, λ j γ l 2 0 Re(γ) α, λ w + w i( w w ) 1 + w w γ γ 1 w 1 r [x2 + y 2 + z 2 ] 1/2 ( w) 2 x2 + y 2 + z 2

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

30

30 3 ............................................2 2...........................................2....................................2.2...................................2.3..............................

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

Z: Q: R: C: sin 6 5 ζ a, b

Z: Q: R: C: sin 6 5 ζ a, b Z: Q: R: C: 3 3 7 4 sin 6 5 ζ 9 6 6............................... 6............................... 6.3......................... 4 7 6 8 8 9 3 33 a, b a bc c b a a b 5 3 5 3 5 5 3 a a a a p > p p p, 3,

More information

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5. A 1. Boltzmann Planck u(ν, T )dν = 8πh ν 3 c 3 kt 1 dν h 6.63 10 34 J s Planck k 1.38 10 23 J K 1 Boltzmann u(ν, T ) T ν e hν c = 3 10 8 m s 1 2. Planck λ = c/ν Rayleigh-Jeans u(ν, T )dν = 8πν2 kt dν c

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, 変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy, z + dz) Q! (x + d x + u + du, y + dy + v + dv, z +

More information

Morse ( ) 2014

Morse ( ) 2014 Morse ( ) 2014 1 1 Morse 1 1.1 Morse................................ 1 1.2 Morse.............................. 7 2 12 2.1....................... 12 2.2.................. 13 2.3 Smale..............................

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

: 1g99p038-8

: 1g99p038-8 16 17 : 1g99p038-8 1 3 1.1....................................... 4 1................................... 5 1.3.................................. 5 6.1..................................... 7....................................

More information

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) ( 6 20 ( ) sin, cos, tan sin, cos, tan, arcsin, arccos, arctan. π 2 sin π 2, 0 cos π, π 2 < tan < π 2 () ( 2 2 lim 2 ( 2 ) ) 2 = 3 sin (2) lim 5 0 = 2 2 0 0 2 2 3 3 4 5 5 2 5 6 3 5 7 4 5 8 4 9 3 4 a 3 b

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

25 7 18 1 1 1.1 v.s............................. 1 1.1.1.................................. 1 1.1.2................................. 1 1.1.3.................................. 3 1.2................... 3

More information

note1.dvi

note1.dvi (1) 1996 11 7 1 (1) 1. 1 dx dy d x τ xx x x, stress x + dx x τ xx x+dx dyd x x τ xx x dyd y τ xx x τ xx x+dx d dx y x dy 1. dx dy d x τ xy x τ x ρdxdyd x dx dy d ρdxdyd u x t = τ xx x+dx dyd τ xx x dyd

More information

, ( ) 2 (312), 3 (402) Cardano

, ( ) 2 (312), 3 (402) Cardano 214 9 21, 215 4 21 ( ) 2 (312), 3 (42) 5.1.......... 5.2......................................... 6.2.1 Cardano................................... 6.2.2 Bombelli................................... 6.2.3

More information

t (x(t), y(t)), a t b (x(a), y(a)) t ( ) ( ) dy s + dt dt dt [a, b] a a t < t 1 < < t n b {(x(t i ), y(t i ))} n i ( s(t) ds ) ( ) dy dt + dt dt ( ) d

t (x(t), y(t)), a t b (x(a), y(a)) t ( ) ( ) dy s + dt dt dt [a, b] a a t < t 1 < < t n b {(x(t i ), y(t i ))} n i ( s(t) ds ) ( ) dy dt + dt dt ( ) d 1 13 Fall Semester N. Yamada Version:13.9.3 Chapter. Preliminalies (1 3) Chapter 1. (4 16) Chapter. (17 9) Chapter 3. (3 49) Chapter 4. (5 63) Chapter 5. (64 7) Chapter 6. (71 8) 11, ISBN 978-4-535-618-4.

More information

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =, [ ] IC. r, θ r, θ π, y y = 3 3 = r cos θ r sin θ D D = {, y ; y }, y D r, θ ep y yddy D D 9 s96. d y dt + 3dy + y = cos t dt t = y = e π + e π +. t = π y =.9 s6.3 d y d + dy d + y = y =, dy d = 3 a, b

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

2

2 p1 i 2 = 1 i 2 x, y x + iy 2 (x + iy) + (γ + iδ) = (x + γ) + i(y + δ) (x + iy)(γ + iδ) = (xγ yδ) + i(xδ + yγ) i 2 = 1 γ + iδ 0 x + iy γ + iδ xγ + yδ xδ = γ 2 + iyγ + δ2 γ 2 + δ 2 p7 = x 2 +y 2 z z p13

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

(yx4) 1887-1945 741936 50 1995 1 31 http://kenboushoten.web.fc.com/ OCR TeX 50 yx4 e-mail: yx4.aydx5@gmail.com i Jacobi 1751 1 3 Euler Fagnano 187 9 0 Abel iii 1 1...................................

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a =

simx simxdx, cosxdx, sixdx 6.3 px m m + pxfxdx = pxf x p xf xdx = pxf x p xf x + p xf xdx 7.4 a m.5 fx simxdx 8 fx fx simxdx = πb m 9 a fxdx = πa a = II 6 ishimori@phys.titech.ac.jp 6.. 5.4.. f Rx = f Lx = fx fx + lim = lim x x + x x f c = f x + x < c < x x x + lim x x fx fx x x = lim x x f c = f x x < c < x cosmx cosxdx = {cosm x + cosm + x} dx = [

More information

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x 2009 9 6 16 7 1 7.1 1 1 1 9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x(cos y y sin y) y dy 1 sin

More information

液晶の物理1:連続体理論(弾性,粘性)

液晶の物理1:連続体理論(弾性,粘性) The Physics of Liquid Crystals P. G. de Gennes and J. Prost (Oxford University Press, 1993) Liquid crystals are beautiful and mysterious; I am fond of them for both reasons. My hope is that some readers

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information