C++ TPDPL(Template Parallel Distributed Processing Library) C X10 1) Place Activity X10 Place 2) 2.2 C++ C/C++OpenMP MPI C/C++ OpenMP
|
|
|
- おきみち なかきむら
- 7 years ago
- Views:
Transcription
1 C CPU S.C. () PC C++ TPDPL(Template Parallel Distributed Processing Library) PE(Processing Element ) S.C.(T2K ) An Implementation of C++ Task Mapping Library and Evaluation on Heterogeneous Environments Takeo YAMASAKI, 1 Daisuke MIYAMOTO 2 and Masaya NAKAYAMA 2 Modern computing architectures are increasingly parallel distributed. This trend is driven by multi-core processors, grid, cluster and cloud-computing. These systems are complicated because of their scale, heterogeneous structures, and asymmetric architectures. Therefore, more productive paradigm that assists development of parallel distributed processing applications is required and has been considered. In this paper we pay attention to task mapping paradigm, and design C++ parallel distributed programing library, TPDPL (Template Parallel Distributed Processing Library), and develop PE (Processing Element) Containers and task mapping algorithms. Finally we report the performance evaluation of them on T2K open supercomputer and private cluster computer and cloud computer and we confirm the performance of TPDPL task mapping system Graduate School of Engineering, The University of Tokyo 2 Information Technology Center, The University of Tokyo FPGA GPU C GPU C++ C++ OpenMP MPI CORBA C++ C++11 C++ 15
2 C++ TPDPL(Template Parallel Distributed Processing Library) C X10 1) Place Activity X10 Place 2) 2.2 C++ C/C++OpenMP MPI C/C++ OpenMP (Omni OpenMP/S- CASH 3),XcalableMP 4) ) MPI (Grid MPI 5) ) (MPC++ 6) ) TBB 7) 8) 9) 2.3 C++11 C++ 10) thread future promiss async mutex condition variabl atomic operation 3. X10 Place Activity PE (processing element) PE 12) MPC++ PE PE PE, thread pe TCP MPI PE tcp pe mpi pe GPU FPGA PE PE PE 16
3 STL(Standard Template Library) C++ ( 1) STL PE STL vector list PE PE PE PE PE 11)12) PE PE PE PE for 3.1 PE PE PE PE PE PE pe vector PE thread pp, mpi pp, tcp pp PE hetero PE.1 pe vector 1 STL TPDPL std::vector PE talloc join set join set PE id 1 : pe vector 1 int add(int a, int b){ return a+b; } 2 void test(){ 3 // thread pe 4 4 pe vector<thread pe> pevec(4); 5 join set js; 6 for(int i=0; i<4; i++){ 7 js += pevec[i].talloc(add, 1, i); 8 } 9 js.join all(); 10 } PE.2 PE pe vector thread pp CPUID CPU full assign mpi pp MPI CPU thread pe PE 17
4 12 mpi pe slave() tcp pp tcp pe set pe thread pe (23 ) tcp pe full assign assign (10 ) 2 : PE 1 void test(){ 2 // thread pe 3 thread pp tpp; 4 tpp.full assign(); 5 // mpi pe 6 mpi pp mpp; 7 mpp.full assign(); 8 // tcp pe 9 tcp pp spp; 10 spp.assign(64); 11 } 12 void mpi pe slave(){ 13 // MPI 0 14 mpi pe singleton::start server(); 15 while(mpi pe singleton::is server working()){ 16 Sleep(10); 17 } 18 } 19 void tcp pe slave(){ 20 // 21 network tools::init sock(); int port = 50000; 24 tcp pe mta(" ", port); 25 thread pp tpp; 26 tpp.full assign(); 27 for(uint32 t i=0; i<4; i++){ 28 mta.talloc(&tcp pe singleton::set pe, 29 (void )&tpp.at(i)); 30 } 31 mta.talloc(set pes, inst); 32 while(tcp pe singleton::is server working()){ 33 Sleep(10); 34 } 35 } : 1 void test(){ 2 hetero<thread pp, mpi pp, tcp pp> pec; 3 // thread pe CPU 4 pec.get pec0().full assign(); 5 // mpi pe CPU 6 pec.get pec1().full assing(); 7 // tcp pe 64PE 8 pec.get pec2().assign(64); 9 pec.reflush(); hetero<thread pp, mpi pp, tcp pp>::iterator it; 12 for(it=pec.begin(); it!=pec.end(); it++){ 13 it.talloc(/ task /); 14 } 15 pec.join all(); 16 } PE hetero PE.3 PE get pecn N 4 get pec0 thread pp 6 get pec1 mpi pp 8 get pec2 tcp pp PE 12 for begin() end() PE PE thread pp mpi pp tcp pp 3.2 PE PE PE PE PE PE for PE PE 3 PE even CPU clock for 1 test.4 for xxx PE PE talloc 4 : 1 void test(){ 2 thread pp pec; 3 { 4 reducer<int> ret; 5 ret += for even(pec).talloc(load, 1, 10000); 6 ret.jreduce(); // join & reduce 7 } 8 { 9 reducer<int> ret; 10 ret += for clock(pec).talloc(load, 1, 10000); 18
5 11 ret.jreduce(); 12 } 13 { 14 reducer<int> ret; 15 ret += for test(pec).talloc(load, 1, 10000); 16 ret.jreduce(); 17 } 18 } 4. Task Mapping PE 4.1 S.C. HaaS (StarBED 13) ) S.C. T2K Open Supercomputer( ) HA8000 CPU AMD Opteron GHz 4 1 4CPU 4 OS RedHat Enterprise Linux 5, gcc version 4.1.2, MPI ver.1.2 MPICH-MX CPU Intel Xeon W GHz 4 2 OS ubuntu10.04lts, gcc version 4.4.3, MPI MPICH2 StarBED Intel Xeon X GHz 6 2CPU 5 OS Debian gcc PE 128 PE node0 thread pe 4 node1 mpi pe 4 S.C. tcp pe 60 StarBED tcp pe 60 PE S.C. 64 PE 64 tcp pe mpi pe PE StarBED CPU CPU PE OS PE.6 hetero thread pp mpi pp tcp pp2 S.C. TCP file pe NFS node0 tcp pe 1.25GB/s 7.5GB/s StarBED tcp pe JGN-X 14) StarBED 1Gb/s 1Gb/s 2 S.C. StarBED S.C. WAN NFS 5 : PE 1 hetero<thread pp, mpi pp, tcp pp, tcp pp> pec; 2 // thread pe pool CPU (4PE) 3 pec.pec0.full assign(); 4 // mpi pe CPU (4PE) 5 pec.pec1.full assing(); 6 // S.C. 60PE 7 pec.pec2.assign(60); 8 // StarBED 60PE 9 for(int i=0; i<60; i++){ 10 pec.pec2.assign(ip[i], port[i]); 11 } 2 PE 19
6 4.2 (.6) int load int double load double load for 6 : 1 uint64 t load int(int64 t start, int64 t end){ 2 uint64 t a=0; 3 for(uint32 t i=start; i<=end; i++) 4 for(uint32 t j=0; j<=1000; j++) 5 a += (uint64 t)(i+j) (i j) (i j) (i/j); 6 return a; 7 } 8 uint64 t load double(int64 t start, int64 t end){ 9 uint64 t a=0; 10 for(uint32 t i=start; i<=end; i++) 11 for(uint32 t j=0; j<=1000; j++){ 12 double ii=(double)i,jj=(double)j; 13 a += ((jj/ii) (ii jj)/(ii jj) (ii/jj); 14 } 15 return a; 16 } even,clock,test even /68 clock PE */( ) test / /( ) even clock CPU PE CPU test 1 for 3 even,clock,test load int load int node0 node1 S.C. StarBED even 1 S.C. clock CPU test 4 load double double even clock S.C. test test 5 test PE for 1 PE 4 node0 4 node1 60 S.C. 60 StarBED node0 S.C. S.C. 20
7 test PE PE 4 even,clock,test load double StarBED StarBED 5 load double test load double even PE load CPU 5. C++ (TPDPL) S.C. 1) Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, David Grov: Report on the Programming Language X10 version 2.1, documentation/languagespec/x10-latest.pdf (2011) 2) Yonghong Yan, Jisheng Zhao, Yi Guo, and Vivek Sarkar, Hierarchical Place Trees: A Portable Abstraction for Task Parallelism and Data Movement, Proceedings of the 22nd Workshop on Languages and Compilers for Parallel Computing (LCPC), October ),,,,, :Ethernet OpenMP Omni/SCASH, HPC 2002-HPC pp , ) XcalableMP, ACS Vol.3 No. 3, ( ), , ) Y.Ishikawa, M.Matsuda, T.Kudoh, H.Tezuka, S.Sekiguchi:GridMPI - MPI, SWOPP03, ) Yutaka Ishikawa, Atsushi Hori, Mitsuhisa Sato, Motohiko Matsuda, Jorg Nolte, Hiroshi Tezuka, Hiroki Konaka, Munenori Maeda, Kazuto Kubota :Design and Implementation of Metalevel Architecture in C MPC++ Approach - -, Reflection 96 Conference, April , ) Threading Building Blocks web site, http: //threadingbuildingblocks.org/ (2011) 8),,,. :, 2011-HPC-129, ),,, : 21
8 , 2011-HPC- 129, ) The C++ Standards Committee open-std.org/jtc1/sc22/wg21/ 11), : C++, HPCS2011 IPSJ Symposium Series, Vol.2011, p.82 (2011) 12) :C++ tpdplib T2K NPB, HPC-129, No.26, ) StarBED Project 14) JGN-X ( ) 2011 ( ) ( ) 1986,.. ( )... IEEE,, 22
1 2 4 5 9 10 12 3 6 11 13 14 0 8 7 15 Iteration 0 Iteration 1 1 Iteration 2 Iteration 3 N N N! N 1 MOPT(Merge Optimization) 3) MOPT 8192 2 16384 5 MOP
10000 SFMOPT / / MOPT(Merge OPTimization) MOPT FMOPT(Fast MOPT) FMOPT SFMOPT(Subgrouping FMOPT) SFMOPT 2 8192 31 The Proposal and Evaluation of SFMOPT, a Task Mapping Method for 10000 Tasks Haruka Asano
09中西
PC NEC Linux (1) (2) (1) (2) 1 Linux Linux 2002.11.22) LLNL Linux Intel Xeon 2300 ASCIWhite1/7 / HPC (IDC) 2002 800 2005 2004 HPC 80%Linux) Linux ASCI Purple (ASCI 100TFlops Blue Gene/L 1PFlops (2005)
IPSJ SIG Technical Report Vol.2011-IOT-12 No /3/ , 6 Construction and Operation of Large Scale Web Contents Distribution Platfo
1 1 2 3 4 5 1 1, 6 Construction and Operation of Large Scale Web Contents Distribution Platform using Cloud Computing 1. ( ) 1 IT Web Yoshihiro Okamoto, 1 Naomi Terada and Tomohisa Akafuji, 1, 2 Yuko Okamoto,
情報処理学会研究報告 IPSJ SIG Technical Report Vol.2013-HPC-139 No /5/29 Gfarm/Pwrake NICT NICT 10TB 100TB CPU I/O HPC I/O NICT Gf
Gfarm/Pwrake NICT 1 1 1 1 2 2 3 4 5 5 5 6 NICT 10TB 100TB CPU I/O HPC I/O NICT Gfarm Gfarm Pwrake A Parallel Processing Technique on the NICT Science Cloud via Gfarm/Pwrake KEN T. MURATA 1 HIDENOBU WATANABE
23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h
23 FPGA CUDA Performance Comparison of FPGA Array with CUDA on Poisson Equation ([email protected]), ([email protected]), ([email protected]), ([email protected]),
IPSJ SIG Technical Report Vol.2013-ARC-206 No /8/1 Android Dominic Hillenbrand ODROID-X2 GPIO Android OSCAR WFI 500[us] GPIO GP
Android 1 1 1 1 1 Dominic Hillenbrand 1 1 1 ODROID-X2 GPIO Android OSCAR WFI 500[us] GPIO GPIO API GPIO API GPIO MPEG2 Optical Flow MPEG2 1PE 0.97[W] 0.63[W] 2PE 1.88[w] 0.46[W] 3PE 2.79[W] 0.37[W] Optical
FINAL PROGRAM 22th Annual Workshop SWoPP / / 2009 Sendai Summer United Workshops on Parallel, Distributed, and Cooperative Processing
FINAL PROGRAM 22th Annual Workshop SWoPP 2009 2009 / / 2009 Sendai Summer United Workshops on Parallel, Distributed, and Cooperative Processing 2009 8 4 ( ) 8 6 ( ) 981-0933 1-2-45 http://www.forestsendai.jp
GPGPU
GPGPU 2013 1008 2015 1 23 Abstract In recent years, with the advance of microscope technology, the alive cells have been able to observe. On the other hand, from the standpoint of image processing, the
IPSJ SIG Technical Report Vol.2010-GN-74 No /1/ , 3 Disaster Training Supporting System Based on Electronic Triage HIROAKI KOJIMA, 1 KU
1 2 2 1, 3 Disaster Training Supporting System Based on Electronic Triage HIROAKI KOJIMA, 1 KUNIAKI SUSEKI, 2 KENTARO NAGAHASHI 2 and KEN-ICHI OKADA 1, 3 When there are a lot of injured people at a large-scale
スパコンに通じる並列プログラミングの基礎
2016.06.06 2016.06.06 1 / 60 2016.06.06 2 / 60 Windows, Mac Unix 0444-J 2016.06.06 3 / 60 Part I Unix GUI CUI: Unix, Windows, Mac OS Part II 0444-J 2016.06.06 4 / 60 ( : ) 6 6 ( ) 6 10 6 16 SX-ACE 6 17
2) TA Hercules CAA 5 [6], [7] CAA BOSS [8] 2. C II C. ( 1 ) C. ( 2 ). ( 3 ) 100. ( 4 ) () HTML NFS Hercules ( )
1,a) 2 4 WC C WC C Grading Student programs for visualizing progress in classroom Naito Hiroshi 1,a) Saito Takashi 2 Abstract: To grade student programs in Computer-Aided Assessment system, we propose
. IDE JIVE[1][] Eclipse Java ( 1) Java Platform Debugger Architecture [5] 3. Eclipse GUI JIVE 3.1 Eclipse ( ) 1 JIVE Java [3] IDE c 016 Information Pr
Eclipse 1,a) 1,b) 1,c) ( IDE) IDE Graphical User Interface( GUI) GUI GUI IDE View Eclipse Development of Eclipse Plug-in to present an Object Diagram to Debug Environment Kubota Yoshihiko 1,a) Yamazaki
2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055
1 1 1 2 DCRA 1. 1.1 1) 1 Tactile Interface with Air Jets for Floating Images Aya Higuchi, 1 Nomin, 1 Sandor Markon 1 and Satoshi Maekawa 2 The new optical device DCRA can display floating images in free
fiš„v8.dvi
(2001) 49 2 333 343 Java Jasp 1 2 3 4 2001 4 13 2001 9 17 Java Jasp (JAva based Statistical Processor) Jasp Jasp. Java. 1. Jasp CPU 1 106 8569 4 6 7; [email protected] 2 106 8569 4 6 7; [email protected]
258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS 2 3 4 5 2. 2.1 3 1) GPS Global Positioning System
Vol. 52 No. 1 257 268 (Jan. 2011) 1 2, 1 1 measurement. In this paper, a dynamic road map making system is proposed. The proposition system uses probe-cars which has an in-vehicle camera and a GPS receiver.
IPSJ SIG Technical Report Vol.2013-ARC-203 No /2/1 SMYLE OpenCL (NEDO) IT FPGA SMYLEref SMYLE OpenCL SMYLE OpenCL FPGA 1
SMYLE OpenCL 128 1 1 1 1 1 2 2 3 3 3 (NEDO) IT FPGA SMYLEref SMYLE OpenCL SMYLE OpenCL FPGA 128 SMYLEref SMYLE OpenCL SMYLE OpenCL Implementation and Evaluations on 128 Cores Takuji Hieda 1 Noriko Etani
DEIM Forum 2012 C2-6 Hadoop Web Hadoop Distributed File System Hadoop I/O I/O Hadoo
DEIM Forum 12 C2-6 Hadoop 112-86 2-1-1 E-mail: [email protected], [email protected] Web Hadoop Distributed File System Hadoop I/O I/O Hadoop A Study about the Remote Data Access Control for Hadoop
01_OpenMP_osx.indd
OpenMP* / 1 1... 2 2... 3 3... 5 4... 7 5... 9 5.1... 9 5.2 OpenMP* API... 13 6... 17 7... 19 / 4 1 2 C/C++ OpenMP* 3 Fortran OpenMP* 4 PC 1 1 9.0 Linux* Windows* Xeon Itanium OS 1 2 2 WEB OS OS OS 1 OS
スパコンに通じる並列プログラミングの基礎
2018.09.10 [email protected] ( ) 2018.09.10 1 / 59 [email protected] ( ) 2018.09.10 2 / 59 Windows, Mac Unix 0444-J [email protected] ( ) 2018.09.10 3 / 59 Part I Unix GUI CUI:
スパコンに通じる並列プログラミングの基礎
2018.06.04 2018.06.04 1 / 62 2018.06.04 2 / 62 Windows, Mac Unix 0444-J 2018.06.04 3 / 62 Part I Unix GUI CUI: Unix, Windows, Mac OS Part II 2018.06.04 4 / 62 0444-J ( : ) 6 4 ( ) 6 5 * 6 19 SX-ACE * 6
07-二村幸孝・出口大輔.indd
GPU Graphics Processing Units HPC High Performance Computing GPU GPGPU General-Purpose computation on GPU CPU GPU GPU *1 Intel Quad-Core Xeon E5472 3.0 GHz 2 6 MB L2 cache 1600 MHz FSB 80 GFlops 1 nvidia
Vol. 23 No. 4 Oct. 2006 37 2 Kitchen of the Future 1 Kitchen of the Future 1 1 Kitchen of the Future LCD [7], [8] (Kitchen of the Future ) WWW [7], [3
36 Kitchen of the Future: Kitchen of the Future Kitchen of the Future A kitchen is a place of food production, education, and communication. As it is more active place than other parts of a house, there
! 行行 CPUDSP PPESPECell/B.E. CPUGPU 行行 SIMD [SSE, AltiVec] 用 HPC CPUDSP PPESPE (Cell/B.E.) SPE CPUGPU GPU CPU DSP DSP PPE SPE SPE CPU DSP SPE 2
! OpenCL [Open Computing Language] 言 [OpenCL C 言 ] CPU, GPU, Cell/B.E.,DSP 言 行行 [OpenCL Runtime] OpenCL C 言 API Khronos OpenCL Working Group AMD Broadcom Blizzard Apple ARM Codeplay Electronic Arts Freescale
Amazon EC2 IaaS (Infrastructure as a Service) HPCI HPCI ( VM) VM VM HPCI VM OS VM HPCI HPC HPCI RENKEI-PoP 2 HPCI HPCI 1 HPCI HPCI HPC CS
HPCI 1 2 3 4 5 1, 6 5 24 HPCI HPC OS HPC RENKEI-PoP Design of Advanced Software Deployment Infrastructure in HPCI Wide-area Distributed Environment Shinichiro Takizawa, 1 Masaharu Munetomo, 2 Atsuya Uno,
IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info
1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Information Science and Technology, Osaka University a) [email protected] 1 1 Bucket R*-tree[5] [4] 2 3 4 5 6 2. 2.1 2.2 2.3
3. XML, DB, DB (AP). DB, DB, AP. RDB., XMLDB, XML,.,,.,, (XML / ), XML,,., AP. AP AP AP 検索キー //A=1 //A=2 //A=3 返却 XML 全体 XML 全体 XML 全体 XMLDB <root> <A
PostgreSQL XML 1 1 1 1 XML,,, /. XML.,,, PostgreSQL.. Implementation of Yet Another XML-type for PostgreSQL Toshifumi Enomoto, 1 Gengo Suzuki, 1 Nobuyuki Kobayashi 1 and Masashi Yamamuro 1 There are various
,,,,., C Java,,.,,.,., ,,.,, i
24 Development of the programming s learning tool for children be derived from maze 1130353 2013 3 1 ,,,,., C Java,,.,,.,., 1 6 1 2.,,.,, i Abstract Development of the programming s learning tool for children
第62巻 第1号 平成24年4月/石こうを用いた木材ペレット
Bulletin of Japan Association for Fire Science and Engineering Vol. 62. No. 1 (2012) Development of Two-Dimensional Simple Simulation Model and Evaluation of Discharge Ability for Water Discharge of Firefighting
IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-
1 3 5 4 1 2 1,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-View Video Contents Kosuke Niwa, 1 Shogo Tokai, 3 Tetsuya Kawamoto, 5 Toshiaki Fujii, 4 Marutani Takafumi,
MAC root Linux 1 OS Linux 2.6 Linux Security Modules LSM [1] Security-Enhanced Linux SELinux [2] AppArmor[3] OS OS OS LSM LSM Performance Monitor LSMP
LSM OS 700-8530 3 1 1 [email protected] [email protected] 242-8502 1623 14 [email protected] OS Linux 2.6 Linux Security Modules LSM LSM Linux 4 OS OS LSM An Evaluation of Performance
( CUDA CUDA CUDA CUDA ( NVIDIA CUDA I
GPGPU (II) GPGPU CUDA 1 GPGPU CUDA(CUDA Unified Device Architecture) CUDA NVIDIA GPU *1 C/C++ (nvcc) CUDA NVIDIA GPU GPU CUDA CUDA 1 CUDA CUDA 2 CUDA NVIDIA GPU PC Windows Linux MaxOSX CUDA GPU CUDA NVIDIA
6 2. AUTOSAR 2.1 AUTOSAR AUTOSAR ECU OSEK/VDX 3) OSEK/VDX OS AUTOSAR AUTOSAR ECU AUTOSAR 1 AUTOSAR BSW (Basic Software) (Runtime Environment) Applicat
AUTOSAR 1 1, 2 2 2 AUTOSAR AUTOSAR 3 2 2 41% 29% An Extension of AUTOSAR Communication Layers for Multicore Systems Toshiyuki Ichiba, 1 Hiroaki Takada, 1, 2 Shinya Honda 2 and Ryo Kurachi 2 AUTOSAR, a
DEIM Forum 2010 D Development of a La
DEIM Forum 2010 D5-3 432-8011 3-5-1 E-mail: {cs06062,cs06015}@s.inf.shizuoka.ac.jp, {yokoyama,fukuta,ishikawa}@.inf.shizuoka.ac.jp Development of a Large-scale Visualization System Based on Sensor Network
Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m
Vol.55 No.1 2 15 (Jan. 2014) 1,a) 2,3,b) 4,3,c) 3,d) 2013 3 18, 2013 10 9 saccess 1 1 saccess saccess Design and Implementation of an Online Tool for Database Education Hiroyuki Nagataki 1,a) Yoshiaki
1 3DCG [2] 3DCG CG 3DCG [3] 3DCG 3 3 API 2 3DCG 3 (1) Saito [4] (a) 1920x1080 (b) 1280x720 (c) 640x360 (d) 320x G-Buffer Decaudin[5] G-Buffer D
3DCG 1) ( ) 2) 2) 1) 2) Real-Time Line Drawing Using Image Processing and Deforming Process Together in 3DCG Takeshi Okuya 1) Katsuaki Tanaka 2) Shigekazu Sakai 2) 1) Department of Intermedia Art and Science,
KII, Masanobu Vol.7 No Spring
KII, Masanobu 1 2 3 4 5 2 2.1 1945 60196075 19759019904 002 Vol.7 No.1 2004 Spring 1194560 1 1946 2 195328 3 4 1958 1960 2196075 5 6 7 8 1946 2 1972 1/23/4 1974 1968481973 1969 3197590 9 1980 1987 41990
2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC
H.264 CABAC 1 1 1 1 1 2, CABAC(Context-based Adaptive Binary Arithmetic Coding) H.264, CABAC, A Parallelization Technology of H.264 CABAC For Real Time Encoder of Moving Picture YUSUKE YATABE 1 HIRONORI
FabHetero FabHetero FabHetero FabCache FabCache SPEC2000INT IPC FabCache 0.076%
2013 (409812) FabHetero FabHetero FabHetero FabCache FabCache SPEC2000INT 6 1000 IPC FabCache 0.076% Abstract Single-ISA heterogeneous multi-core processors are increasing importance in the processor architecture.
1 DHT Fig. 1 Example of DHT 2 Successor Fig. 2 Example of Successor 2.1 Distributed Hash Table key key value O(1) DHT DHT 1 DHT 1 ID key ID IP value D
P2P 1,a) 1 1 Peer-to-Peer P2P P2P P2P Chord P2P Chord Consideration for Efficient Construction of Distributed Hash Trees on P2P Systems Taihei Higuchi 1,a) Masakazu Soshi 1 Tomoyuki Asaeda 1 Abstract:
[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing
1,a) 1,b) 1,c) 2012 11 8 2012 12 18, 2013 1 27 WEB Ruby Removal Filters Using Genetic Programming for Early-modern Japanese Printed Books Taeka Awazu 1,a) Masami Takata 1,b) Kazuki Joe 1,c) Received: November
HP High Performance Computing(HPC)
ACCELERATE HP High Performance Computing HPC HPC HPC HPC HPC 1000 HPHPC HPC HP HPC HPC HPC HP HPCHP HP HPC 1 HPC HP 2 HPC HPC HP ITIDC HP HPC 1HPC HPC No.1 HPC TOP500 2010 11 HP 159 32% HP HPCHP 2010 Q1-Q4
17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System
1. (1) ( MMI ) 2. 3. MMI Personal Computer(PC) MMI PC 1 1 2 (%) (%) 100.0 95.2 100.0 80.1 2 % 31.3% 2 PC (3 ) (2) MMI 2 ( ),,,, 49,,p531-532,2005 ( ),,,,,2005,p66-p67,2005 17 Proposal of an Algorithm of
main.dvi
PC 1 1 [1][2] [3][4] ( ) GPU(Graphics Processing Unit) GPU PC GPU PC ( 2 GPU ) GPU Harris Corner Detector[5] CPU ( ) ( ) CPU GPU 2 3 GPU 4 5 6 7 1 [email protected] 45 2 ( ) CPU ( ) ( ) () 2.1
Web Basic Web SAS-2 Web SAS-2 i
19 Development of moving image delivery system for elementary school 1080337 2008 3 10 Web Basic Web SAS-2 Web SAS-2 i Abstract Development of moving image delivery system for elementary school Ayuko INOUE
IPSJ SIG Technical Report Vol.2009-DPS-141 No.20 Vol.2009-GN-73 No.20 Vol.2009-EIP-46 No /11/27 1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Spe
1. MIERUKEN 1 2 MIERUKEN MIERUKEN MIERUKEN: Speech Visualization System Based on Augmented Reality Yuichiro Nagano 1 and Takashi Yoshino 2 As the spread of the Augmented Reality(AR) technology and service,
1 GPU GPGPU GPU CPU 2 GPU 2007 NVIDIA GPGPU CUDA[3] GPGPU CUDA GPGPU CUDA GPGPU GPU GPU GPU Graphics Processing Unit LSI LSI CPU ( ) DRAM GPU LSI GPU
GPGPU (I) GPU GPGPU 1 GPU(Graphics Processing Unit) GPU GPGPU(General-Purpose computing on GPUs) GPU GPGPU GPU ( PC ) PC PC GPU PC PC GPU GPU 2008 TSUBAME NVIDIA GPU(Tesla S1070) TOP500 29 [1] 2009 AMD
連載講座 : 高生産並列言語を使いこなす (5) 分子動力学シミュレーション 田浦健次朗 東京大学大学院情報理工学系研究科, 情報基盤センター 目次 1 問題の定義 17 2 逐次プログラム 分子 ( 粒子 ) セル 系の状態 ステップ 18
連載講座 : 高生産並列言語を使いこなす (5) 分子動力学シミュレーション 田浦健次朗 東京大学大学院情報理工学系研究科, 情報基盤センター 目次 1 問題の定義 17 2 逐次プログラム 17 2.1 分子 ( 粒子 ) 17 2.2 セル 17 2.3 系の状態 18 2.4 1ステップ 18 2.5 力の計算 19 2.6 速度と位置の更新 20 2.7 セル間の分子の移動 21 3 OpenMP
大学における原価計算教育の現状と課題
1 1.1 1.2 1.3 2 2.1 2.2 3 3.1 3.2 3.3 2014a 50 ABC Activity Based Costing LCC Lifecycle Costing MFCA Material Flow Cost Accounting 2 2 2016 9 1 2 3 2014b 2005 2014b 2000 1 2 1962 5 1 3 2 3 4 5 50 2012
211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS /1/18 a a 1 a 2 a 3 a a GPU Graphics Processing Unit GPU CPU GPU GPGPU G
211 年ハイパフォーマンスコンピューティングと計算科学シンポジウム Computing Symposium 211 HPCS211 211/1/18 GPU 4 8 BLAS 4 8 BLAS Basic Linear Algebra Subprograms GPU Graphics Processing Unit 4 8 double 2 4 double-double DD 4 4 8 quad-double
BOK body of knowledge, BOK BOK BOK 1 CC2001 computing curricula 2001 [1] BOK IT BOK 2008 ITBOK [2] social infomatics SI BOK BOK BOK WikiBOK BO
DEIM Forum 2012 C8-5 WikiBOK 252 5258 5 10 1 E-mail: [email protected], {kaz,masunaga}@si.aoyama.ac.jp, {yabuki,sakuta}@it.aoyama.ac.jp Body Of Knowledge, BOK BOK BOK BOK BOK, BOK Abstract Extention
