外部ミキサを用いたミリ波スペクトラム測定方法 アプリケーションノート

Similar documents
アンリツテクニカルNo.91

SCPIサンプルプログラム クィックレファレンスガイド

MX705010A Wi-SUN PHY 自動測定ソフトウェア 製品紹介

LTE-Advanced キャリア・アグリゲーションの測定 アプリケーションノート

アプリケーションノート: 光増幅器(EDFA)の特性評価

製品紹介: MX269036A 測定ソフトウェアfor MediaFLO

(Microsoft Word - \216\374\224g\220\224\212g\222\243\203A\203_\203v\203^QEX.doc)

Application Note Template

RMS(Root Mean Square value 実効値 ) 実効値は AC の電圧と電流両方の値を規定する 最も一般的で便利な値です AC 波形の実効値はその波形から得られる パワーのレベルを示すものであり AC 信号の最も重要な属性となります 実効値の計算は AC の電流波形と それによって

スペクトラムアナライザとは? 電気信号を周波数別に 目に見える形で表示する測定器です 被測定信号に含まれる各周波数成分が 周波数軸上の対応した位置に 振幅の大きさとして表示されます スペアナと略して呼ばれています アンリツのスペアナラインナップ MS269x Series MS2830A MS272

アンリツテクニカルNo.94

製品紹介: ME7832L LTE プロトコルコンフォーマンステストシステム

インターリーブADCでのタイミングスキュー影響のデジタル補正技術

製品紹介: MX847010A-11 HSDPA ソフトウェア, MX847010A-12 HSUPA ソフトウェア, MD8470A シグナリングテスタ

ディエンベディングとは冶具やケーブルによる観測信号の劣化を S パラメータデータを利用して計算により補正する TX 冶具ケーブル 被測定物の出力 De-Embedding 冶具 ケーブル等の影響を受けた波形 冶具 ケーブル等の S パラメータデータ TX 被測定物の出力 冶具 ケーブル等の影響のない

Microsoft PowerPoint - 第06章振幅変調.pptx

フロントエンド IC 付光センサ S CR S CR 各種光量の検出に適した小型 APD Si APD とプリアンプを一体化した小型光デバイスです 外乱光の影響を低減するための DC フィードバック回路を内蔵していま す また 優れたノイズ特性 周波数特性を実現しています

Template R&S Datenblätter/Produktbroschüren/Specs

Microsoft Word - SPARQアプリケーションノートGating_3.docx

Intermodulation Distortion

製品紹介: MX269014A ETC/DSRC 測定ソフトウェア

スマートメーター通信機能基本仕様に対する意見 について Ⅲ. 無線マルチホップネットワークのシステム概要 Ⅲ- 3. 通信ユニット概要ハードウェアアンテナについて 平成 24 年 4 月 20 日 三菱マテリアル株式会社電子材料事業カンパニーセラミックス工場電子デバイス開発センター 1

150MHz 帯デジタルデータ通信設備のキャリアセンスの技術的条件 ( 案 ) 資料 - 作 4-4

BERTWave™ シリーズ MP2110A MP2100B 個別カタログ

仕様 ケーブル / アンテナアナライザ 測定 VSWR 1 DTF DTF VSWR 設定パラメータ - クラシックモード F1/F2 DTF D1/D2 DTF / / RF / RFOn/Off / 2 41 / 5 M1 M2 /6 M3 M

降圧コンバータIC のスナバ回路 : パワーマネジメント

スマートメータ(2FSK)向け TELEC T258 テストソリューション

まま送信する電気 OSDM-PON ( 図 2 (a)) から検討を始める. つづいて, 光信号を伝送する本来の光 OSDM-PON ( 図 2 (b)) の実現性の検討を行う. 本研究では, 検討の第 1 歩として, 次の条件でシミュレーションにより検討を行う. (1) 各ユーザ速度を 1 Gbp

iCLR

測定器の持つ誤差 と 使い方による誤差

LT 高信号レベル・アップコンバーティング・ミキサ

NJM78L00S 3 端子正定電圧電源 概要 NJM78L00S は Io=100mA の 3 端子正定電圧電源です 既存の NJM78L00 と比較し 出力電圧精度の向上 動作温度範囲の拡大 セラミックコンデンサ対応および 3.3V の出力電圧もラインアップしました 外形図 特長 出力電流 10

<4D F736F F D208E518D6C B791BD8F6482CC8FDA8DD72E646F63>

<4D F736F F F696E74202D2091E F12D96B390FC92CA904D82D682CC899E97702E707074>

MATLABアプリケーションとシグナルアナライザの通信方法 アプリケーションノート

TITAN マルチコンタクト プローブ TITAN マルチコンタクト プローブは MPI の独自の TITAN RF プロービング技術をさらに発展させた RF/ マイクロ波デバイス特性評価用プローブです 最大 15 コンタクトまでのプロービングが可能で 各コンタクトは RF ロジック バイパス電源の

株式会社xx御中

スペクトルに対応する英語はスペクトラム(spectrum)です

LOS Detection Comparison in Optical Receiver

PLL アン ドゥ トロア 3 部作の構成 1. PLL( 位相ロック ループ ) 回路の基本と各部動作 2. 設計ツール ADIsimPLL(ADIsimCLK) を用いた PLL 回路構成方法 3. PLL( 位相ロック ループ ) 回路でのトラブルとその解決技法 2

nx100_100s_read_first_j

Microsoft PowerPoint - 受信機.ppt[読み取り専用]

Microsoft PowerPoint - クロックジッタ_Handsout.ppt

注意 本製品は FCC Class A 装置です 一般家庭でご使用になると 電波干渉を起こすことがあります その際には ユーザーご自身で適切な処置を行ってください 本製品は FCC( 米国連邦通信委員会 ) 規則の Part15 に準拠したデジタル装置 Class A の制限事項を満たして設計され

ic3_lo_p29-58_0109.indd

U4611A/B USB 2.0/3.0プロトコル・アナライザ バージョン3.7.x(MegaZoomテクノロジー採用)

Microsoft PowerPoint pptx

NJM78M00 3 端子正定電圧電源 概要 NJM78M00 シリーズは,NJM78L00 シリーズを更に高性能化した安定化電源用 ICです 出力電流が 500mA と大きいので, 余裕ある回路設計が可能になります 用途はテレビ, ステレオ, 等の民生用機器から通信機, 測定器等の工業用電子機器迄

モータ HILS の概要 1 はじめに モータ HILS の需要 自動車の電子化及び 電気自動車やハイブリッド車の実用化に伴い モータの使用数が増大しています 従来行われていた駆動用モータ単体のシミュレーション レシプロエンジンとモータの駆動力分配制御シミュレーションの利用に加え パワーウインドやサ

Microsoft Word - 02__⁄T_ŒÚ”�.doc

本製品に接続された端末の IPv6 情報が表示されます 端末に割り当てられた IPv6 アドレス IPv6 アドレスを取得した端末の MAC アドレスが確認できます 注意 : 本ページに情報が表示されるのは本製品が 上位から IPv6 アドレスを取得した場合のみとなります DDNSサービス :DDN

絶対最大定格 (T a =25 ) 項目記号定格単位 入力電圧 V IN 消費電力 P D (7805~7810) 35 (7812~7815) 35 (7818~7824) 40 TO-220F 16(T C 70 ) TO (T C 25 ) 1(Ta=25 ) V W 接合部温度

Keysight Technologies 5G空間電波伝搬特性(チャネルサウンディング)の測定手法

NJM78L00 3 端子正定電圧電源 概要高利得誤差増幅器, 温度補償回路, 定電圧ダイオードなどにより構成され, さらに内部に電流制限回路, 熱暴走に対する保護回路を有する, 高性能安定化電源用素子で, ツェナーダイオード / 抵抗の組合せ回路に比べ出力インピーダンスが改良され, 無効電流が小さ

Presentation Title Arial 28pt Bold Agilent Blue

ダイポールアンテナ標準:校正の実際と不確かさ

技術協会STD紹介

CCD リニアイメージセンサ用駆動回路 C CCD リニアイメージセンサ (S11155/S ) 用 C は 当社製 CCDリニアイメージセンサ S11155/S 用に開発された駆動回路です S11155/S11156-

製品紹介: MU150110A とMU120138Aの10Gigabit Ethernet機能の差異解説

WinCT-AD4212D オペレーションマニュアルVer.1.01


RLC 共振回路 概要 RLC 回路は, ラジオや通信工学, 発信器などに広く使われる. この回路の目的は, 特定の周波数のときに大きな電流を得ることである. 使い方には, 周波数を設定し外へ発する, 外部からの周波数に合わせて同調する, がある. このように, 周波数を扱うことから, 交流を考える

PixeBurn! for HD Instruction Guide JPN


スライド 1

Microsoft PowerPoint pptx

内容 始めに 概要 主要な機能 外観とスイッチ... 6 の使用法 スクリーンレイアウト ステータスシンボルの表示 操作方法 メインメニュー 周波

1 第 5 回情報通信審議会作業班資料資料 60 作 5-2 干渉評価検討結果 1. 評価基準の違いによる離隔距離について - エントランス回線システムにおける机上計算 - 2. アンテナモデルに対する差分 平成 27 年 3 月 6 日 パナソニック株式会社

Layout 1

RF-ASE トレーニング

Microsoft Word - プロービングの鉄則.doc

E4438C ESG シリーズベクトル信号発生器概要 80MHz の広帯域内部 IQ 変調帯域 ( 外部 IQ 使用時 160MHz) ~6GHz までの RF 出力 携帯電話フォーマットから無線 LAN まで多種のパーソナリティを用意 RF, IQ 差動出力, Digital IQ 出力 ±0.5

4. 簡易 NAS としての利用を可能とする USB ポート 搭載 AtermWR8700N(HP モデル ) の背面に搭載した USB ポートに USB ハードディスクや USB メモリを接続して簡易 NAS(Network Attached Storage) として利用が可能 映像や音楽などのデ

TELEC-T403 WLAN 動的周波数選択(DFS)用レーダパルス信号 アプリケーションノート

novas HOME+CA WEB 設定画面アクセス方法 novas HOME+CA の WEB 設定画面接続方法 本製品の設定は WEB 設定画面から変更できます WEB 設定画面のアクセス方法は以下のとおりです 1 本製品と有線または無線 LAN で接続した端末で WEB ブラウザを起動します

周波数特性解析

PowerPoint プレゼンテーション

CMOS リニアイメージセンサ用駆動回路 C CMOS リニアイメージセンサ S 等用 C は当社製 CMOSリニアイメージセンサ S 等用に開発された駆動回路です USB 2.0インターフェースを用いて C と PCを接続

計測コラム emm182号用

航空無線航行システム (DME) 干渉検討イメージ DME:Distance Measuring Equipment( 距離測定装置 ) 960MHz から 1,215MHz までの周波数の電波を使用し 航空機において 当該航空機から地表の定点までの見通し距離を測定するための設備 SSR:Secon

スライド 1

目次 1. ダイナミックレンジとは 不思議な体験 三つの信号の関係 測定 ダイナミックレンジまとめ

Instruction Manual

Pocket WiFi LTE (GL04P) ソフトウェア更新マニュアル パソコン ipad 編 Version2 10

elm1117hh_jp.indd

J.qxd

.a.._4..+.C..pdf.p.p65

目次 5G( ミリ波 ) 端末の特徴 地域別 5G 導入周波数 ミリ波導入へのポイント 電波防護に関連する 3GPP 規格概要 周波数帯 帯域幅 最大送信電力 電波防護の観点から Handheld 端末で想定されるアンテナモジュールの数と配置 6GHz 以下とミリ波帯アンテナの配置例 5G で考えら

Microsoft PowerPoint - ce07-13b.ppt

3. 測定方法 測定系統図 測定風景写真

AN1526 RX開発環境の使用方法(CS+、Renesas Flash Programmer)

iExpressソフトフォン TE20-ST-EX

ACモーター入門編 サンプルテキスト

White Paper 高速部分画像検索キット(FPGA アクセラレーション)

Microsoft Word - 【変換アダプタ】400-VGA007_008.doc

エリクソンの5Gに対する展望と取り組み

<4D F736F F F696E74202D2091E FCD91BD8F6489BB82C691BD8F E835A83582E >

業務用コンピュータサーバーに関する

高速度スイッチングダイオード

図 2.Cat2 ケーブルの減衰特性 通常伝送線路の減衰特性は 1-1) 式のように 3つのパラメータで近似されます DC 抵抗表皮効果誘電損失 A + f*b + f*c 1-1) ところが仕様書の特性を見ると0~825MHz までは-5dB でフラット 5.1GHz までは直線的な減衰になってい

Transcription:

Application Note 外部ミキサを用いたミリ波スペクトラム測定方法 シグナルアナライザ MS2830A/MS2840A 高性能導波管ミキサ (50~75 GHz)/(60~90 GHz) MA2806A/MA2808A ハーモニックミキサ (26.5~325 GHz) MA2740C/MA2750C Series 目次 1. はじめに... 2 2. ミリ波帯利用の価値... 2 3. ミリ波の測定方法... 3 4. 測定システムに要求される性能... 8 5. プリセレクタを用いない場合のスプリアス発生原理... 9 6. 実際の測定例... 16 7. ミリ波測定の不確かさとその改善方法... 20 8. まとめ... 24

1. はじめに ミリ波とは 波長が 1~10 mm の周波数を指し 具体的には 30 GHz~300 GHz の電波に対する呼称です ミリ波の特性として 周波数が上がるにつれ信号の直線性が強くなり 指向性が高いことが挙げられます また 空間での減衰が大きく雨や霧による影響を強くうけ あまり遠くへ伝わることができません このため 既存のアプリケーションで使用されている 800 MHz 帯や 2 GHz 帯に比べ非常に使いにくい周波数であると言えます 一方で 800 MHz 帯や 2 GHz 帯に代表される 6 GHz 以下の周波数帯はさまざまなアプリケーションで使用されているため 周波数資源が不足してきているのに対し ミリ波帯のアプリケーションはまだ少ないこともあり 使用可能な周波数範囲を広くとることができます このことから 近年 通信速度の高速化や使用機会の増加が続く無線通信において ミリ波が大変魅力的な周波数であるといえます 本アプリケーションノートでは 今後 用途が拡大するであろうミリ波の測定における課題と アンリツが提供する新し いミリ波測定方法について解説します 2. ミリ波帯利用の価値 携帯電話に代表される無線通信システムでは 情報量が年々増加傾向にあります 特に第 5 世代移動通信方式 (5G) では LTE の 1000 倍の大容量通信を目指した研究 開発がすすめられています 大容量通信のための要素技術として 広帯域 信号を用いることが考えられますが ミリ波帯は広帯域信号を取り扱える周波数帯として注目を集めています 情報理論における通信容量に関する定理 : シャノン ハートレーの定理によると 伝送信号の帯域を広くとることで 通信容量を大きくできることが示されています ( 下記式 ) C = B Log 2 (1 + S N ) C: 通信容量 [bps] B: 帯域幅 [Hz] S: 帯域幅における信号の総電力 [W] N: 帯域幅におけるノイズの総電力 [W] S/N: 信号の SNR S と N の単純な比 近年の無線通信アプリケーションでは 使用可能な周波数帯域の制限から 信号の多重化に偏重した無線システム開発が 行われていますが 周波数資源の豊富なミリ波帯では 単純に信号の帯域を 2 倍 3 倍にすることで従来システムでは実 現しえなかった大容量の無線通信の可能性を有しています 2

Level 3. ミリ波の測定方法 本項ではミリ波帯のスペクトラム測定方法について解説します いくつかの測定方法の紹介と 各測定方法の特徴について解説します 3.1. ハーモニックミキサを使用する方法 ミリ波帯での一般的な測定に ハーモニックミキサを使用する方法があります この方法では スペクトラムアナライザから LO 信号をハーモニックミキサに供給し ミキサ内部で発生するこの LO 信号の高調波を利用して測定対象信号の周波数変換を行います そして周波数変換後の IF 周波数をスペクトラムアナライザへ戻し解析します 高調波を使って周波数変換を行うため ミリ波帯の測定対象信号に比べると低い周波数である LO 信号で解析することができ 他の測定方法に比べて比較的安価にシステムを構成できる点が特徴です 一方で この方法はミキサ前段にプリセレクタ (Pre-Selector) を使用することができないため ミキサレスポンスに起因したスプリアスを除去できず 用途が限定されます (4 章参照 ) また ミキサの高調波レスポンスを利用した周波数変換方法のため 変換次数に伴って変換損失が大きくなり 結果として測定器の感度が悪くなる点にも注意しなければなりません RF: Mixer 81.875 GHz IF: 1.875 GHz RF 10 GHz Diplexer IF LO Diplexer ADC LO:80 GHz LO frequency LO: 10 GHz LO: 10 GHz Harmonic Mixer Spectrum Analyzer 図 1: ハーモニックミキサ概略図 3

シグナルアナライザ MS2830A/MS2840A では 下記のハーモニックミキサを専用の外部ミキサとしてラインナップして おり ユーザの必要とする周波数に合わせて選択できます 表 1:MA2740C/50C シリーズ外部ミキサ一覧 Model Name Frequency Range Band Conversion Factor Conversion Loss (typ.) Waveguide size MA2741C 26.5 GHz to 40 GHz A 4 23 WR28 MA2742C 33 GHz to 50 GHz Q 5 26 WR22 MA2743C 40 GHz to 60 GHz U 6 28 WR19 MA2744C 50 GHz to 75 GHz V 8 32 WR15 MA2745C 60 GHz to 90 GHz E 9 36 WR12 MA2746C 75 GHz to 110 GHz W 11 39 WR10 MA2747C 90 GHz to 140 GHz F 14 40 WR08 MA2748C 110 GHz to 170 GHz D 17 45 WR06 MA2749C 140 GHz to 220 GHz G 22 50 WR05 MA2750C 170 GHz to 260 GHz Y 26 65 WR04 MA2751C 220 GHz to 325 GHz J 33 70 WR03 4

Level 3.2. 外部ダウンコンバータを使用する方法 外部ダウンコンバータを使用する方法は スペクトラムアナライザの前段にダウンコンバータと LO 信号供給のためのシ ンセサイザを備えた構成です ダウンコンバータに使用するミキサは一般的にハーモニックミキサではなく基本波ミキサ を使用します そのため LO 信号経路に逓倍器を加え LO 信号の周波数を高くします RF: Mixer Amplifier 82 GHz IF: 10 GHz RF Down Converter IF ADC LO:72 GHz Spectrum Analyzer LO LO frequency LO:72 GHz N LO:12 GHz Multiplier Signal Generator 図 2: ダウンコンバータ概略図 外部ダウンコンバータを使用した場合 ダウンコンバータの IF 周波数を 後段に接続するスペクトラムアナライザの入力 周波数上限まで高くすることができます このため外部ダウンコンバータで発生する不要なレスポンスを低減した条件で の信号観測が可能となります 一方で 外部ダウンコンバータを用いた測定方法の場合 IF 周波数を任意に選べるため外部ダウンコンバータの周波数特性のみではなく 後段のスペクトラムアナライザへ接続するケーブルを含めた周波数特性の補正が必要です ダウンコンバータ用のミキサの他に LO 信号用の信号発生器や逓倍器を用意する必要があるなど 測定のためのコストと煩雑さが課題となります また LO 信号経路の逓倍器に起因する不要なレスポンスが発生するため スプリアスの発生周波数を考慮し 測定する周 波数に合わせた個別のシステムアップが必要となります 5

Level 3.3. スペクトラムアナライザを使用する方法 スペクトラムアナライザはプリセレクタを内蔵しており ミキサで発生する不要なレスポンスを取り除くことができるのが特徴です 技術の進歩とともにプリセレクタの対応周波数は高くなってきており 現在ではミリ波帯でのスペクトラムアナライザが登場しています 一方で使用する周波数が高くなるほど スペクトラムアナライザ内部の雑音指数は増加し 所望の測定感度を得ることが難しくなります コネクタが導波管ではなく同軸コネクタのため コネクタ部分での損失も多く 測定感度を悪化させる要因となるとともに コネクタの傷や汚れなどの影響が大きくなるため取り扱いも難しくなります 加えて前述のとおり スペクトラムアナライザはプリセレクタを内蔵しているため その帯域により測定可能な帯域幅に制約を受けます RF: Mixer Amplifier 82 GHz IF: 2 GHz RF Attenuator Pre-selector IF 40 GHz ADC LO:80 GHz LO frequency N LO LO:40 GHz Multiplier LO:10 GHz Spectrum Analyzer 図 3: スペクトラムアナライザ概略図 6

Level 3.4. 高性能導波管ミキサを使用する方法 高性能導波管ミキサ MA2806A/08A の接続方法は ハーモニックミキサを使用した場合と同じくスペクトラムアナライザの LO 信号源を用います 基本波ミキサを使用しているため 内部に LO 信号の逓倍器を備えています この点は外部ダウンコンバータと同じ構成です 接続はハーモニックミキサを使用した場合と同じため IF 周波数はスペクトラムアナライザに依存します しかしながら スペクトラムアナライザ MS2830A/MS2840A は IF 周波数が 1.875GHz と高いため ミキサで発生するスプリアス成分を低減します 高性能導波管ミキサはダウンコンバータの性能の良さ ハーモニックミキサの扱いやすさ 両方を兼ね備えた方法です RF: Mixer 81.875 GHz IF: 1.875 GHz RF LO:80 GHz Diplexer IF LO Diplexer ADC LO frequency LO: 80 GHz N LO: 10 GHz LO: 10 GHz Multiplier Spectrum Analyzer High Performance Waveguide Mixer 図 4: 高性能導波管ミキサ概略図 7

4. 測定システムに要求される性能 4.1. ダイナミックレンジ性能 ミリ波帯では広帯域な信号を取り扱うため 他のアプリケーションよりもダイナミックレンジ性能が要求されます 一例として 総電力 :-10 dbm 帯域幅:2 GHz の信号を考えた時 1Hz あたりに正規化された信号の電力 (Spectrum Density) は-103 dbm/hz となります (-10 dbm 10*log(2 GHz)=-103 dbm/hz) このような信号を正しく測定するためには -103 dbm よりも十分に低いレベルを測定可能な高感度な測定器が必要です CW 信号 広帯域信号 10*log(Band Width) [db] 図 5:CW 信号と広帯域信号の Spectrum Dencity 4.2. スプリアス性能 ハーモニックミキサや外部ダウンコンバータを使用したミリ波測定では スプリアス性能についても注意する必要があります これらの測定方法では プリセレクタを有しないため イメージレスポンスに代表されるさまざまなスプリアスが生じます ユーザは所望の周波数範囲でスプリアスが観測された場合に それが測定系に起因するものか もしくは非測定物 (DUT) が生じている信号なのかを適切に判断しなくてはなりません また広帯域信号を取り扱う場合に 入力信号に近接する位置にスプリアスが生じた場合 図 6 に示すように 所望信号と スプリアスが重複することが懸念されます CW 信号 広帯域信号 入力信号 スプリアス 図 6:CW 信号と広帯域信号のスプリアス応答 8

5. プリセレクタを用いない場合のスプリアス発生原理 5.1. スプリアス発生原理 プリセレクタを用いない測定で生じるスプリアスの多くは ミキサ応答が原因です 本項では ミキサ応答の解説と スペクトラムアナライザとして使用した場合にスプリアスが発生する原因を解説します Mixer RF IF=m RF±n LO ADC LO 図 7: ミキサ応答とスプリアスの発生原理 プリセレクタを用いない場合に 最も大きなスプリアスとなるのはミキサで生じるイメージレスポンスです 一例をあげると RF:60 GHz IF:1 GHz とした時に LO 周波数は 59 GHz となりますが 一方で LO:61 GHz の場合においても IF:1 GHz が生成されます スペクトラムアナライザは LO:59 GHz の時のレスポンスを 60 GHz のスペクトラムとして管面上に表示し LO:61 GHz 時のレスポンスを 62 GHz のスペクトラムとして表示する動作を行いますが 前述のレスポンスにより 60 GHz の信号しか入力していないにもかかわらず 管面上には 60 GHz と 62 GHz の信号が表示されることになります この時 管面上に表示される 62 GHz のスペクトラムをイメージレスポンスと呼びます また 主要なスプリアスはイメージレスポンスだけではありません ミキサでの応答は下記の式で示されるように ミキ シング次数に応じて 無数の信号が生じます 下記式において IF 周波数になりうる応答はすべて イメージレスポンス の例で説明した動作により 管面上にスプリアスとして表示されることとなります IF=m RF ±n LO 9

これらのスプリアスをミキサのマルチプルレスポンスと呼びます ( イメージレスポンスもミキサのマルチプルレスポンスの 1 つですが 所望信号と同等のスプリアスとなることから 分けて表現されます ) 一般的にミキシング次数が小さいほど 変換損失は小さいことが知られており 次数の小さい応答ほど 大きな不要信号となります イメージレスポンス 入力信号 マルチプルレスポンス 図 8: イメージレスポンスとマルチプルレスポンス表示例 10

5.2. 信号識別機能 プリセレクタを有しないハーモニックミキサ 外部ダウンコンバータの測定では 不要な信号も同時に生成されます このため MS2830A/MS2840A は信号識別のための機能として Signal ID 機能および PS 機能を備えています ユーザはこれらの機能を使用することで 管面に表示された信号が測定系に起因した信号か 非測定物 (DUT) が生成している余剰信号かの切り分けが可能となります 本項では 各機能の解説を行います 5.2.1. Signal ID 機能 Signal ID 機能には Image Shift と Image Suppression の 2 つのモードがあります 両機能とも ミキシング条件を変えて測定を実施することで その違いが見えるようにしています ミキシング条件を変えた場合 周波数条件が変わることで 測定系に起因した信号は管面表示される周波数が変わりますが 入力された信号は周波数が変化することなく応答します この動作を利用して 測定器に入力されている信号を正しく判別することができます Image Shift モードと Image Suppression モードはともにミキシング条件を変えた測定を行うモードですが Image Shift モード時は ミキシング条件を変えた時の結果を交互に表示するのに対し Image Suppression モード時には 1 回ずつ の測定結果のうち 値の低い方の結果を表示します 図 9:Signal ID 機能の設定画面 11

Image Shift 機能を使用した場合 各掃引ごとにミキサ応答条件が変更され 測定系に起因したスプリアスは管面表示位置がずれます 図 10:Signal ID Image Shift 機能使用時の Spectrum 観測例 Image Suppression 機能を使用することで 測 定系に起因したスプリアスは表示上 圧縮され て表示されます 図 11:Signal ID Image Suppression 機能使用時の Spectrum 観測例 12

5.2.2. PS 機能 MS2830A/MS2840A および MA2806A/08A を使用した場合 スプリアスなく信号を測定するためのユニークな機能として PS 機能を有しています PS 機能はあらかじめ入力する信号の周波数を知っておく必要がありますが 測定系に起因したスプリアスを原理的に回避することが可能となります PS 機能により Signal ID 機能を使用しても判別が困難な信号測定においても 正しいスペクトラム情報を得ることが可能となります あらかじめ入力する信号の周波数を把握するためには 前述の Signal ID 機能を使用することを推奨します 図 12:PS 機能の設定画面 PS 機能は高性能導波管ミキサ :MA2806A/08A の特徴を最大限に活かすための機能です MA2806A/08A は要求されるダイナミックレンジ性能を達成するために ハーモニックミキサを用いずに LO 信号経路の逓倍器で LO 信号を逓倍したのちに 基本波ミキシングによる周波数変換を行う構成を取っています 基本波ミキシングを採用したことにより高ダイナミックレンジを実現しただけでなく ミキサで生じるレスポンスを限定することにもなりました この結果 ミキサ応答の極性に応じて 生じるスプリアスを入力信号の上側 / 下側のいずれかに限定することが可能となり 任意の周波数でミキサ応答の極性を変えることで 原理的にスプリアスを回避できます たとえば 極性がマイナスの場合 (Lo 周波数が入力周波数より高い場合 ) イメージレスポンスは入力周波数より高い周波数に出現します 一方 極性がプラスの場合 (Lo 周波数が入力周波数より低い場合 ) イメージレスポンスは入力周波数より低い周波数に出現します したがって 測定画面の中心より左側では極性をマイナスにし 右側では極性をプラスにすることでイメージレスポンスを表示せずに測定します PS 機能は基本波ミキサだからこそ使用できる機能です ハーモニックミキサではその他のレスポンスが測定範囲内に入ってくる可能性があるので スプリアスを回避することができません 13

LO 極性 : プラス LO 極性 : マイナス PS 機能 On 図 13:PS 機能概念図 14

5.2.3 Signal ID 機能と PS 機能の違いについて Signal ID 機能と PS 機能は 測定系に起因したスプリアスと所望信号を切り分けるという点では同じですが その機能上 いくつかの相違点があります ユーザは機能の効果を正しく理解することで 最適な測定方法を手に入れることができま す 表 2:Signal ID 機能と PS 機能の違い 長所 Signal ID(Image Suppression) 機能 ミキシング条件を変えて測定するため 測定系に 起因したスプリアスの判別が可能 PS 機能 原理的にスプリアスを回避しているため 時変動する信号 ( 例 :Chirp 信号など ) 測定が可能となる 短所 Minimum Hold 処理を行うため 時変動する信 号の測定において 信号のピークレベルが下がる もしくは消えてしまう可能性がある 原理的に回避していないスプリアスは表示される 高次のスプリアスは -50 dbc 程度で表示される場合があ る CW の場合は スプリアスとの切り分けが可能だが 帯域を持った信号の場合 ミキシング条件を変えても信号が重複する可能性がある (4 項参照 ) 15

6. 実際の測定例 本項では シグナルアナライザ MS2830A/MS2840A および 高性能導波管ミキサ MA2806A/08A を用いた実際のミリ波 測定方法の例について説明します MS2830A/MS2840A はハーモニックミキサ MA2740C/50C シリーズを用いた測定に も対応していますが 本項では MA2806A/08A を用いた場合の測定方法に限定して解説します 6.1. 接続 MA2806A/08A は MS2830A/MS2840A の LO output ポートへ接続して使用します 接続ケーブル AC-DC アダプタ 図 14:MA2808A 高性能導波管ミキサ接続図 16

6.2. 外部ミキサ機能の設定方法 MS2830A/MS2840A の外部ミキサ機能は Frequency の 2 ページ目にある External Mixer:On/Off ファンクションで 外部ミキサ機能を有効にすることにより使用できます 外部ミキサ機能を選択後 使用するミキサに合わせて適切な Band 選択を行うことで MS2830A/MS2840A から各 Band に合わせて LO 信号が供給され スペクトラム観測が可能となります 17

6.3. 信号解析機能 MS2830A/MS2840A は 外部ミキサ使用時にも Spectrum Analyzer の Measure 機能や Signal Analyzer 機能を使用す ることができます Spectrum Analyzer の Measure 機能では SEM 測定や OBW 測定等をサポートする機能を備えています また Signal Analyzer 機能を使用した場合は Chirp 信号などの解析が可能となります 図 15:SEM 測定機能 (Measure 機能 ) 図 16:OBW 測定機能 (Measure 機能 ) 図 17:SA 機能 (Spectrum) 図 18:SA 機能 (Frequency vs Time) 18

6.4. 位相雑音測定機能 MS2830A/MS2840A では 位相雑音測定機能オプション (Opt-010) を実装することで位相雑音測定が可能となります この位相雑音測定機能は MA2806A/08A 接続時にも使用可能であり V-band(50~75GHz) E-band(60~90GHz) で の位相雑音測定を簡易に実現できます MS2840A の位相雑音性能は 中心周波数 :1GHz において -123dBc/Hz(10 khz 100 khz offset 時 ) となりますが 高性能導波管ミキサを使用した位相雑音の測定では 各モデルの内部逓倍回路構造に依存し 20*log( 逓倍数 )[db] の性能悪化が生じます MA2806A では 8 逓倍 MA2808A では 12 逓倍分の内部逓倍回路構造を有しているため それぞれ約 18 db 約 22 db 分 位相雑音が悪化します 図 19 に 75 GHz の信号を入力した場合の 位相雑音測定結果例を示します 図 19: 位相雑音測定結果例 ( 入力信号 :75 GHz) 19

7. ミリ波測定の不確かさとその改善方法 7.1. インピーダンス不整合 ミリ波測定に限らず インピーダンス不整合による不確かさを把握することは 正確な測定を行う上で重要です MA2806A/08A は RF ポートの入力 RL<15dB の性能を有しており インピーダンス不整合による測定時の不確かさを低 減しています 図 20:MA2808A の RF ポート RL 特性 7.2. パワー測定誤差 パワーの測定にはパワーメータを用いることが一般的です パワーメータを用いたパワー測定ではパワーメータが受信可能な周波数範囲すべての総電力を測定します このため 所望信号以外に 所望信号に影響を与えうる信号が存在した場合 その信号により正確なパワー測定ができません 多くのユーザは スペクトラムアナライザにより あらかじめ所望信号以外のスペクトラム成分を確認することによって より正確なパワー測定を実施することが可能となります 7.3. 接続誤差 ミリ波帯では I/F として主に導波管が用いられます 導波管はその構造から 接続面に隙間などが生じた場合に 周波数 特性の悪化などを引き起こします 再現性の高い測定のために 導波管 I/F では 指定の方法での接続を行う必要があり ます 20

7.4. Correction 機能 MS2830A/MS2840A の外部ミキサ機能では 下記の Correction 機能を有しています Conversion Loss Cable Loss Level Offset User Correction 各 Correction 機能を使用することで ユーザはミリ波帯の測定における測定確度 汎用性を向上させることができます Conversion Loss Conversion Loss 値は 使用するミキサにより固有の値を持ちます このため Conversion Loss を入力することで 管面に表示されるスペクトラムの表示レベルを補正することが可能です Conversion Loss 値の入力では Fixed モードと Table モードの 2 通りの機能を有していますが MA2806A/MA2808A を組み合わせて使用する場合には Table モードが使用可能となります ユーザは MA2806A/08A の製品ごとの変換損失特性データを読み込ませることで ミキサの周波数特性を補正することが可能です データは MA2806A/08A に添付される USB から自動で読み込むことができます Fixed モード選択時は 任意の Conversion Loss 設 定値を 全周波数に適用します Table モード選択時は Correction Table を参照し て 各周波数に Conversion Loss 値が適用されます 21

Cable Loss MS2830A/MS2840A と高性能導波管ミキサ :MA2806A/08A を組み合わせて使用した場合に 変換損失のパラメータについては 上記の機能で調整が可能となりますが 実使用条件を想定した場合 MS2830A/MS2840A とミキサを接続するケーブルは 用途によってさまざまな条件で使用することが想定されます このため あらかじめ接続するケーブルの損失を確認しておくことで 測定結果にケーブルの損失を反映することができます Level Offset Level Offset 機能は MS2830A/MS2840A の標準の機能であり 管面表示値に任意の Offset 値を設定する機能です この 機能を使用することで より正確なレベル表示を行わせることが可能です また 前項の Cable Loss の設定についても本機能で兼ねることができます 22

User Correction MS2830A/MS2840A は 基本機能として User Correction 機能を備えています この機能は 他の機能でカバーできない外付けモジュール ( 減衰器やアンテナなど ) の周波数特性を補正する機能です User Correction 機能は System Configuration メニュー (2 ページ目 ) から設定が可能です また User Correction データとして 最大 4096 ポイントのデータを入力可能です 任意の周波数ステップ ( 最大 4096 point) で 任意の補正値 ( 最大 99.99 db) を設定可能 図 21:User Correction 機能の設定画面と設定ファイル User Correction 機能を使用した例を図 22 に示します 図 21 で示した Correction Table の作成例のデータを反映した場合 設定した各周波数に Offset 値を加えた結果として表示されます 設定した周波数間は 設定した Offset 値を線形補間した値が適用され 設定した下限周波数以下 上限周波数以上の領域では 下限周波数 / 上限周波数での Offset 値が反映されます この機能は 測定器の外部に取り付けるデバイスの周波数特性の補正に活用できる他に ユーザ自身がより正確な周波数 特性の補正を行いたい場合にも応用することができます Correction Table の下限周波数の値を反映 周波数間は線形補間値を反映 図 22:User Correction 機能の設定画面と設定ファイル 23

8. まとめ このアプリケーションノートでは ミリ波帯で測定器に要求される性能および測定方法を解説し ミリ波帯プレイヤーが 要求する測定項目に対する最適な測定方法と測定器を紹介しました また ミリ波帯の測定における注意事項と アンリツのソリューションを使った改善方法の紹介を行いました アンリツは シグナルアナライザ MS2830A/MS2840A と高性能導波管ミキサ MA2806A/08A を用いたミリ波帯の測定機 能により 今後活性化が見込まれるミリ波帯アプリケーションの設計者をサポートいたします 24

お見積り ご注文 修理などは 下記までお問い合わせください 記載事項は おことわりなしに変更することがあります http://www.anritsu.com 本社 243-8555 神奈川県厚木市恩名 5-1-1 TEL 046-223-1111 厚木 243-0016 神奈川県厚木市田村町 8-5 計測器営業本部 TEL 046-296-1202 FAX 046-296-1239 計測器営業本部営業推進部 TEL 046-296-1208 FAX 046-296-1248 仙台 980-6015 宮城県仙台市青葉区中央 4-6-1 住友生命仙台中央ビル計測器営業本部 TEL 022-266-6134 FAX 022-266-1529 名古屋 450-0003 愛知県名古屋市中村区名駅南 2-14-19 住友生命名古屋ビル計測器営業本部 TEL 052-582-7283 FAX 052-569-1485 大阪 564-0063 大阪府吹田市江坂町 1-23-101 大同生命江坂ビル計測器営業本部 TEL 06-6338-2800 FAX 06-6338-8118 福岡 812-0004 福岡県福岡市博多区榎田 1-8-28 ツインスクエア計測器営業本部 TEL 092-471-7656 FAX 092-471-7699 カタログのご請求 価格 納期のお問い合わせは 下記または営業担当までお問い合わせください 計測器営業本部営業推進部 TEL: 0120-133-099(046-296-1208) FAX:046-296-1248 受付時間 /9:00 12:00 13:00 17:00 月 金曜日 ( 当社休業日を除く ) E-mail:SJPost@zy.anritsu.co.jp 計測器の使用方法 その他については 下記までお問い合わせください 計測サポートセンター TEL: 0120-827-221(046-296-6640) 受付時間 /9:00 12:00 13:00 17:00 月 金曜日 ( 当社休業日を除く ) E-mail: MDVPOST@anritsu.com ご使用の前に取扱説明書をよくお読みのうえ 正しくお使いください 1602 本製品を国外に持ち出すときは 外国為替および外国貿易法の規定により 日本国政府の輸出許可または役務取引許可が必要となる場合があります また 米国の輸出管理規則により 日本からの再輸出には米国商務省の許可が必要となる場合がありますので 必ず弊社の営業担当までご連絡ください 再生紙を使用しています 2016-12 MG No. MS2830A_MA2808A-J-F-1-(1.00)