(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +

Similar documents
1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

振動と波動

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

Xray.dvi

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

all.dvi

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

Gmech08.dvi

Microsoft Word - 信号処理3.doc

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

85 4

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

DVIOUT-fujin

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

all.dvi

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

ELECTRONIC IMAGING IN ASTRONOMY Detectors and Instrumentation 5 Instrumentation and detectors


. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

LLG-R8.Nisus.pdf

meiji_resume_1.PDF

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

2

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

TOP URL 1

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B


untitled

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

TOP URL 1

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

Radiation from moving charges#1 Liénard-Wiechert potential Yuji Chinone 1 Maxwell Maxwell MKS E (x, t) + B (x, t) t = 0 (1) B (x, t) = 0 (2) B (x, t)

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

Gmech08.dvi

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

構造と連続体の力学基礎

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

Untitled

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

( ) s n (n = 0, 1,...) n n = δ nn n n = I n=0 ψ = n C n n (1) C n = n ψ α = e 1 2 α 2 n=0 α, β α n n! n (2) β α = e 1 2 α 2 1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

Z: Q: R: C:

液晶の物理1:連続体理論(弾性,粘性)

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)

pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

untitled


i

量子力学 問題

chap03.dvi

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

RIMS98R2.dvi

2000年度『数学展望 I』講義録

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

QMI_09.dvi

QMI_10.dvi

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

gr09.dvi

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

sikepuri.dvi

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

untitled

2011de.dvi

TOP URL 1

08-Note2-web

Part () () Γ Part ,


1. 1 BASIC PC BASIC BASIC BASIC Fortran WS PC (1.3) 1 + x 1 x = x = (1.1) 1 + x = (1.2) 1 + x 1 = (1.

chap1.dvi

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

Report10.dvi

°ÌÁê¿ô³ØII

70 : 20 : A B (20 ) (30 ) 50 1

ohpr.dvi


LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

Transcription:

7 1 (Young) *1 *2 (interference) *1 (1802 1804) *2 2 (2005) (1993) 1

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A 2 1 + A 2 2 + 2A 1 A 2 cos ψ (2) ψ = φ 1 φ 2 *3 7.1 2

(2) (interference fringe) 2π ψ = φ 1 φ 2 = 2mπ I max = A 1 + A 2 2 2 (in phase) (constructive interference, ) π ψ = φ 1 φ 2 = (2m + 1)π I min = A 1 A 2 2 2 180 0 (out of phase) (destructive interference, ) M 1 BS Sc M 2 S 1 S: BS: M: Sc: 3

2.1 I max I min 90 2 2 I av I I av = I max + I min, I = I max I min 2 2 (visibility) (depth of modulation) (contrast) (3) V = I I av = I mac I min I max + I min (4) I = I av (1 + V cos ψ) (5) I max ΔI I av I min 0 π 2π 2 4

(coherent) (incoherent) 2.2 ψ(r) = φ 1 (r) φ 2 (r) 3 (Mach- Zehnder) 4 M 2 BS 2 S BS 1 M 1 3 k j = (2π/λ)t j t j φ j = k j r ψ = (k 1 k 2 ) r = 2π λ (t 1 t 2 ) r = K r = 2mπ (6) 5

K = k 1 k 2 xz z ±θ 2θ t j = (± sin θ, 0, cos θ) K = (2π/λ)(2 sin θ, 0, 0) = (4π sin θ/λ)(1, 0, 0) K Λ K = 2π Λ = 22π λ sin θ (7) Λ = λ 2 sin θ (8) 4 4 4 ABC Λ sin θ = λ/2 2θ λ A θ C λ/2 λ B Λ Λ 4 6

j r j φ j = kr j 2π r 1 r 2 = mλ ( 5) 2 1 0 1 2 2 1 0 1 2 5 3 6 d ψ 7

θ 1 θ 2 ψ = 2πd λ (sin θ 2 ± sin θ 1 ) (9) ψ = 2mπ m 1 A B C θ 1 D θ 2 d 0.8 0.6 0.4 0.2 1 N 0.5 1 1.5 2 6 7 N N I = I 0 1 + e iψ + e 2iψ + + e (N 1)iψ 2 1 cos Nψ = I 0 1 cos ψ = I sin 2 (Nψ/2) 0 sin 2 (ψ/2) (10) 7 N = 10 N 1/N N 2 I 0 N N 8

4 8 d n θ 0 θ sin θ 0 = n sin θ L = 2nd cos θ ψ ψ = 4πnd cos θ λ (11) nd 9 (fringe of equal inclination) d θ n θ 0 8 9 (etalon) t r 9

t r (Stokes) r = r, tt + r 2 = 1 (12) 1 tt tr 2 t exp( iψ) tr 4 t exp( 2iψ) I T I T = tt = 2 r 2n e niψ n=0 t 2 t 2 1 2r 2 cos ψ + r 4 = (1 r 2 ) 2 1 2r 2 cos ψ + r 4 (13) (12) 1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1 1.2 10 10

I T = 1 1 + F sin 2 (ψ/2), F = 4R (1 R) 2 (14) R = r 2 (Airy) 10 F = 100 (ψ = π) ψ = 0 I T = 1 1/2 ψ F ψ 2/ F ψ = π f = π ψ = π π R F = 2 1 R (15) (finesse) N 1 (16) 2 I R = 1 I T 5 11 S P SABCP P SDP L = [SABCP ] [SDP ] ψ = 4πnd cos θ λ (16) 11

S P S d D A θ C n d A θ P n B B 11 12 P S D D nd D 12 P (16) D P S θ nd cos θ (θ = 0) (nd) = λ/2 n d (fringe of equal thickness) 13 12

14 13 14 (Newton ring) *4 13 (Fizeau) d 6 (optical flat) 15 *4 13

(λ/2) λ/4 I(x) = I 0 (x) + I 1 (x) cos [ Kx + ψ(x) ] (17) I 0 I 1 K Λ K = 2π/Λ ψ(x) K *5 ψ 16 17 0 (K = 0) 18 19 OF S 15 *5 14

1.0 0.5 0.0 2 0.5 2 0 0 2 2 16 17 18 19 7 cos SN 15

(17) (x) I 0, I 1 ψ (1) (2) (3) 7.1 (heterodyne) v λ/2 f = 2v/λ = 2fv/c (17) K = 0 I(x, t) = I 0 (x) + I 1 (x) cos [ ft + ψ(x) ] (18) x = 0 ψ(x) ψ(0) 16

7.2 (fringe scan method) N (17) I 0, I 1, ψ K = 0 ψ N = 4 λ/8 λ/8 π/2 I(x, 0) = I 0 (x) + I 1 (x) cos ψ(x) I(x, π/2) = I 0 (x) + I 1 (x) cos [ ψ(x) + π/2 ] = I 0 (x) I 1 (x) sin ψ(x) I(x, π) = I 0 (x) + I 1 (x) cos [ ψ(x) + π ] = I 0 (x) I 1 (x) cos ψ(x) I(x, 3π/2) = I 0 (x) + I 1 (x) cos [ ψ(x) + 3π/2 ] = I 0 (x) + I 1 (x) sin ψ(x) tan ψ(x) = I(x, 3π/2) I(x, π/2) I(x, 0) I(x, π) (19) arctan 7.3 (Fourier transform method) K = 0 K 17

(fast Fourier transform, FFT) cos cos θ = [exp(iθ) + exp( iθ)]/2 (17) I(x) = I 0 (x) + 1 2 I 1(x)e i(kx+ψ) + 1 2 I 1(x)e i(kx+ψ) (20) K 20 3 I F T (x) = 1 2 I 1(x)e i(kx+ψ) (21) exp( ikx) log ( I F T e ikx) = log(i 1 /2) + iψ (22) λ/100 A 18

F[I 1 e -i(kx+ψ) ] F[I 0 ] F[I 1 e i(kx+ψ) ] K 0 K k 20 A.1 21 (Michelson) (Twyman - Green) M 1 M 2 M 1 PZT M 2 22 ( ) ( ) ( ) A.2 13 15 (Fizeau) A.3 3 19

M 2 S BS M 1 PZT D 21 L SM 22 A.4 (Sagnac) 23 20

M 2 S BS M 1 D 23 A.5 4 ( ) 2 (Fabry - Pérot) B 13 r R m r m π 0 21

r 0 = 0 r d (r, R d) R r 2 + (R d) 2 = R 2 R d d = r 2 /2R m mλ/2 rm 2 = mλr (23) C (coherence) 24 D ω D x S S z 1 d A B x P P z 2 24 22

d z 1 z 2 S S x x S x x P A B L = SBP SAP d z 1 x S + d z 2 x P (24) z 1 z 2 I(x P, x S ) I(x P, x S ) = I 0 { 1 + cos ( β2 x P + β 1 x S )} (25) β j = kd/z j = 2πd/λz j P I(x P ) I(x P ) = D/2 D/2 I(x P, x S )dx S = I 0 D[1 + γ cos(β 2 x P )] (26) γ ( ) πdd γ = sinc λz 1 23 (27)

sinc(x) = sin(x)/x γ (degree of coherence) D z 1 d (27) (27) d d = 0 1 d = λz 1 /D 0 d λz 1 /D D D/z 1 d γ π 3 (26) D 25 (Michelson) S(k) k = ω/c ω S BS M 1 M 2 BS D L = 2(L 2 L 1 ) k I(k) = S(k)[1 + cos(kl)] 24

M 2 S L 2 BS L 1 M 1 D 25 I(L) I(L) = 0 [1 + cos(kl)]s(k)dk = I 0 [1 + γ(l)] (28) I 0 = 0 S(k)dk (29) γ(l) γ(l) = 1 cos(kl)s(k)dk (30) I 0 0 L k 0 = ω 0 /c 2 = 2Γ/c γ(τ) = cos(ω 0 τ) sinc(γτ) (31) τ = L/c τ 1/Γ 25

c L c = cτ 26 S 26 E L (28) (interferogram) 27 0 26

0 0 L 27 27