平成14年度

Similar documents
m BIG-MATHUGE- MAT 3 FDM3Zebris 4 HUGE-MAT bit 884 mm1156 mm Hz FDM3 3 2 BIG-MATHUGE- MAThttp://

緑化計画作成の手引き 26年4月版

S-6.indd

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

SICE東北支部研究集会資料(2012年)

無印良品 2012 自転車 カタログ

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2011-MBL-57 No.27 Vol.2011-UBI-29 No /3/ A Consideration of Features for Fatigue Es

untitled


& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

修士論文

日立金属技報 Vol.34

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

FS_handbook.indd

PPP_‚Ü‚Æ‚ß.pdf


連結.ren

42 1 Fig. 2. Li 2 B 4 O 7 crystals with 3inches and 4inches in diameter. Fig. 4. Transmission curve of Li 2 B 4 O 7 crystal. Fig. 5. Refractive index

iR-ADV 8105 / 8095 / 8085 PRO 製品カタログ

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

                         2009,3,1

スペースプラズマ研究会-赤星.ppt

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

main.dvi

248 Nippon Shokuhin Kagaku Kogaku Kaishi Vol. /-, No./,,.2,/. (,**0) 12 * * * Microencapsulation of Glutamine with Zein by a Solvent Evaporation Metho

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

206“ƒŁ\”ƒ-fl_“H„¤‰ZŁñ

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

07_学術.indd

Microsoft Word JELS2009再再投稿丸島スタイル適用01_32-43a.doc

塗装深み感の要因解析

IPSJ SIG Technical Report Vol.2012-HCI-149 No /7/20 1 1,2 1 (HMD: Head Mounted Display) HMD HMD,,,, An Information Presentation Method for Weara

0.45m1.00m 1.00m 1.00m 0.33m 0.33m 0.33m 0.45m 1.00m 2


no15

ニチベイ 高遮蔽ブラインド セレーノグランツ 25・35


秋植え花壇の楽しみ方

<82D282A982C1746F95F18D908F57967B95B E696E6464>

 5月9日、看護の日の記念イベントとして、病院を訪れた方々に絆創膏が配布されました


 


第5章 樹脂化ドラムメータの開発

Fig. 1 Schematic construction of a PWS vehicle Fig. 2 Main power circuit of an inverter system for two motors drive

レーザ誘起蛍光法( LIF法) によるピストンの油膜挙動の解析

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

AFO AFO 4 2.3AFO 5 3 AFO 3.1 AFO

橡

14 FEM [1] 1992 [3] 1(a)(b) 1(c) [2] 2 ( 財 ) 日本海事協会 36 平成 14 年度 ClassNK 研究発表会


Fig. 1. Example of characters superimposed on delivery slip.

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

Vol. No. Honda, et al.,

untitled

untitled

Synthesis and Development of Electric Active Stabilizer Suspension System Shuuichi BUMA*6, Yasuhiro OOKUMA, Akiya TANEDA, Katsumi SUZUKI, Jae-Sung CHO

Fig. 1 Hydrostatic Thrust Bearing Fig. 2 Point loading of elastic half-space

12_26.dvi

index

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

. ) ) ) 4) ON DC 6 µm DC [4]. 8 NaPiOn 4

HIS-CCBASEver2

Table 1 Properties of Shrink Films on Market Fig. 2 Comparison of Shrinkage curves of PS and PET films. Fig. 3 Schematic diagram of "Variations in bot

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm

SICE東北支部研究集会資料(2012年)

Reaction Mechanism and Liquefaction Process of Coal Yosuke MAEKAWA

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

013858,繊維学会誌ファイバー1月/報文-02-古金谷

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

VIRTUALLY INVISIBLE 300 WIRELESS SURROUND SPEAKERS

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6

Development of Induction and Exhaust Systems for Third-Era Honda Formula One Engines Induction and exhaust systems determine the amount of air intake

SICE東北支部研究集会資料(2012年)

3D UbiCode (Ubiquitous+Code) RFID ResBe (Remote entertainment space Behavior evaluation) 2 UbiCode Fig. 2 UbiCode 2. UbiCode 2. 1 UbiCode UbiCode 2. 2

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

07.報文_及川ら-二校目.indd

Advanced Visual Inspection Technology with 2-Dimensional Motion Images for Film-shaped Products Sumitomo Chemical Co., Ltd. Industrial Technology & Re

発表資料

Vol. 51 No (2000) Thermo-Physiological Responses of the Foot under C Thermal Conditions Fusako IWASAKI, Yuri NANAMEKI,* Tomoko KOSHIB

COP (1 COP 2 3 (2 COP ± ±7.4cm 62.9±8.9kg 7m 3 Fig cm ±0cm -13cm Fig. 1 Gait condition

05-01.知的文書処理技術.doc

Isogai, T., Building a dynamic correlation network for fat-tailed financial asset returns, Applied Network Science (7):-24, 206,

(1) 1.1

Table. Stage model parameters. Mass of pole part m.4 kg Mass of table part M 22 kg Thrust viscous constant c x 2. 2 N s/m Twist dumping constant of jo

untitled

Report2009_Softsensor.dvi

日本感性工学会論文誌

GPGPU

原稿.indd

『赤すぐ』『妊すぐ』<出産・育児トレンド調査2003>

2 The Characteristics of Two Negative Peaks on Visual Evoked Potentials with Depth Perception Yoichi MIYAWAKI, Yasuyuki YANAGIDA, Taro MAEDA, and Susu

18 A Study on the Running and Jumping by a One-leg Robot ( )

1章

K02LE indd

3_23.dvi

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)

光学

Transcription:

14 Estimation of Ground Reaction Force and Joint Moment by Plantar Pressure Measurement Device 1055063

1. 1 1.1 1 1.2 1 1.3 2 1.4 2 1.4 a) 2 1.4 b) 3 1.5 3 1.6 3 2. 2.1 5 2.2 5 2.2.1 2.2.1.1 7 2.2.1.1.1 7 2.2.1.1.2 9 2.2.1.2 9 2.2.1.2.1 11 2.2.1.2.2 11 2.2.2 11 2.2.2.1 11 2.2.2.1.1 12 2.2.2.1.2 13 2.2.2.1.3 13 2.2.2.2 16 2.2.2.2.1 16 2.2.2.2.1(a) 16 2.2.2.2.1(b) 16 2.2.2.2.2 16 2.3 17

3. 3.1 18 3.2 18 3.3 20 3.4 21 4. 4.1 23 4.2 24 4.3 25 4.4 26 4.4.1(a) 27 4.4.1(b) 28 4.4.2(a) 29 4.4.2(b) 30 4.5 31 5. 32 5.1 32 5.2 33 5.3 33 5.4 33 5.4.1 3 35 5.4.2 36 5.5 38 5.6 40 5.6.1(a) 40 5.6.1(b) 40 5.6.2(a) 41

5.6.2(b) 42 5.6.3(a) 42 5.6.3(b) 43 5.6.4(a) 43 5.6.4(b) 43 5.6.5(a) 44 5.6.5(b) 44 5.6.6(a) 44 5.6.6(b) 44 5.6.7(a) 45 5.6.7(b) 45 5.6.8(a) 45 5.6.8(b) 45 5.7 46 6. 47 6.1 47 6.2 47 6.3 47 6.4 48 6.5 48

50 51

1 1.1 1 2 1.2 2/3 60 20 70 40 3 4,5 6 1

1.3 7 1) 2) 3) 8 1) 2) 3) 1) 2) 3) 1 9 1.4 1.4.a) 2

1.4.b) 3 3 3 10 1.5 3 1.6 6 2 3 3

4 5 3 3 6 5 4

2 2.1 11 2.2 Fig.2.1 Fig.2.1 2 12 13 5

Plantar pressu re Installed type Equipped type Plantar pressure distribution Reaction force Plantar pressure distribution Reaction force Scanned type Mapped type Distortion gauge type Crystal piezo-electricity type Ink coloring type Scanned type Distributed type Vertical component All reaction force measurement Vertical & share component Partial reaction force measurement Fig. 2.1Plantar pressure measurement equipment classification 6

2.2.1 2.2.1.1 4m 2.2.1.1.1 4000/8000 14,15,16,17,18 3500[mm](cf. Table 2.1) 2 2 5mm 73216 19 Fig. 2.2Gait Scan Fig. 2.2(a)Sensor (for Gait Scan) 7

Table 2.1Specification of Gait Scan system GaitRiteCIR Systems, Inc. 4572mm 902mm 6.4mm 2304 20,21 Fig. 2.3GaitRite 8

2.2.1.1.2 22,23,24,25,26,27,28 1971 1976 Arcan 1986 2 2.2.1.2 Force Plate, Force Platform Force Plate, Force Platform 29 1 4060cm 2m 30 100Hz 400Hz 31 050Hz 9

32 2 1 10cm 2 Fig. 2.4Force plate (Distortion gage type) Fig. 2.5Force plate (Piezo-electricity type) 10

2.2.1.2.1 1938 Elfman 33 4 4 2.2.1.2.2 Kistler 1 1 1g 34 2.2.2 2 mm 3536 2.2.2.1 3 11

2.2.2.1.1 A C A C RA 39,40,41 Force A film Microcapsule Color developer C film Fig. 2.6Prescal Table 2.2Specification of Prescal 12

2.2.2.1.2 4 0.1mm 15% 42 1 F-Scan 10msec 43,44,45 Fig. 2.7F-SCAN system 2.2.2.1.3 46 13

2.2.2.1.2 24 250Hz 15.5cm32cm 5mm 13 47 medilogic FPMS medilogic FPMS 64 COP 3 GANGAS GANGAS 16 FSR medilogic FPMS 14

Fig.2.8Parotec-System Table 2.1Specification of Sensor distribution type 15

2.2.2.2 2.2.2.2.1 2.2.2.2.1(a),, 2.2.2.2.1(b) 2.2.2.2.2 6 6 1/10 54 16

2.3 17

3 3.1 1) 2) 3.2 Table 3.1 321000 Z 1) 1/51/12 2) 6 12 Table 3.1Spec of Plantar 3) Z Pressure measurement device 4) 5) ) The inside of ( ) is an in sole part. 18

Fig. 3.1.a)Plantar Pressure Measurement Device Fig. 3.1.b)Plantar Pressure Measurement Device 19

3.3 (Heel) Chopart s joint 1 (Metatarsals ) 4 (Metatarsals ) (Thumb) 3 (Toe)6 Fig.3.2 [J] 45 1 55 b) 1 5 3 123 4 5 1 5 3 1 2 3 d) 1 2 3 4 5 57 59 20

Chopart's joint Metatarsals Toe Heel Metatarsals Fig. 3.2Distribution of sensors Thumb 3.4 PS-10KAM183 Pla-Plate 1.0mm 24.027.0cm 21

Fig. 3.3Plantar pressure sensor 22

4 4.1 60 1 6 23

4.2 (Fig 4.1) (Y ) ( X ) ( A ) i i 6 Y = A i X i= 1 i (4.1) A i (4.1) ( ) A1X1 A2X2 A4X4 A3X3 A6X6 A5X5 Fig.4.1Image of active area 24

4.3 ) A i EFP-S-2KNSA12 1 Fig. 4.2 ( ) [N] Y 6 [kgf/cm2] X, L L, X 1 6 (Fig. 4.1) SPSS Ver.11.0. A i 10 24.75.56 170.16.72[cm]58.79.15[kg] 24.75.56 25

Plantar Pressure Measurement Device Force plate Fig.4.2Example of experiment scenery 4.4 Table 4.1 10 [A]-[J] 24.75.56 170.16.72[cm] 58.79.15[kg] 24.75.56 Table 4.1Parameter of subjects An able leg 26

4.4.1(a) Table 4.2.14.2.10 [A-J] ( ) 6 63 1 4 3 R R R 01 A i Table 4.2.11 10 R Fig.4.3.14.3.10 [A-J] Fig.4.3.11 10 [A-J] Table 4.3 [A-J] Table 4.3Plantar area rate of each subjects 27

4.4.1(b) Table 4.1 24.027.5cm 3.5cm [J] 6 Table 4.2.14.2.10 4 l Table 4.2.24.2.44.2.64.2.74.2.94.2.10 [BDFGIJ] 5 2 Table 4.2.11 8 10 4 3 2 4 Fig.4.3.11 28.7512.618 77.3247.894MP 16.8525.973 21.001 6.164 11.2542.700 26.63610.939 2.7 Marquardt 20% 1 17% 5 13% 12 6 1 2 2345 1 28

61 Fig.4.3.14.3.10 MP 4.4.2(a) Fig.4.4.1(a)4.4.10(f) R [msec] [N] Fig.4.4.1(a)4.4.1(f) [A] 6 Table 4.2.1No. 1 5 Table 4.2.1No. 2 4 Table 4.2.1No. 4 3 Table 4.2.1No. 10 2 Table 4.2.1No. 31 Fig.4.4.2(a)4.4.2(f) [B] 6 Table 4.2.2No. 1 5 Table 4.2.2No. 2 4 Table 4.2.2No. 4 3 Table 4.2.2No. 9 2 Table 4.2.2No. 23 Fig.4.4.3(a)4.4.3(f) [C] 6 Table 4.2.3No. 1 5 Table 4.2.3No. 2 4 Table 4.2.3No. 5 3 Table 4.2.3No. 12 2 Table 4.2.3No. 19 Fig.4.4.4(a)4.4.4(f) [D] 6 Table 4.2.4No. 1 5 Table 4.2.4No. 2 4 Table 4.2.4No. 5 3 Table 4.2.4No. 10 2 Table 4.2.4No. 20 Fig.4.4.5(a)4.4.5(f) [E] 29

6 Table 4.2.5No. 1 5 Table 4.2.5No. 2 4 Table 4.2.5No. 4 3 Table 4.2.5No. 8 2 Table 4.2.5No. 22 Fig.4.4.6(a)4.4.6(f) [F] 6 Table 4.2.6No. 1 5 Table 4.2.6No. 2 4 Table 4.2.6No. 4 3 Table 4.2.6No. 11 2 Table 4.2.6No. 22 Fig.4.4.7(a)4.4.7(f) [G] 6 Table 4.2.7No. 1 5 Table 4.2.7No. 2 4 Table 4.2.7No. 4 3 Table 4.2.7No. 11 2 Table 4.2.7No. 23 Fig.4.4.8(a)4.4.8(f) [H] 6 Table 4.2.8No. 1 5 Table 4.2.8No. 2 4 Table 4.2.8No. 5 3 Table 4.2.8No. 11 2 Table 4.2.8No. 28 Fig.4.4.9(a)4.4.9(f) [I] 6 Table 4.2.9No. 1 5 Table 4.2.9No. 2 4 Table 4.2.9No. 4 3 Table 4.2.9No. 8 2 Table 4.2.9No. 22 Fig.4.4.10(a)4.4.10(f) [J] 6 Table 4.2.10No. 1 5 Table 4.2.10No. 2 4 Table 4.2.10No. 4 3 Table 4.2.10No. 14 2 Table 4.2.10No. 23 4.4.2(b) Fig.4.4.1(a)4.4.10(f) 4 [J] 4 30

0 4.5 4 24.0cm 24.0cm 31

5.1 63 3 1 3 3 cm 65 4 3 32

5.2 1 2 3 4 0 0 67 5.3 68 69 5.4 3 Fig.5.1 33

3 Reaction force Joint position Angle Angle acceleration Acceleration Joint moment Fig. 5.1Joint moment calculation process Body parameter (1997)17 34

5.4.1 3 Fig.5.2 N x N y ( xn, y N x, y ( Am Am (, y A A) ) ) x ϑ m M A ( y y ) N A θ ( y y ) Am A ( x A, ya ) ( A m x & x ( x, y Am Am ) m y & y g ( x x A) N ( x x ) A Am I A ( x, y N N Fig. 5.2Force balance in the foot at stance phase N y ) N x 35

M A M A = I & &θ + m && x x( y A y Am ) + m y (& y + g)( x Am x A ) N y y ) N ( x x ) (4.1) x ( A N y N A 5.4.2 5.4.1 N ϑ 4.1 1 I & θ 4 N ( y ) x x A y N 2 m & x x ( y A y Am ) 3 m (& y y + g)( x Am x A ) 5 N ( x x A ) y N M A N ( x x A ) (4.2) y N x 6 N y 6 Fig.5.2 36

A X 1 1 A i X i x, y ),( x i, y ) ( 1 1 i ( x, y A A) M A x 1, y ) ( 1 A X 1 1 ( x 1 x A ) ( x, y A A ) A X i i ( x x ) A Fig. 5.3Force balance in the foot at stance phase i ( i x i, y ) A Fig. 5.3 ( A i X i ) ( ) N y M A 37

) ( 6 1 A i i i i A x x A X M = 4.3 ( ),( ), 1 A i A x x x x L L 5.5 M A 3 7m 1 60mm90mm 3 Fig.5.4 3 Quick MAG EFP-S-2KNSA12 1 ( ) (4.3) A i 38

23 180[cm] 70[kg] 1 3-dimensional operation analysis system (Quick MAG ) Force plate Fig.5.4Example of experiment scenery 39

5.6 [msec] 1/10 [1/10 N] [Nm] Quick MAG 5.6.1 Fig. 5.5.1(a)-5.5.3(e) 3 Quick MAG Fig. 5.5.1(a) 5.5.2(a) 5.5.3(a) 6 Table 4.2.10No.1 5 Table 4.2.10No.2 4 Table 4.2.10No.4 3 Table 4.2.10No.14 2 Table 4.2.10No.23 2 4 4 Quick MAG 3 Quick MAG Quick MAG 1 1000[msec] 40

1 1200[msec] Quick MAG 5 1 5 1 1 Quick MAG 5.1 3 cm Quick MAG 5.6.2 Fig. 5.5.4(a)-5.5.6(e) 3 Quick MAG Fig. 5.5.4(a) 5.5.5(a)5.5.6(a) 6 Table 4.2.10No.1 5Table 4.2.10 41

No.2 4 Table 4.2.10No.4 3 Table 4.2.10No.14 2 Table 4.2.10No.23 Fig.5.5.4(a)5.5.4(c) Quick MAG mm Fig.5.5.4(a)-5.5.4(c) 5.6.3 Fig. 5.5.7(a)-5.5.7(e) 3 Quick MAG Fig. 5.5.7(a) 42

6 Table 4.2.10No.1 5Table 4.2.10No.2 4 Table 4.2.10No.4 3 Table 4.2.10No.14 2 Table 4.2.10No.23 1 4 Quick MAG 5.6.4 Fig. 5.5.8(a)-5.5.8(e) 3 Quick MAG Fig. 5.5.8(a) 6 Table 4.2.10No.1 5Table 4.2.10No.2 4 Table 4.2.10No.4 3 Table 4.2.10No.14 2 Table 4.2.10 No.23 4 4 Quick MAG 3 43

5.6.5 Fig. 5.5.9(a)-5.5.9(e) 3 Quick MAG Fig. 5.5.9(a) 6 Table 4.2.10No.1 5Table 4.2.10No.2 4 Table 4.2.10No.4 3 Table 4.2.10No.14 2 Table 4.2.10No.23 4 4 Quick MAG 3 5.6.6 Fig. 5.5.10(a)-5.5.10(e) 3 Quick MAG Fig. 5.5.10(a) 6 Table 4.2.10No.1 5Table 4.2.10No.2 4 Table 4.2.10No.4 3 Table 4.2.10No.14 2 Table 4.2.10No.23 4 3 44

5.6.7 Fig. 5.5.11(a)-5.5.11(e) 3 Quick MAG Fig. 5.5.11(a) 6 Table 4.2.10No.1 5Table 4.2.10No.2 4 Table 4.2.10No.4 3 Table 4.2.10No.14 2 Table 4.2.10No.23 4 4 Quick MAG 3 5.6.8 Fig. 5.5.12(a)-5.5.12(e) 3 Quick MAG Fig. 5.5.12(a) 6 Table 4.2.10No.1 5Table 4.2.10No.2 4 Table 4.2.10No.4 3 Table 4.2.10No.14 2 Table 4.2.10No.23 Quick MAG 45

3 Table 5.1 Table 5.1 Distance accuracy of 3-dimensional measurement system 1997 p201 5.7 4 3 46

6.1 5 1 5 6.2 1 2 3 2 4 4 5 3 4 4 6.3 3 47

6.4 3 6.5 1) 1/10 2) 48

49

3 Quick MAG 50

1 (1997)167 2 (1998)51 3 (1998)42 4 810 5 (2001)5-6 6 107 7 MOOK6 (2000)11-12 8 MOOK6 (2000)19 9 (1997)3 10 (2002) 109 11 (1998)51 12 (2002) 112 13 (2002) 112 14 D- Vol.J84-D-No.2 (2001)380-389 15 MBE96-138 (1997)107-113 16 MBE97-89 (1997)21-28 17 PRU94-61 (1994)15-22 18 23 (1996)278 19http://www.kamata.co.jp/ 20http://www.henley-jp.com/ 21 (GAITRite) FAP(Functional Ambulation 51

Profile) 25 (1998)598 22 52-476C (1986)1141-1147 23 1 52-480A (1986)2109-2113 24 2 53-488A (1987)834-842 25 56-529A (1990)102-106 26 1 52-480A (1986)2109-2113 27C. I. Franks R. P. Betts T. DuckworthMicroprocessor-based image processing system for dynamic foot pressure studiesmedical & Biological Engineering & Computing21 (1983)566-572 28K. M. PatilM. S. SrinathNew image-processing system for analysis, display and measurement of static and dynamic foot pressuremedical & Biological Engineering & Computing28 (1990)416-422 29 (2002) 112-113 30 (1989)78 31 (1989)79 32 (2002) 112-113 33 1 52-480A (1986)2109-2113 34 http://www.kistler.co.jp/ 35 15 7 (1977) 47-52 36 (2002) 112 37 30 3 (1979)339-342 38 RA 52

29 (1986)1695-1698 39 17 2 (1982) 132-138 40 (1998)52 41http://www.prescale.com/ 42 (2002) 112 43http://www.kamata.co.jp/ 44 (F-SCAN) 34 11 (1997)818 45 (F-SCAN) 25 (1998)155 46 12 (1985) 891985 47http://www.henley-jp.com/ 48http://www.mpjapan.co.jp/index.htm 49http://www.mpjapan.co.jp/index.htm 50 15 7 (1977) 47-52 51 17 2 (1979)32-38 52S. MiyazakiA. IshidaCapacitive transducer for continuous measurement of vertical foot forcemedical & Biological Engineering & Computing22 (1984)309-316 53 3 20 3 (1982) 32-38 54 45 221-222 55 (1998)29 56 9 3 152 57 1998)96 58 Takayuki Turu, Koreaki Yamakuma, Yasuhiro OnikiDynamic Pressure Distribution beneath the Foot during Walking 39(2) (1990)839-842 59 53

12 (1985) 89 60 (1994)97 61 228(1973) 62 MOOK6 (2000)33 63 (2002) 117-118 64 MOOK6 (2000)33 65 MOOK6 (2000)31 66 MOOK6 (2000)34 67 (2002) 117-118 68 22 (1995)4 69 24(7) 369-376 54

Table 4.2.1 Experiment result of Subject A 1 Table 4.2.2 Experiment result of Subject B 2 Table 4.2.3 Experiment result of Subject C 3 Table 4.2.4 Experiment result of Subject D 4 Table 4.2.5 Experiment result of Subject E 5 Table 4.2.6 Experiment result of Subject F 6 Table 4.2.7 Experiment result of Subject G 7 Table 4.2.8 Experiment result of Subject H 8 Table 4.2.9 Experiment result of Subject I 9 Table 4.2.10Experiment result of Subject J 10 Table 4.2.11Experiment result of all Subject average 11 Fig. 4.3.1 The area ratio of each portion of Subject A s plantar 12 Fig. 4.3.2 The area ratio of each portion of Subject B s plantar 12 Fig. 4.3.3 The area ratio of each portion of Subject C s plantar 12 Fig. 4.3.4 The area ratio of each portion of Subject D s plantar 13 Fig. 4.3.5 The area ratio of each portion of Subject E s plantar 13 Fig. 4.3.6 The area ratio of each portion of Subject F s plantar 13 Fig. 4.3.7 The area ratio of each portion of Subject G s plantar 14 Fig. 4.3.8 The area ratio of each portion of Subject H s plantar 14 Fig. 4.3.9 The area ratio of each portion of Subject I s plantar 14 Fig. 4.3.10The area ratio of each portion of Subject J s plantar 15 Fig. 4.3.11The average of the area ratio of each portion of all subjects plantar15 Fig. 4.4.1 (a) Ground reaction force of Subject A (6 sensors) 16 Fig. 4.4.1 (b) Ground reaction force of Subject A (5 sensors) 16 Fig. 4.4.1 (c) Ground reaction force of Subject A (4 sensors) 16 Fig. 4.4.1 (d) Ground reaction force of Subject A (3 sensors) 17 Fig. 4.4.1 (e) Ground reaction force of Subject A (2 sensors) 17

Fig. 4.4.2 (a) Ground reaction force of Subject B (6 sensors) 18 Fig. 4.4.2 (b) Ground reaction force of Subject B (5 sensors) 18 Fig. 4.4.2 (c) Ground reaction force of Subject B (4 sensors) 18 Fig. 4.4.2 (d) Ground reaction force of Subject B (3 sensors) 19 Fig. 4.4.2 (e) Ground reaction force of Subject B (2 sensors) 19 Fig. 4.4.3 (a) Ground reaction force of Subject C (6 sensors) 20 Fig. 4.4.3 (b) Ground reaction force of Subject C (5 sensors) 20 Fig. 4.4.3 (c) Ground reaction force of Subject C (4 sensors) 20 Fig. 4.4.3 (d) Ground reaction force of Subject C (3 sensors) 21 Fig. 4.4.3 (e) Ground reaction force of Subject C (2 sensors) 21 Fig. 4.4.4 (a) Ground reaction force of Subject D (6 sensors) 22 Fig. 4.4.4 (b) Ground reaction force of Subject D (5 sensors) 22 Fig. 4.4.4 (c) Ground reaction force of Subject D (4 sensors) 22 Fig. 4.4.4 (d) Ground reaction force of Subject D (3 sensors) 23 Fig. 4.4.4 (e) Ground reaction force of Subject D (2 sensors) 23 Fig. 4.4.5 (a) Ground reaction force of Subject E (6 sensors) 24 Fig. 4.4.5 (b) Ground reaction force of Subject E (5 sensors) 24 Fig. 4.4.5 (c) Ground reaction force of Subject E (4 sensors) 24 Fig. 4.4.5 (d) Ground reaction force of Subject E (3 sensors) 25 Fig. 4.4.5 (e) Ground reaction force of Subject E (2 sensors) 25 Fig. 4.4.6 (a) Ground reaction force of Subject F (6 sensors) 26 Fig. 4.4.6 (b) Ground reaction force of Subject F (5 sensors) 26 Fig. 4.4.6 (c) Ground reaction force of Subject F (4 sensors) 26 Fig. 4.4.6 (d) Ground reaction force of Subject F (3 sensors) 27 Fig. 4.4.6 (e) Ground reaction force of Subject F (2 sensors) 27 Fig. 4.4.7 (a) Ground reaction force of Subject G (6 sensors) 28 Fig. 4.4.7 (b) Ground reaction force of Subject G (5 sensors) 28 Fig. 4.4.7 (c) Ground reaction force of Subject G (4 sensors) 28 Fig. 4.4.7 (d) Ground reaction force of Subject G (3 sensors) 29 Fig. 4.4.7 (e) Ground reaction force of Subject G (2 sensors) 29

Fig. 4.4.8 (a) Ground reaction force of Subject H (6 sensors) 30 Fig. 4.4.8 (b) Ground reaction force of Subject H (5 sensors) 30 Fig. 4.4.8 (c) Ground reaction force of Subject H (4 sensors) 30 Fig. 4.4.8 (d) Ground reaction force of Subject H (3 sensors) 31 Fig. 4.4.8 (e) Ground reaction force of Subject H (2 sensors) 31 Fig. 4.4.9 (a) Ground reaction force of Subject I (6 sensors) 32 Fig. 4.4.9 (b) Ground reaction force of Subject I (5 sensors) 32 Fig. 4.4.9 (c) Ground reaction force of Subject I (4 sensors) 32 Fig. 4.4.9 (d) Ground reaction force of Subject I (3 sensors) 33 Fig. 4.4.9 (e) Ground reaction force of Subject I (2 sensors) 33 Fig. 4.4.10(a) Ground reaction force of Subject J (6 sensors) 34 Fig. 4.4.10(b) Ground reaction force of Subject J (5 sensors) 34 Fig. 4.4.10(c) Ground reaction force of Subject J (4 sensors) 34 Fig. 4.4.10(d) Ground reaction force of Subject J (3 sensors)35 Fig. 4.4.10(e) Ground reaction force of Subject J (2 sensors) 35 Fig. 5.5.1 (a)normal gait (6 sensors) 36 Fig. 5.5.1 (b)normal gait (5 sensors) 36 Fig. 5.5.1 (c)normal gait (4 sensors) 36 Fig. 5.5.1 (d)normal gait (3 sensors) 37 Fig. 5.5.1 (e)normal gait (2 sensors) 37 Fig. 5.5.2 (a)normal gait (6 sensors) 38 Fig. 5.5.2 (b)normal gait (5 sensors) 38 Fig. 5.5.2 (c)normal gait (4 sensors) 38 Fig. 5.5.2 (d)normal gait (3 sensors) 39 Fig. 5.5.2 (e)normal gait (2 sensors) 39 Fig. 5.5.3 (a)normal gait (6 sensors) 40 Fig. 5.5.3 (b)normal gait (5 sensors) 40 Fig. 5.5.3 (c)normal gait (4 sensors) 40 Fig. 5.5.3 (d)normal gait (3 sensors) 41 Fig. 5.5.3 (e)normal gait (2 sensors) 41

Fig. 5.5.4 (a)regulation gait A (6 sensors) 42 Fig. 5.5.4 (b)regulation gait A (5 sensors) 42 Fig. 5.5.4 (c)regulation gait A (4 sensors) 42 Fig. 5.5.4 (d)regulation gait A (3 sensors) 43 Fig. 5.5.4 (e)regulation gait A (2 sensors) 43 Fig. 5.5.5 (a)regulation gait A (6 sensors) 44 Fig. 5.5.5 (b)regulation gait A (5 sensors) 44 Fig. 5.5.5 (c)regulation gait A (4 sensors) 44 Fig. 5.5.5 (d)regulation gait A (3 sensors) 45 Fig. 5.5.5 (e)regulation gait A (2 sensors) 45 Fig. 5.5.6 (a)regulation gait A (6 sensors) 46 Fig. 5.5.6 (b)regulation gait A (5 sensors) 46 Fig. 5.5.6 (c)regulation gait A (4 sensors) 46 Fig. 5.5.6 (d)regulation gait A (3 sensors) 47 Fig. 5.5.6 (e)regulation gait A (2 sensors) 47 Fig. 5.5.7 (a)regulation gait B (6 sensors) Fig. 5.5.7 (b)regulation gait B (5 sensors) Fig. 5.5.7 (c)regulation gait B (4 sensors) 48 Fig. 5.5.7 (d)regulation gait B (3 sensors) Fig. 5.5.7 (e)regulation gait B (2 sensors) Fig. 5.5.8 (a)regulation gait C (6 sensors) Fig. 5.5.8 (b)regulation gait C (5 sensors) Fig. 5.5.8 (c)regulation gait C (4 sensors) 50 Fig. 5.5.8 (d)regulation gait C (3 sensors) Fig. 5.5.8 (e)regulation gait C (2 sensors) Fig. 5.5.9 (a)backward gait (6 sensors) 52 Fig. 5.5.9 (a)backward gait (5 sensors) 52 Fig. 5.5.9 (a)backward gait (4 sensors) 52 Fig. 5.5.9 (a)backward gait (3 sensors) 53 Fig. 5.5.9 (a)backward gait (2 sensors) 53

Fig. 5.5.10(a)Regulation gait D (6 sensors) 54 Fig. 5.5.10(b)Regulation gait D (5 sensors) 54 Fig. 5.5.10(c)Regulation gait D (4 sensors) Fig. 5.5.10(d)Regulation gait D (3 sensors) 55 Fig. 5.5.10(e)Regulation gait D (2 sensors) 55 Fig. 5.5.11(a)Stairs going up (6 sensors) 56 Fig. 5.5.11(b)Stairs going up (5 sensors) 56 Fig. 5.5.11(c)Stairs going up (4 sensors) 56 Fig. 5.5.11(d)Stairs going up (3 sensors) 57 Fig. 5.5.11(e)Stairs going up (2 sensors) 57 Fig. 5.5.12(a)Stairs going up (6 sensors) 58 Fig. 5.5.12(b)Stairs going up (5 sensors) 58 Fig. 5.5.12(c)Stairs going up (4 sensors) 58 Fig. 5.5.12(d)Stairs going up (3 sensors) 59 Fig. 5.5.12(e)Stairs going up (2 sensors) 59

Table 4.2.1Experiment Result of subject A 1

Table 4.2.2Experiment Result of subject B 2

Table 4.2.3Experiment Result of subject C 3

Table 4.2.4Experiment Result of subject D 4

Table 4.2.5Experiment Result of subject E 5

Table 4.2.6Experiment Result of subject F 6

Table 4.2.7Experiment Result of subject G 7

Table 4.2.8Experiment Result of subject H 8

Table 4.2.9Experiment Result of subject I 9

Table 4.2.10Experiment Result of subject 10

Table 4.2.11Experiments result of all subjects average 11

Fig. 4.3.1The area ratio of each portion of Subject A s plantar Fig. 4.3.2The area ratio of each portion of Subject B s plantar Fig. 4.3.3The area ratio of each portion of Subject C s plantar 12

Fig. 4.3.4The area ratio of each portion of Subject D s plantar Fig. 4.3.5The area ratio of each portion of Subject E s plantar Fig. 4.3.6The area ratio of each portion of Subject F s plantar 13

Fig. 4.3.7The area ratio of each portion of Subject G s plantar Fig. 4.3.8The area ratio of each portion of Subject H s plantar Fig. 4.3.9The area ratio of each portion of Subject I s plantar 14

Fig. 4.3.10The area ratio of each portion of Subject J s plantar Fig. 4.3.11 The average of the area ratio of each portion of all subjects plantar 15

Fig. 4.4.1(a)Ground reaction force of Subject A(6 Sensors) Fig. 4.4.1(b)Ground reaction force of Subject A(5 Sensors) Fig. 4.4.1(c)Ground reaction force of Subject A(4 Sensors) 16

Fig. 4.4.1(d)Ground reaction force of Subject A(3 Sensors) Fig. 4.4.1(e)Ground reaction force of Subject A(2 Sensors) 17

Fig. 4.4.2(a)Ground reaction force of Subject B(6 Sensors) Fig. 4.4.2(b)Ground reaction force of Subject B(5 Sensors) Fig. 4.4.2(c)Ground reaction force of Subject B(4 Sensors) 18

Fig. 4.4.2(d)Ground reaction force of Subject B(3 Sensors) Fig. 4.4.2(e)Ground reaction force of Subject B(2 Sensors) 19

Fig. 4.4.3(a)Ground reaction force of Subject C(6 Sensors) Fig. 4.4.3(b)Ground reaction force of Subject C(5 Sensors) Fig. 4.4.3(c)Ground reaction force of Subject C(4 Sensors) 20

Fig. 4.4.3(d)Ground reaction force of Subject C(3 Sensors) Fig. 4.4.3(e)Ground reaction force of Subject C(2 Sensors) 21

Fig. 4.4.4(a)Ground reaction force of Subject D(6 Sensors) Fig. 4.4.4(b)Ground reaction force of Subject D(5 Sensors) Fig. 4.4.4(c)Ground reaction force of Subject D(4 Sensors) 22

Fig. 4.4.4(d)Ground reaction force of Subject D(3 Sensors) Fig. 4.4.4(e)Ground reaction force of Subject D(2 Sensors) 23

Fig. 4.4.5(a)Ground reaction force of Subject E(6 Sensors) Fig. 4.4.5(b)Ground reaction force of Subject E(5 Sensors) Fig. 4.4.5(c)Ground reaction force of Subject E(4 Sensors) 24

Fig. 4.4.5(d)Ground reaction force of Subject E(3 Sensors) Fig. 4.4.5(e)Ground reaction force of Subject E(2 Sensors) 25

Fig. 4.4.6(a)Ground reaction force of Subject F(6 Sensors) Fig. 4.4.6(b)Ground reaction force of Subject F(5 Sensors) Fig. 4.4.6(c)Ground reaction force of Subject F(4 Sensors) 26

Fig. 4.4.6(d)Ground reaction force of Subject F(3 Sensors) Fig. 4.4.6(e)Ground reaction force of Subject F(2 Sensors) 27

Fig. 4.4.7(a)Ground reaction force of Subject G(6 Sensors) Fig. 4.4.7(b)Ground reaction force of Subject G(5 Sensors) Fig. 4.4.7(c)Ground reaction force of Subject G(4 Sensors) 28

Fig. 4.4.7(d)Ground reaction force of Subject G(3 Sensors) Fig. 4.4.7(e)Ground reaction force of Subject G(2 Sensors) 29

Fig. 4.4.8(a)Ground reaction force of Subject H(6 Sensors) Fig. 4.4.8(b)Ground reaction force of Subject H(5 Sensors) Fig. 4.4.8(c)Ground reaction force of Subject H(4 Sensors) 30

Fig. 4.4.8(d)Ground reaction force of Subject H(3 Sensors) Fig. 4.4.8(e)Ground reaction force of Subject H(2 Sensors) 31

Fig. 4.4.9(a)Ground reaction force of Subject I(6 Sensors) Fig. 4.4.9(b)Ground reaction force of Subject I(5 Sensors) Fig. 4.4.9(c)Ground reaction force of Subject I(4 Sensors) 32

Fig. 4.4.9(d)Ground reaction force of Subject I(3 Sensors) Fig. 4.4.9(e)Ground reaction force of Subject I(2 Sensors) 33

Fig. 4.4.10(a)Ground reaction force of Subject J(6 Sensors) Fig. 4.4.10(b)Ground reaction force of Subject J(5 Sensors) Fig. 4.4.10(c)Ground reaction force of Subject J(4 Sensors) 34

Fig. 4.4.10(d)Ground reaction force of Subject J(3 Sensors) Fig. 4.4.10(e)Ground reaction force of Subject J(2 Sensors) 35

Fig. 5.5.1(a)Normal gait 6 Sensors Fig. 5.5.1(b)Normal gait 5 Sensors Fig. 5.5.1(c)Normal gait 4 Sensors 36

Fig. 5.5.1(d)Normal gait 3 Sensors Fig. 5.5.1(e)Normal gait 2 Sensors 37

Fig. 5.5.2(a)Normal gait 6 Sensors Fig. 5.5.2(b)Normal gait 5 Sensors Fig. 5.5.2(c)Normal gait 3 Sensors 38

Fig. 5.5.2(d)Normal gait 3 Sensors Fig. 5.5.2(e)Normal gait 2 Sensors 39

Fig. 5.5.3(a)Normal gait 6 Sensors Fig. 5.5.3(b)Normal gait 5 Sensors Fig. 5.5.3(c)Normal gait 4 Sensors 40

Fig. 5.5.3(d)Normal gait 3 Sensors Fig. 5.5.3(e)Normal gait 2 Sensors 41

Fig. 5.5.4(a)Regulation gait A6 Sensors Fig. 5.5.4(b)Regulation gait A5 Sensors Fig. 5.5.4(c)Regulation gait A4 Sensors 42

Fig. 5.5.4(d)Regulation gait A3 Sensors Fig. 5.5.4(e)Regulation gait A2 Sensors 43

Fig. 5.5.5(a)Regulation gait A6 Sensors Fig. 5.5.5(b)Regulation gait A5 Sensors Fig. 5.5.5(c)Regulation gait A4 Sensors 44

Fig. 5.5.5(d)Regulation gait A3 Sensors Fig. 5.5.5(e)Regulation gait A2 Sensors 45

Fig. 5.5.6(a)Regulation gait A6 Sensors Fig. 5.5.6(b)Regulation gait A5 Sensors Fig. 5.5.6(c)Regulation gait A4 Sensors 46

Fig. 5.5.6(d)Regulation gait A3 Sensors Fig. 5.5.6(e)Regulation gait A2 Sensors 47

Fig. 5.5.7(a)Regulation gait B6 Sensors Fig. 5.5.7(b)Regulation gait B5 Sensors Fig. 5.5.7(c)Regulation gait B4 Sensors 48

Fig. 5.5.7(d)Regulation gait B3 Sensors Fig. 5.5.7(e)Regulation gait B2 Sensors 49

Fig. 5.5.8(a)Regulation gait C6 Sensors Fig. 5.5.8(b)Regulation gait C5 Sensors Fig. 5.5.8(c)Regulation gait C4 Sensors 50

Fig. 5.5.8(d)Regulation gait C3 Sensors Fig. 5.5.8(e)Regulation gait C2 Sensors 51

Fig. 5.5.9(a)Backward gait6 Sensors Fig. 5.5.9(b)Backward gait5 Sensors Fig. 5.5.9(c)Backward gait4 Sensors 52

Fig. 5.5.9(d)Backward gait3 Sensors Fig. 5.5.9(e)Backward gait2 Sensors 53

Fig. 5.5.10(a)Regulation gait D6 Sensors Fig. 5.5.10(b)Regulation gait D5 Sensors Fig. 5.5.10(c)Regulation gait D4 Sensors 54

Fig. 5.5.10(d)Regulation gait D3 Sensors Fig. 5.5.10(e)Regulation gait D2 Sensors 55

Fig. 5.5.11(a)Stairs going up6 Sensors Fig. 5.5.11(b)Stairs going up5 Sensors Fig. 5.5.11(c)Stairs going up4 Sensors 56

Fig. 5.5.11(d)Stairs going up3 Sensors Fig. 5.5.11(e)Stairs going up2 Sensors 57

Fig. 5.5.12(a)Stairs going down6 Sensors Fig. 5.5.12(b)Stairs going down5 Sensors Fig. 5.5.12(c)Stairs going down4 Sensors 58

Fig. 5.5.12(d)Stairs going down3 Sensors Fig. 5.5.12(e)Stairs going down2 Sensors 59