CVaR

Similar documents
01-._..

24 [11] [4, 8, 10, 20, 21] CreditMetrics [8] CreditMetrics CreditMetrics CreditMetrics [13] [1, 12, 16, 17] [12] [1] Conditional Value-at-Risk C

バリュー・アット・リスクのリスク指標としての妥当性について ― 理論的サーベイによる期待ショートフォールとの比較分析―

1 CAPM: I-,,, I- ( ) 1 I- I- I- ( CAPM) I- CAPM I- 1 I- Jensen Fama-French 3 I- Fama-French 3 I- Fama-MacBeth I- SMB-FL, HML-FL Fama-MacBeth 1 Fama-Fr

II III II 1 III ( ) [2] [3] [1] 1 1:


I- Fama-French 3, Idiosyncratic (I- ) I- ( ) 1 I- I- I- 1 I- I- Jensen Fama-French 3 SMB-FL, HML-FL I- Fama-French 3 I- Fama-MacBeth Fama-MacBeth I- S

untitled

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í


() ( ) ( ) (1996) (1997) (1997) EaR (Earning at Risk) VaR ( ) ( ) Memmel (214) () 2 (214) 2

³ÎΨÏÀ

201711grade1ouyou.pdf

ばらつき抑制のための確率最適制御

80 X 1, X 2,, X n ( λ ) λ P(X = x) = f (x; λ) = λx e λ, x = 0, 1, 2, x! l(λ) = n f (x i ; λ) = i=1 i=1 n λ x i e λ i=1 x i! = λ n i=1 x i e nλ n i=1 x

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P


() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

6.1 (P (P (P (P (P (P (, P (, P.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

パーキンソン病治療ガイドライン2002

研修コーナー

renshumondai-kaito.dvi

6.1 (P (P (P (P (P (P (, P (, P.101

統計学のポイント整理

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

通信容量制約を考慮したフィードバック制御 - 電子情報通信学会 情報理論研究会(IT) 若手研究者のための講演会

本文/目次(裏白)


* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

ohpmain.dvi

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

QMII_10.dvi

tokei01.dvi

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

Part () () Γ Part ,

waseda2010a-jukaiki1-main.dvi

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

II 2 II

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

1 Tokyo Daily Rainfall (mm) Days (mm)

第3章 非線形計画法の基礎

AR(1) y t = φy t 1 + ɛ t, ɛ t N(0, σ 2 ) 1. Mean of y t given y t 1, y t 2, E(y t y t 1, y t 2, ) = φy t 1 2. Variance of y t given y t 1, y t

meiji_resume_1.PDF

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

untitled

untitled

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

x E E E e i ω = t + ikx 0 k λ λ 2π k 2π/λ k ω/v v n v c/n k = nω c c ω/2π λ k 2πn/λ 2π/(λ/n) κ n n κ N n iκ k = Nω c iωt + inωx c iωt + i( n+ iκ ) ωx

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

mf.dvi

陦ィ邏・2

untitled

数学概論I

untitled

03.Œk’ì

Mathematical Logic I 12 Contents I Zorn

商品流動性リスクの計量化に関する一考察(その2)―内生的流動性リスクを考慮したストレス・テスト―

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

2 Recovery Theorem Spears [2013]Audrino et al. [2015]Backwell [2015] Spears [2013] Ross [2015] Audrino et al. [2015] Recovery Theorem Tikhonov (Tikhon

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

10:30 12:00 P.G. vs vs vs 2

三石貴志.indd

第90回日本感染症学会学術講演会抄録(I)

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

Chap9.dvi

Ł\”ƒ-2005

LLG-R8.Nisus.pdf


2 I- I- (1) 2 I- (2) 2 I- 1 [18] I- I-. 1 I- I- Jensen [11] I- FF 3 I- FF CAPM n ( i = 1,..., n) M t R i,t, i = 1,..., n R M,t ( ) R i,t = r i

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

untitled

(pdf) (cdf) Matlab χ ( ) F t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

プリント

Q & A Q A p

gr09.dvi



TOP URL 1

5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

ii

L Y L( ) Y0.15Y 0.03L 0.01L 6% L=(10.15)Y 108.5Y 6%1 Y y p L ( 19 ) [1990] [1988] 1

分散分析・2次元正規分布

2/50 Auction: Theory and Practice 3 / 50 (WTO) 10 SDR ,600 Auction: Theory and Practice 4 / 50 2

Transcription:

CVaR 20 4 24 3 24 1 31

,.,.,. Markowitz,., (Value-at-Risk, VaR) (Conditional Value-at-Risk, CVaR). VaR, CVaR VaR. CVaR, CVaR. CVaR,,.,.,,,.,,.

1 5 2 VaR CVaR 6 2.1................................................ 6 2.2 VaR........................................... 8 2.3 CVaR...................................... 9 2.4.......................................... 10 3 CVaR 11 3.1.............................................. 11 3.2............................................... 12 4 CVaR 12 4.1.................................... 12 4.2 µ Σ................................... 13 4.3 µ................................... 14 4.4.......................................... 14 5 15 5.1.......................................... 17 6 18

1,.,.,.,,., [11]. Markowitz [3],., 2.,, [7], (Value-at-Risk, VaR) [10]. VaR α β β = 0.95, 0.99 α.var, [4], (Conditional-Value-at-Risk, CVaR) [11]. CVaR (Expected Shortfall). CVaR VaR, VaR. CVaR,.

, CVaR.,,.,..,,,.. 2 VaR CVaR,VaR CVaR,. 3 CVaR. 4, CVaR. 5,. 2 VaR CVaR 2.1 VaR CVaR Rockafellar Uryasev [5],VaR CVaR. i = 1,, n, i x i, i y i., y i, x = (x 1,, x n ) T, y = (y 1,, y n ) T.. f(x, y), y p(y) ( f(x, y) = x T y )., α Ψ(x, α) = p(y)dy f(x,y) α

. x, Ψ(x, α) α,. Ψ(x, α) α. VaR α β α, VaR β (x) = min{α Ψ(x, α) β}. VaR β (x) α β (x). Ψ(x, α) α, α β (x) Ψ(x, α) = β α., CVaR VaR, f(x,y) α CVaR β (x) = β f(x, y)p(y)dy (x) f(x,y) α β (x) p(y)dy.ψ(x, α) α, f(x,y) α β p(y)dy = 1 β, CVaR (x) CVaR β (x) = 1 f(x, y)p(y)dy 1 β f(x,y) α β (x). β CVaR. F β (x, α). F β (x, α) = α + 1 1 β y R m [f(x, y) α] + p(y)dy (1), [t] + = max{t, 0}. CVaR β (x) ϕ β (x)., CVaR VaR, α β (x) ϕ β (x)., 2.1 x, F β (x, α) α, ϕ β (x) F β (x, α) α., ϕ β (x) = min α R F β(x, α).

Shapiro Wardi[8], x G(α) = y R m [f(x, y) α] + p(y)dy G G (α) = Ψ(x, α) 1. (1) F β (x, α) α, α F β(x, α) = (1 β) 1 [Ψ(x, α) β]., F β (x, α) α Ψ(x, α) = β α., min F β(x, α) = F β (x, α β (x)) = α β (x) + 1 [f(x, y) α β (x)] + p(y)dy α R 1 β y R m, (f(x, y) α β (x))p(y)dy f(x,y) α β (x) = f(x, y)p(y)dy α β(x) p(y)dy f(x,y) α β (x) f(x,y) α β (x). 1 (1 β)ϕ β (x), 2 α β (x)(1 β), min F β(x, α) = α β (x) + (1 β) 1 ((1 β)ϕ β (x) α β (x)(1 β)) = ϕ β (x) α R. 2.2 VaR X 1,X 2, ρ( ). Artzner [4]. (monotonicity): X 1 X 2 ρ(x 1 ) ρ(x 2 ) (subadditivity): ρ(x 1 + X 2 ) ρ(x 1 ) + ρ(x 2 ) (positive homogeneity): λ > 0 ρ(λx) = λρ(x) (translation invariance): c ρ(x + c) = ρ(x) + c (Coherent measure of risk). VaR,. VaR 1

[4]. 1, A,B, 80 20. β = 0.99, VaR 0.99 (A) = 30, VaR 0.99 (B) = 30, VaR 0.99 (A + B) = 120, VaR 0.99 (A + B) > VaR 0.99 (A) + VaR 0.99 (B).,VaR. A B A+B 1 98.0% 80 80 160 2 0.9% 20 100 120 3 0.2% 30 30 60 4 0.9% 100 20 120 1 VaR 2.3 CVaR CVaR 2.2. 2.2 X Y, β (0, 1) β CVaR, ϕ β. ϕ β (X + Y ) ϕ β (X) + ϕ β (Y ) Z = X + Y. X β x β, Y β y β, Z β z β, ϕ β (X), ϕ β (Y ), ϕ β (Z) [4]. ϕ β (X) = 1 1 β E[X1 X x β ] ϕ β (Y ) = 1 1 β E[Y 1 Y y β ] ϕ β (Z) = 1 1 β E[Z1 Z z β ], 1 A A 1, 0., 1 X xβ 1 Z zβ 0 if X x β 1 X xβ 1 Z zβ 0 if X x β

, (1 X xβ 1 Z zβ )(X x β ) 0 (1 Y yβ 1 Z zβ )(Y y β ) 0., (1 β)(ϕ β (X) + ϕ β (Y ) ϕ β (Z)) = E[X1 X xβ + Y 1 Y yβ Z1 Z zβ ] = E[X(1 X xβ 1 Z zβ ) + Y (1 Y yβ 1 Z zβ )] x β E[1 X xβ 1 Z zβ ] + y β E[1 y yβ 1 Z zβ ] = x β {(1 β) (1 β)} + y β {(1 β) (1 β)} = 0. ϕ β (Z) ϕ β (X) + ϕ β (Y ). CVaR,,, CVaR. 2.4,, Ben-Tal Nemirovski [1]).,,., ( ),. CVaR,,, P,. 2.1 P, x X CVaR (Worst-case CVaR, WCVaR). WCVaR β (x) sup CVaR β (x) p( ) P

3 CVaR 3.1 y,., p( ) P,, p( ) P (2)., P, P p i ( ), i = 1,, l 1 P M., l l P M { λ i p i ( ) : λ i = 1, λ i 0, i = 1,, l} (3) i=1 i=1. P M, P M p i ( ), i = 1,, l., Λ Fβ i (x, α). Λ {λ = (λ 1,, λ l ) : l λ i = 1, λ i 0, i = 1,, l} i=1 Fβ(x, i α) α + 1 [f(x, y) α] + p i (y)dy, i = 1,, l 1 β y R n 1.1,. 3.1 x β, P M WCVaR β (x). WCVaR β (x) = min α R max i L F i β(x, α), L {1, 2,, l}. Fβ L (x, α) F L β (x, α) max i L F i β(x, α), 2.1.

3.1 β. min WCVaR β(x) = min F β L (x, α) x X (x,α) X R 3.2 WCVaR. 3.1 Fβ L (x, α), WCVaR. min (x,α,θ) X R R θ s.t. α + 1 1 β [f(x, y) α] + p i (y)dy θ, i = 1,, l y R m,. i = 1,, l, y i [k] k, Si, WCVaR. min (x,α,θ) X R R s.t. α + 1 S i (1 β) θ S i k=1 [f(x, yi [k] ) α]+ θ, i = 1,, l u = (u 1 ; ; u l ) R n, n = l i=1 S i, WCVaR. min s.t. θ x X α + 1 1 β 1 S i S i k=1 ui k θ, i = 1,, l u i k f(x, yi [k] ) α, k = 1,, Si, i = 1,, l u i k 0, k = 1,, Si, i = 1,, l, f(x, y) x, X,. 4 CVaR 4.1.,. =,, J [9, pp.191-194],.,,.,

., 1,.,.,.,, r, r e, r = log(1 + r e ), exp(r) > 0, r e 1.,,., 1 + r e.,.. p(x) = 1 (ln x µ)2 exp( 2πσx 2σ 2 ), µ σ,,.,., m. 1 p(y) = ( ) m 1 1 exp( 1 2π Σ y 1 y 2 y m 2 (log y µ)t Σ 1 (log y µ)), log y = (log y 1,, log y m ) T, µ R m Σ R m m. 4.2 µ Σ, µ,σ. µ,,., Σ,., Σ, µ C. 2.4, CVaR,

P,.,,, µ C(r) CVaR., r. 4.3 µ, [8, pp.32-36] µ.,, µ center. T, µ 1,, µ T., µ center = 1 T T t=1 µt, µ center T, µ center, µ center.,.,., S. (µ µ center ) T S 1 (µ µ center ) = r 2 (4) r > 0, r µ center., µ C(r). 4.4, WCVaR. min WCVaR β(x) = min x X x X sup p( ) P CVaR β (x), X, P (µ C, Σ)., µ C(r) 3.1., C(r), (2)

P,, µ i, i = 1,, l. µ i p i ( ) (3). m, m, l l = 2m + 1., p i (y), i = 1,, l (µ i, Σ) m, p i 1 (y) = ( ) m 1 1 exp( 1 2π Σ y 1 y 2 y m 2 (log y µ i) T Σ 1 (log y µ i )). i = 1,, l, p i ( ) y[k] i, k = 1,, Si, f(x, y[k] i ) = xt y[k] i, WCVaR. 5 min s.t. θ x X α + 1 1 β 1 S i S i k=1 ui k θ, i = 1,, l u i k xt y i [k] α, k = 1,, Si, i = 1,, l u i k 0, k = 1,, Si, i = 1,, l 4. Matlab optimiztion toolbox linprog. 4 β = 0.99 CVaR,. m = 3, x = (x 1, x 2, x 3 ) T R 3, X = {x R 3 x 1 + x 2 + x 3 = 1, x 1, x 2, x 3 0}. 4.5, m C(r) l l = 2m + 1, l = 7. S i = 4000, i = 1,, 7.. Σ (4) µ center S. r.

C(r) µ i, = 1,, 7. µ i, i = 1,, 7, (µ i, Σ) 3 y[k] i, k = 1,, 4000.. min θ s.t. x 1, x 2, x 3 0 x 1 + x 2 + x 3 = 1 α + 1 1 4000 1 0.99 4000 k=1 ui k θ, i = 1,, 7 u i k xt y[k] i α, k = 1,, 4000, i = 1,, 7 0, k = 1,, 4000, i = 1,, 7 u i k 2006 2010,,. A, B, C. 2006 2010 A, B, C 2., 2 A 0.002588675 B 0.000477945 C 0.006046415 3. 4. 2 4 3 A B C A 0.002308732 0.001720457 0.001741415 B 0.001720457 0.003987745 0.00241946 C 0.001741415 0.00241946 0.004607697 S C(r), r, C(r),. 4.4

4 A B C 2006-0.005311089 0.001542907 0.000488414 2007 0.005230447-0.006659508 0.003530539 2008 0.014399919 0.017666839 0.018699048 2009-0.004727987-0.00749924 0.001646234 2010 0.003823477-0.001526867 0.006584478 S S 1 2.9785 0.7603 4.0348 S 1 = 1.0 10 5 0.7603 0.6183 1.5458 4.0348 1.5458 6.2775. r, r = 2.5, 2.0, 1.5, 1.0, 0.5. 5.1 5 x 1 x 2 x 3 r=2.5 0.8110 0.0000 0.1839 r=2.0 0.7026 0.0604 0.2370 r=1.5 0.7949 0.0642 0.1408 r=1.0 0.8202 0.0663 0.1135 r=0.5 0.7690 0.0345 0.1965 S 1 i j S 1 (i, j). 5 A r. 3,., B C C. µ., C(r) (4), S 1 (3, 3) S 1 (2, 2) 10, r C B. B C C

., S 1. 2.9785 4.0348 0.7603 S 1 = 1.0 10 5 4.0348 6.2775 1.5458 0.7603 1.5458 0.6183, 6 r = 2.5, 2.0, 1.5, r = 1.0, 0.5 B 6 2 x 1 x 2 x 3 r=2.5 0.8637 0.0989 0.0374 r=2.0 0.7172 0.1538 0.1290 r=1.5 0.7192 0.1880 0.0928 r=1.0 0.8152 0.0897 0.0951 r=0.5 0.7708 0.0550 0.1742 C.,,,,. 6 CVaR,., 2006 2010,.,, Σ, C(r).,.,.

[1] A. Ben-Tal and A. Nemirovski, Robust Optimization - Methodology and Applications, Mathematical. Programming, Vol.92, pp. 453-480, 2002. [2] A. Shapiro and Y. Wardi, Nondifferentiability of The Steady-State Function in Discrete Event Dynamic Systems, IEEE Transactions on Automatic Control, Vol.39, pp.1707-1711, 1994. [3] H. Markowitz, Portfolio Seletion, The Journal of Finance, Vol7 pp.77-91, 1952. [4] P. Artzner, F. Delbaen, J.M. Eber, and D. Heath, Coherent Measures of Risk, Mathematical Finance, Vol.9, pp.203-228, 1999. [5] R.T. Rockafellar and S. Uryasev, Optimization of Conditional Value-at-Risk, J. Risk, Vol.2, pp.21-41, 2000. [6] S. Zhu and M. Fukushima, Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management, Operations Research, Vol.57, pp.1155-1168, 2009. [7], 1,, 1995. [8],, 1,, 2003. [9],, J, ( ),, 2003. [10],,, 2001. [11],,, Journal of the Operations Research Society of Japan, Vol.45, pp.99-101, 2001.