ii

Size: px
Start display at page:

Download "ii"

Transcription

1 i P ERT P ERT P ERT (Economic Order Quantity, EOQ)

2 ii

3 A180 A Pareto

4

5 5 145 Excel sumproduct() B4 : D4 B5 : B7 C5 : C7 D5 : D7 E5 =sumproduct($b$4:$d$4,b5:d5) E6, E7 E5 M N w 1, w 2,..., w M k q k1, q k2,..., q kn i V i V i = w 1 q 1i + w 2 q 2i w M q Mi, i = 1, 2,..., N (1) V 1, V 2,..., V N , 0.3, , 0.4, % 5 : 4 : = = = 0.06

6 Analytic Hierarchy Process AHP Thomas Saaty

7 (1) (A) (B) (C) (2) w 1 : w 2 : w 3 (3) (A) : (B) : (C) = q 11 : q 12 : q 13 (A) : (B) : (C) = q 21 : q 22 : q 23 (A) : (B) : (C) = q 31 : q 32 : q 33 (4) 5.1 (A) = (B) = (C) =

8

9 , 2, 3 i k i a ik k a ki a ii = 1(i = 1, 2, 3) A = (a ik ) 3 3 (1) (2) (3) (1) 1 5 (2) 1/5 1 (3)

10 150 5 (1) (2) (3) (1) (2) 1/3 1 5 (3) 1/9 1/ : 3 5 : = 3 : : = : : M M M EXCEL ˆ(1/M) : : = 9 13 : 5 21 : 1 = : : a A = ( 1 a 1/a 1 ) a : 1 a = a : a : 1 a + 1 = a : 1

11

12 A C 6 b AC = 6, b CA = 1/6 (A) (B) (C) (D) (A) 1 (B) 1 (C) 1 (D) 1...

13

14 (1) 1 (A), (B), (C) (A) (B) (C) (A) 1 (B) 1 (C) 1 q 11 = q 12 = q 13 = (A), (B), (C) (A) (B) (C) (A) 1 (B) 1 (C) 1 q 21 = q 22 = q 23 = (A), (B), (C) (A) (B) (C) (A) 1 (B) 1 (C) 1 q 31 = q 32 = q 33 = (2) (A) (B) (C)

15 A = (a ik ) {w i } i k w i : w k i k w i /w k w 1 /w 1 w 1 /w 2 w 1 /w 3 D = w 2 /w 1 w 2 /w 2 w 2 /w 3 (2) w 3 /w 1 w 3 /w 2 w 3 /w 3 w 1 + w 2 + w 3 = 1 w 1 : w 2 : w w 1 : w 2 : w D D D w 1 w 2 = w 1/w 1 w 1 /w 2 w 1 /w 3 w 2 /w 1 w 2 /w 2 w 2 /w 3 w 1 w 2 w 3 w 3 /w 1 w 3 /w 2 w 3 /w 3 w 3 = 3 w 1 w 2 w 3

16 156 5 D 3 D 3 M D M A D D A D A = {a ik } {v i } a ik v i v k

17 5 157 {v i } D = {d ik } d ik = v i /v k a ik /d ik 1 β = i,k=1 a ik d ik = i,k=1 a ik v k v i C.I. = 3 3β 3 (β 1) = (3) 0 C.I. β d ik = d 1 ki A D 9 β = i,k=1 a ik d ik = β = a ik d ki = 1 9 i,k=1 ( 3 3 ) a ik d ki M A D A D A D M b 3β C.I. = b M M 1 C.I. A λ max i=1 k=1 C.I. = λ max M M 1 (4) b = M 0 A C.I. b= C.I. =

18 (C.R.) (4) R.I. C.I. C.R. = C.I. R.I. C.R. 0.2 M R.I R.I. C.R. C.R. = 5.10 C.I. C.R

19 : 1 2 : 1 4 : 1

20

21 w 1, w 2, w 3 t 1, n 1, b 1 t 2, n 2, b 2 t 3, n 3, b 3 w 1 t 1 + w 2 t 2 + w 3 t 3 w 1 : w 2 ( w1 w 1 t 1 + w 2 t 2 + w 3 t 3 = (w 1 + w 2 ) t 1 + w ) 2 t 2 + w 3 t 3 (5) w 1 + w 2 w 1 + w 2 w 3 w 3 w 1 : w 2 w 1 /(w 1 + w 2 ), w 2 /(w 1 + w 2 ) t 1, t 2 w 1 w 1 + w 2 t 1 + w 2 w 1 + w 2 t 2 (= y) w 3 w 3 w 1 t 1 + w 2 t 2 + w 3 t 3 = (1 w 3 )y + w 3 t 3 (6) w 3 w % 30%

22 162 5 (sensitivity analysis)

23

24 AHP AHP AHP 5.13 [1] (1986) [2] AHP (2005) [3] 1990 [4] 2007

25 P ERT/CP M Program Evaluation and Review Technique / Critical Path Method P ERT P ERT

26 166 6 A J A 3 B 2 A C 3 D 4 E 6 B, C, D F 4 E G 3 E H 5 D I 3 F, G J 4 H, I E A B E F G J 2.1

27 A, B, E P ERT

28 A 3 B 4 C 5 D 5 A E 2 A F 3 B G 6 B, C H 6 E, F I 2 D J 3 I, H K 4 G, H, I

29 P ERT P ERT 2.1 P ERT P ERT P ERT EXCEL 6.4 P ERT B, C, D E E B, C, D 2.1

30 i, k (i, k) i (i, k) k (i, k) A B A B A A B C, D, E A, B C, D, E

31 6 171 B A C A D A, B C A D A B A C A D A B P ERT D B (3, 4) (3, 4) A A (3, 4) 4 A, B A, B D C A 0

32 172 6 B, C A D B C A B C D B C A D (2, 3) C (2, 4) B 3 (2, 4) C (2, 3 ) (3, 4)

33 D C B F C 6.4 F G H G H J 6.5 D A E A B F A, B, C P ERT

34 A, B, C, D, E A, B C, D A E B, D P ERT P ERT

35 P ERT P ERT T ik (i, k) In(k) k Out(k) k In(3) = {1, 2}, Out(3) = {4, 5, 6} Earliest Start time... k ES k ES k k ES k k (i, k) (i, k) ES i (i, k) ES i T ik k ES k ES i + T ik ( i In(k))

36 176 6 ES i + T ik (i, k) k ES k = max i In(k) {ES i + T ik } In(k) k 6.1 In(3) = {1, 2} ES 1 = 11, ES 2 = 10 ES 3 (1, 3) (2, 3) (1, 3) 11 ES 1 + T 13 = (2, 3) ES 2 + T 23 = 17 (3, 4) (2, 3) max {ES 1 + T 13, ES 2 + T 23 } = In(k) k ES k = max i In(k) {ES i + T ik } 3. PERT i

37 6 177 (i, k)( k Out(i)) i ES i , 3, 4 10, 14, 18 (2, 5), (3, 5), (4, 5) 12, 9, (5, 6), (5, 7) Latest Finish time i LF i LF i i (i, k) (i, k) LF k T ik i i LF i LF k T ik LF i LF k T ik LF k T ik (i, k) i LF i = min {LF k T ik } k Out(i) Out(i) i 6.2 LF 3 = 21, LF 4 = 19 (2, 3) 21 LF 3 T 23 = 13 (2, 4) 19 LF 4 T 24 = 14 (1, 2) min {LF 3 T 23, LF 4 T 24 } = 13

38 178 6 LF 2 = Out(i) i LF i = min {LF k T ik } k Out(i) 3. PERT i (k, i)( k In(i)) i LF i , 17, 18 25, 24, 28 (15, 16), (15, 17), (15, 18) 8, 4, (13, 15), (14, 15) ES k LF k

39 6 179 P ERT ES i LF i ES i /LF i 0/ ES k = max i In(k) {ES i + T ik } (7) LF i = min {LF k T ik } (8) k Out(i)

40 A 3 B 2 A C 3 D 4 E 6 B, C, D F 4 E G 3 E H 5 D I 3 F, G J 4 H, I (i, k) i ES i k LT k (i, k) ES i + T ik < LF k (i, k) LF k ES i T ik ( T F ik ) (i, k) Total Float time T F ik

41 / 10 A C 10 B D 5, 4 B D D B Free Float time (i, k) F F ik k i F F ik = ES k ES i T ik

42 182 6 A(4) C(6) B(3) D(2) B D 2.4 D B 5 D B 1 1 B 5 D d B D / / 2.2 A 3 B 4 C 5 D 5 A E 2 A F 3 B G 6 B, C H 6 E, F I 2 D J 3 I, H K 4 G, H, I

43 critical path

44 P ERT P ERT A, B 2.5

45 6 185

46 P ERT A C E F 15 C C A, B {(1, 2), (1, 3)} {(4, 5)}

47

48 P ERT P ERT A, B, C D, E, F E D, E, F A, B, C D, E, F 3, 7, 6 E I J D, F, G E

49 H D G E, F, G 2, 1, 1 H 11 H K H J 10 P ERT

50 C E 6.18 J (2003)

51 revenue managemnet

52 Just In Time Kanban System

53 7 193 Supply Chain Management

54

55 7 195 t I(t) O(t) t Z(t) Z(t) = I(t) O(t) + Z(0) Z(0) 0 ( ) Z(0) = 0 n n n n

56 (1) ( ) ( ) ( ) ( ) 0 ( ) ( )

57 7 197 (2) ( ) ( ) ( ) 2 ( ) 7.2

58 198 7 (3) 7.3

59

60 (Economic Order Quantity, EOQ) 1 T D D 1

61 K ( 1 ) 1 B ( ) [0, T ] 1 Q [0, T ] D Q 1 1 [0, T ] Q/2 T [0, T ] f T (Q) Q f T (Q) = Q Q = D d = D/T Q (Economic Order Quantity) EOQ (Economic Lot Size ) U U = 7.4 f(q ) = 7.5 d = D/T = 20, B = 1, K = 1000 Excel f(q)/t Q U f(q )/T Q = U = f(q ) T = [0, T ] T = 1 T = 1 f 1 (Q) f(q)

62 d = 10, B = 1, K = 2000 ( ) Q 200 Q OR (d = 10, B = 1, K = 2000) (d = 12, B = 1, K = 2000) 3 2 (d = 10, B = 1.2, K = 2000)

63 % ( robust)

64 ( 7.5 )d = 20, B = 1, K = 1000 (0) (Q 1 ) Q 1 = (1) d f 2 (x) 7.5 (Q 2 ) f 2 (Q 2 ) ( ): Q 2 = f 2 (Q 2 ) = (2)( ) d Q 1 ( f 2 (Q 1 ) f 2 (Q 2 ) f 2 (Q 1 ) f 2 (Q 2 ) = 100 f 2(Q 1 ) f 2 (Q 2 ) f 2(Q 2) = (3) B f 3 (x) 7.5 (Q 3 ) f 3 (Q 3 ) ( ): Q 3 = f 3 (Q 3 ) = (4)( ) B Q 1 ( f 3 (Q 1 ) f 3 (Q 3 ) f 3 (Q 1 ) f 3 (Q 3 ) =

65 f3(q1) f3(q3) f 3(Q 3) = ( ) Q V A f(q) = { B Q 2 + K d Q + Ad if Q < V B Q 2 + K d Q + 0.9Ad if Q V Q (?) Q V f(q) f(v )

66 206 7 V 7.7 A EOQ d = 20, B = 1, K = 1000, A = 100 Excel V = 400 V = 500 (1) EOQ = = (2)V = 400 = (3)V = 500 =

67 ( ) L L L

68 208 7 ( ) % 95% X m σ n nm nσ n L X X L 1.65 Lσ P ( X X L Lm ) Lσ = P ( ) X1 + + X L Lm 1.65 Lσ π e x2 /2 dx = Lσ 95% % % 10% Excel Norminv 4 95% 90% %

69 7 209 ( ) 95% 1 σ N L 1.65 N + Lσ

70 % 95%

71 ( ) ,146,159,151,146,151,156,153,140,128,156,140,138,148,166, 149,150,160,171,158,141,161,150,144,166,144,150,154,154,151, 155,151,151,150,144,142,162,154,159,133,147,151,146,165,142, 136,154,143,144, ( )

72 z b z > b ( ) = z b = Excel = = = , Excel = Excel 128, 129,... b n b b 50 z b z b 50 g(z) g(z) = n b (105b 50z) + n b (105z 50z 10(b z)) b z b>z = n b (55b 50(z b)) + n b (55z 10(b z)) b z b>z = n b (55b 50(z b)) + n b (55b 65(b z)) b z b>z = 55 b n b b 50 b z n b (z b) 65 b>z n b (b z)

73 ( ) 3 ( 50 10) , X f(x) n b f(b) (!!!) g(z) g(z) = 55 b bf(b) 50 b z (z b)f(b) 65 b>z(b z)f(b) z z

74 214 7 g(z 1) g(z) g(z + 1) z g(z + 1) g(z) = 50 (z + 1 b)f(b) 65 (b z 1)f(b) b z+1 b>z (z b)f(b) + 65 z)f(b) b z b>z(b = 50 f(b) + 65 f(b) b z b>z F (z) = b z f(b) g(z + 1) g(z) = 50 f(b) + 65 f(b) b z b>z = 50F (z) + 65 (1 F (z)) = F (z) F (z ) = F (z 1) z 65 (55 ) (10 ) 50 ( ) ( ) 7.11 g(z)

75 (1) (2) (3) ( ) (4) :

76 A B B A B B A B (A B)/A

77

78

79 7 219 ABC 7.15 Excel ABC A B C A B

80 k F k 4. (k/30, F k )(k = 0, 1,..., 30) 5. F k 0.7 k k k A

81 Yahoo 8.2 F Excel rand() PERT PERT simulation

82 Excel

83

84 Wii X(t) t 2 p X(t) ( q) X(t) d dt X(t) 1 X(t) = p + qx(t)

85 8 225 X(t + t) X(t) t (p + qx(t)) (1 X(t) X(t + t) = X(t) + (p + qx(t)) (1 X(t) t x n = X(n t) x n+1 = x n + (p + qx n ) (1 x n ) t x 0 Excel 8.1 (1)x 0 = 0.01, p = 0.01, q = 0.5, t = 0.1 {x 0, x 1,..., x 100 } Excel (2)p = 0.05, q = 0.5 (3)p = 0.05, q = 0.8 (4)x A B A t x(t) B t y(t) dx(t) dt = b y(t), dy(t) dt = a x(t) a, b A B dx(t) dt x(t + t) x(t) t

86 226 8 x(t + t) x(t) b y(t) t y(t + t) y(t) a x(t) t x(t), y(t) t x n = x(n t), y n = y(n t) x n+1 = x n by n t y n+1 = y n ax n t x 0, y Excel dx(t) dt = by(t), dy(t) dt = ax(t) x(0) = x 0, y(0) = 1000 a = a 0, b = 1 (x 0, a 0 ) 8.3 B A C ABC BC a b A B L Excel

87

88 % s S (s, S) s S s S , 11 8, 11 8, 11

89 Excel =NORM.INV(RAND(),heikin,hensa) heikin,hensa =ROUND(MAX(NORM.INV(RAND(),heikin,hensa),0),0) ROUND(x,0) x MAX(x,0) x Excel B7:B106 =ROUND(NORM.INV(RAND(),10,2),0) E3 =average(b7:b106) E4 =stdev(b7:b106) D8:D E8:E28 E8 =FREQUENCY(B7:B106,D8:D28) Ctrl Shift Enter

90 s S (s, S) 1 S s n W (n) Z(n) n D(n) Z(n) D(n) W (n) 0 W (n) Z(n 1) s, D(n) W (n) Z(n) =, D(n) > W (n), Z(n 1) > s W (n) =, Z(n 1) s n A(n) B(n) C(n) E(n) n

91 8 231 P (n) A(n) = B(n) = C(n) = E(n) = P (n) = A(n) B(n) C(n) E(n) 10 2 Z(0) D(n) Excel C, Java, V isual Basic SLAM,SIMAN,Simul8 Excel A B W (n) C D(n) D Z(n) E R(n) F, G, H, I, J A(n) B(n) C(n) E(n) P (n) What-If Excel s S z s S z = f(s, S) s, S

92 232 8 s, S s, S (s, S) s, S Excel S s s

93 random numbers table pseudo-random numbers Excel RAND() RANDBETWEEN() C rand() RAND() C 0 1 RANDBETWEEN() Excel 8.8 Excel Excel 600 Excel RANDBETWEEN(m,n) m n m n FREQUENCY()

94 a b a = 1389, b = 8567 a b = a = a = , 9563, 3007, 6723, 8247, 5083, 287, 8643, 5127, 1403, 8767, 7363,... 8, 9, 3, 6, 8, 5, 2, 8, 5, 1, 8, 7, , 7 3 multiplicative congruential method a, P, x 0 a x 0 P x 1 a x 1 P x 2 mod P P x n ax n 1 mod P

95 8 235 a, P, x 0 Excel x 0, x 1, x 2,... 0, 1, 2,..., P 1 P n x n n + m x n+m x n+1 x n+m+1 x n+2 x n+m+2 a, P a, P, x 0 C rand() srand() 47 rand() srand() Excel rand() C rand() 8.9 Excel (1) A7 : A107 0 (2) B3 131 B C7 (3) B8 = $B$3 C7 C8 = mod(b8, $B$4) D8 = C8/$B$4 (4) B8 : D6 B9 : D107 (5) D8 : D106 X D9 : D107 Y (6) B3 C 15

96 Excel... Excel s C4 J3 1. L10:L19 10 M9 =J3 2. L9:M19 What-if 3. C4 J10:L19 C4 M10:M19 J10:L J10:J19 M10:M z 1, z 2, , 6.4

97 8 237 X Z Z = f(x) Z z 1, z 2,... Z µ σ µ n Z 1, Z 2,..., Z n Z = Z 1 + Z Z n n µ n Z µ E( Z) = E(Z 1) + E(Z 2 ) E(Z n ) n µ Z point estimation = µ X 1, X 2,... µ n µ X = X 1 + X X n n % Z 1, Z 2,..., Z n µ σ nµ nσ 2 Z µ σ/ n Z µ σ/ n P ( Z µ σ/ n z ) = z 1 2π e x2 /2 dx( Φ(z)) Z µ h P ( ( ) X µ X µ < h = P σ/ n < h ) ( ) n h n = Φ σ σ P ( ( ) ( ) X µ n X µ > h = P σ/ n > h = 1 Φ h ) n σ σ

98 238 8 P ( X µ < h ) ( ) h n = 2Φ 1 σ Φ ( z) = 1 Φ (z) Φ (2) h n/σ = 2 h h = 2σ/ n 0.95 µ 2σ/ n [ X 2 σ n, X + 2 σ n ] µ 95% 95% n = 200, X = 205.7, σ = % [204.8, 206.6] 1 Φ(z) = α z 100α% z α z α [ ] σ X z α/2 n, X σ + z α/2 n 100(1 α)% interval estimation 1 α confidence level α z α α z α % 90% 8.11 Excel 10 95%

99 t 95% σ σ t t X 1, X 2,..., X n µ σ 2 n X = 1 n X k, S = 1 n ( Xn n n 1 X ) 2 k=1 k=1 ( X µ ) / (S/ n) n 1 t S 2 σ 2 n n 1 100(1 α)% [ X t (n 1) α/2 ] S, X + t (n 1) S n n t n α n t 100α% α n z α α/2 α t (10) α t (20) α t (50) α z α % 90% % 100% 0% 100%

100 % 95% % S/ n t (n 1) α/2 α 95% Φ (1) % 3 1 α t (n 1) α/2 95% 95% n 1% 1 µ t(n 1) α/2 ( S < 0.01 n > n t (n 1) α/2 µ t (n 1) α/2 z α/ , α = 0.05 ( n > ) n 39 ε n > ( ) 2 ( 1 ε t (n 1) α/2 S µ ) 2 S µ ) 2

101 % 2% % % 8.13 (2004) (2007) (1989) (2000)

102 242 8 (2012) R

103 EXCEL N N 0 (1) 0 1 (2) k 1 k k 1 k k = 2, 3,..., N (3) k m m 3.5 k Excel RAND Excel (2001)

104 ATM 9.1 AT M AT M

105 9 245 AT M (1) (2) (3) (4)

106 t A(t) Arrival A D(t) Departure D A(t) D(t) [0, T ] T [0, T ] L

107 9 247 L = 1 T T 0 (A(t) D(t)) dt [0, T ] N N N W W = 1 N T 0 (A(t) D(t)) dt L W T L = N W L = N T W N T λ l L = λw D(t) D(t) D(t) A(t) D(t) L q W q L q = 1 T T 0 ( A(t) D(t) ) dt, W q = 1 T ( A(t) N D(t) ) dt 0 L q = N T W q

108 248 9 N/T λ L q = λw q =

109 ATM 9.3 ATM A B A B 5

110 250 9 B A B 9.4 A(t) D(t) (1) A(t) D(t)

111 9 251 (2)

112 [0, T ] N m N Nm T T N T λ Nm < T λm < 1 λm

113 9 253 ρ r ρ λm < 1 λ λ m λ < 1 m 1/m [0, T ] N 4 m < T λm 4 < 1 λ < 4 m 1/m 4 4/m n

114 (1) (2) (3)

115 t W (t) W (t) x 20 x

116 = T N t 1, t 2,..., t N x k = t k t k 1 a k ax k x k /2 N at 1 at N ( ax k x k 2 k=1 ) = 1 T N k=1 x 2 k 2 = N T 1 N N k=1 x 2 k 2 X 1, X 2,... m = E(X), σ 2 = V (X) x 1, x 2,... [0, T ] N T/N E(X) 1 N N k=1 x2 k N X2 E(X 2 ) = V (X) + E(X) 2 = σ 2 + m 2 w w = 1 E(X 2 ) = 1 ( σ 2 + m 2) = m m 2 2m 2 ( ( ) σ m) σ/m σ m σ = 0 0 m/2 σ = m

117 [a, b](b > a > 0) 2 (b a) 2 /3/(a+b) 2 [5, 15] e 0.1t

118

119 9 259 λ k T k λt k k k + 1 k k + 1 λt k k k 1 k 3 1 k 3 1 m 1 k/m T k k k 1 T k k/m k 1( 0) k k k 1 2 λt k 1 = k m T k T T k /T k p k M p k = λm k p k 1 (k = 1, 2,..., M) a = λm p k = a k p k 1 = a k a k 1 p k 2 = = ak k! p 0 (k = 1, 2,..., M) T k p k 1 p 0 + p p M = 1

120 260 9 p 0 = (1 + a + a2 2! + a3 3! + + am M! ) 1 p k = a k k! 1 + a + a2 2! + a3 3! + + am M! (k = 0, 1,..., M) M p M = a M M! 1 + a + a2 2! + a3 3! + + am M! a = 1 95% a = 1 p M < 0.05 M M p M M = 4 95% 20 5% a = 1 a = 20 a 5% 1% 0.01% Erlang a λ m

121 p M 9.12 a = M Excel = 1 + a + a 2 2! + a3 3! + + am 1 (M 1)! + 1 = 1 + M p M a p M = a M M! M ap M 1 1 p M 1

122 A B , 1.6, 1.2, 5.3, 4.9, 2.9, 10.2, 5.6, 6.7, 11, 0.2, , 1.9, 4.9, 1.6, 6.7, 1.2, 5.3, 2.9, 5.6, 11, 0.2,... C while (1) { ; ; ; }

123 9 263 Excel Excel RAND 10.2, 1.9, 4.9, 1.6, [0, 0.2) 1.9 [0.2, 0.4) 4.9 [0.4, 0.6) 6.7 [0.6, 0.8) 10.2 [0.8, 1) RAND = RAND() = RAND() = 12.1 RAND n [ 0, 1 n), [ 1 n, 2 n), [ 2 n, 3 n), , 1.9, 4.9, 1.6, 6.7 RAND F (x) F (x) x [F (x), F (x + t)) RAND

124 264 9 u F 1 (.) F 1 (u) m F (x) = 1 e x/m (x 0) F 1 (x) = m log(1 x) Excel = LN() Excel x 1 x F 1 (x) = m log x

125 (1)Excel (2) A7:A B7:B106 D7 =SMALL($B$7:$B$106,A7) B7:B106 D8:D106 B7:B106 D7:D106 x n T n W n S n D n D n = T n + W n + S n = T n+1 + W n+1 n n + 1

126 266 9 A n+1 = T n+1 T n W n+1 = W n + S n A n+1 n W n+1 = 0 n + 1 W n+1 = max(0, W n + S n A n+1 ) W 1 = 0 W 2, W 3, w 1 = 0 1. s 1 a 2 2. w 2 max(0, w 1 + s 1 a 2 ) 3. s 2 a 3 4. w 3 max(0, w 2 + s 2 a 3 ) 5. s 3 a 4... s 1, s 2, s 3,... a 2, a 3,...

127 Excel /6 4 Excel Excel Excel Excel

128 a s w (s/a, w) 500 ρ m W q W q = m 1 + c2 2 ρ 1 ρ c L = λw = λ(w q + m) = λw q + ρ

129 ρ = 0.5, 0.6, 0.7, 0.8 ρ [1] 2001 [2] (2006) [3] 1985

130

131 = 9 = = 2.25 = %

132 A, B A B

133 x utility U(x) x x U(x) U(11) U(1) U(10010) U(10000) U(11) U(1) > U(10010) U(10000) x < y h > 0 U(x + h) U(x) > U(y + h) U(y) U(x) U(x + h) U(x) > U(y + h) U(y) U(x + h) U(x) h > U(y + h) U(y) h h 0 U (x) > U (y) (for x < y) U(x) 18 x U(x) du(x) dx = 1 x U(x) = log x + C

134 x 1 x 1 2 x 2 x 0 C x U(x) y U(y) 10.2 f(x) f (x) f (x) = x 1, f(1) = a = 10 U(a) > 0 (a, U(a)) 0 < x < a y = l(x) U(a)/a x l(x) = U(a) x ( a x ) a l(x) p = x/a U(a) 1 p 0 l(pa) p U(x) U(a) a = 10 p = 0.1 l(1) = U(10)/ U(0.1) U(1) U(10)/10 (1, l(1)) 1000

135

136 (1) (2) (3) (4) (5)

137 X E(X) S(X) U(X) U(X) E(U(X)) U(x) = x 1 2a x2 = a 2 1 2a (x a)2 (0 x a) a = 10 u(x) = (x 10)2 µ, σ X U(X) ( E(U(X)) = E X 1 ) 2a X2 = E(X) 1 2a E(X2 ) = E(X) 1 ( V (X) + E(X) 2 ) 2a = µ 1 2a (σ2 + µ 2 ) = 1 ( a 2 (µ a) 2 σ 2) 2a µ, σ a - r (0, a) a 2 2ar a = 10, r = 3.75 r = 1

138 U(X) a = 10 r = 2 r = 2

139 A, B X, Y µ, ν σ, τ ρ σ X,Y ρ σ X,Y = E((X µ)(y ν)) ( ) X µ Y ν ρ = E = σ X,Y σ τ στ A u B 1 u (u, 1 u) A B (u, 1 u) Z = Z(u) = ux + (1 u)y E(Z) V (Z) S(Z) E(Z) = ue(x) + (1 u)e(y ) = uµ + (1 u)ν V (Z) = E(Z 2 ) (E(Z)) 2 = u 2 V (X) + (1 u) 2 V (Y ) + 2u(1 u)σ X,Y = u 2 σ 2 + (1 u) 2 τ 2 + 2u(1 u)ρστ S(Z) = V (Z) = u 2 σ 2 + (1 u) 2 τ 2 + 2u(1 u)ρστ S(Z), E(Z) u (S(Z(u)), E(Z(u))) 0 u 1 (S(Z(u)), E(Z(u)))

140 ρ = 1 E(Z) = uµ + (1 u)ν S(Z) = uσ + (1 u)τ u E(Z) = µ ν (S(Z) τ) + ν σ τ (σ, µ) (τ, ν) ρ = 1 E(Z) = uµ + (1 u)ν S(Z) = u 2 σ 2 + (1 u) 2 τ 2 2u(1 u)στ = (uσ (1 u)τ) 2 uσ (1 u)τ E(Z) = µ ν τµ + νσ S(Z) + σ + τ σ + τ µ ν τµ + νσ S(Z) + σ + τ σ + τ u τ σ + τ u < τ σ + τ τµ+νσ σ+τ 0 0 ρ = 1

141 ρ (u, 1 u) = (u (ρ), 1 u (ρ)) ρ = 1 ρ = 1 0 u µ = 5, ν = 20, σ = 2, τ = 5, ρ = 0.5 EXCEL 0 u 1 u (S(Z(u)), E(Z(u))) 10.7 (u, 1 u) V (Z) u σ, τ, ρ

142 derivative derived

143 Z P P Z Z P P max {Z P, 0} Z 10.8 max {P Z, 0}

144 S S up S down P S down < P < S up P S up S up P 0 P P A 8 3 A 6

145 A 4 S up P a(< 1) S a S (1) C (2) as up (1) S up P (2) as C as down as C + as up (S up P ) as = C + as down as a a = S up P S up S down C S a

146 P = 6, S up = 8, S down = 3 a = C + a S down a S = 0 C = a (S S down ) = S up P S up S down (S S down ) C (1) P = 2000 C (2)P = 2500 (3)C P a C as C B B(1 + r) r B B(1 + r) 1 B B(1 + r) 1 (1 + r) 1 as a(1+r)s a C = a (1 + r)s a S down 1 + r = S ( up P S S ) down S up S down 1 + r 1. a S C 2. C 3. S a 4.

147 (1 + r)(a S C) a S down (1 + r)(a S C) = r = 0.1 P = { Sup P C C 0 S S down C = S up P S up S down ( S S ) down 1 + r r, P S S down (1) P (2)

148 * S up, S down C = 1 E (max {Z P, 0}) 1 + r 10.2 Z a { 1 f(z) = b (z a + b) (a b z a) 2 1 b (z a b) (a z a + b) 2 P (> a) (1 + r) E (max {Z P, 0}) = 1 b 2 a+b P (z P )(z a b)dz = 1 (a P + b)3 6b2 P = a b/6 b σ S up, S down S p S up 1 p S down p (S up P ) + (1 p) r p(s up P ) p p p S S down 1+r S up S down (S up P ) = r p(s up P ) p = (1 + r)s S down S up S down p

149 Z P max {Z P, 0} P Z P 0 0 Z P E (max {Z P, 0}) E(Z P ) = E(Z) P y P P E(Z) P 0 max {Z P, 0} y = E(Z) P y = Z a { 1 f(z) = b (z a + b) (a b z a) 2 1 b (z a b) (a z a + b) 2 P (< a) (1 + r) E (max {Z P, 0}) = 1 a b 2 (z P )(z a + b)dz 1 a+b b 2 (z P )(z a b)dz P = 1 6b 2 (P a)2 (P a + 3b) + (a P ) + b a = 10, b = 5 P a

150 ,

151 (1) 12 5cm , 000 (2) 7, C 1 C (3) 3cm (4) 13 (5) C

152

153 C 0.1 C

154 C 0.1 C C 23.6 C, 24.4 C, 24.7 C, 24.9 C 30 1 ( ) = C 29

155 ( ) = C 0.1 C , 5.4, 6.6, 7.5, 5.0, 6.3, 6.6, 6.7, 5.5, 5.5, 5.5, 5.8, 5.4, 6.1, 6.9, 4.7, 6.6, 5.0, 5.7, 5.6 X X = X = X = X = 26 0 X , C C

156 P (X < 24) + 10 k=1 500k P (X = k) C ( ) 0.2 C C 0.1 C Excel 20 x =NORMDIST(x+0.05,m,s,TRUE)-NORMDIST(x-0.05,m,s,TRUE) m, s

157 Excel [1] (2000) [2] (Against the Gods) (2001) [3] (2002)

Part () () Γ Part ,

Part () () Γ Part , Contents a 6 6 6 6 6 6 6 7 7. 8.. 8.. 8.3. 8 Part. 9. 9.. 9.. 3. 3.. 3.. 3 4. 5 4.. 5 4.. 9 4.3. 3 Part. 6 5. () 6 5.. () 7 5.. 9 5.3. Γ 3 6. 3 6.. 3 6.. 3 6.3. 33 Part 3. 34 7. 34 7.. 34 7.. 34 8. 35

More information

n ξ n,i, i = 1,, n S n ξ n,i n 0 R 1,.. σ 1 σ i .10.14.15 0 1 0 1 1 3.14 3.18 3.19 3.14 3.14,. ii 1 1 1.1..................................... 1 1............................... 3 1.3.........................

More information

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0 1 1 1.1 1.) T D = T = D = kn 1. 1.4) F W = F = W/ = kn/ = 15 kn 1. 1.9) R = W 1 + W = 6 + 5 = 11 N. 1.9) W b W 1 a = a = W /W 1 )b = 5/6) = 5 cm 1.4 AB AC P 1, P x, y x, y y x 1.4.) P sin 6 + P 1 sin 45

More information

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

I A A441 : April 15, 2013 Version : 1.1 I   Kawahira, Tomoki TA (Shigehiro, Yoshida ) I013 00-1 : April 15, 013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida) http://www.math.nagoya-u.ac.jp/~kawahira/courses/13s-tenbou.html pdf * 4 15 4 5 13 e πi = 1 5 0 5 7 3 4 6 3 6 10 6 17

More information

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C 0 9 (1990 1999 ) 10 (2000 ) 1900 1994 1995 1999 2 SAT ACT 1 1990 IMO 1990/1/15 1:00-4:00 1 N 1990 9 N N 1, N 1 N 2, N 2 N 3 N 3 2 x 2 + 25x + 52 = 3 x 2 + 25x + 80 3 2, 3 0 4 A, B, C 3,, A B, C 2,,,, 7,

More information

newmain.dvi

newmain.dvi 数論 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. http://www.morikita.co.jp/books/mid/008142 このサンプルページの内容は, 第 2 版 1 刷発行当時のものです. Daniel DUVERNEY: THÉORIE DES NOMBRES c Dunod, Paris, 1998, This book is published

More information

X G P G (X) G BG [X, BG] S 2 2 2 S 2 2 S 2 = { (x 1, x 2, x 3 ) R 3 x 2 1 + x 2 2 + x 2 3 = 1 } R 3 S 2 S 2 v x S 2 x x v(x) T x S 2 T x S 2 S 2 x T x S 2 = { ξ R 3 x ξ } R 3 T x S 2 S 2 x x T x S 2

More information

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e 7 -a 7 -a February 4, 2007 1. 2. 3. 4. 1. 2. 3. 1 Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e z

More information

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google I4 - : April, 4 Version :. Kwhir, Tomoki TA (Kondo, Hirotk) Google http://www.mth.ngoy-u.c.jp/~kwhir/courses/4s-biseki.html pdf 4 4 4 4 8 e 5 5 9 etc. 5 6 6 6 9 n etc. 6 6 6 3 6 3 7 7 etc 7 4 7 7 8 5 59

More information

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y [ ] 7 0.1 2 2 + y = t sin t IC ( 9) ( s090101) 0.2 y = d2 y 2, y = x 3 y + y 2 = 0 (2) y + 2y 3y = e 2x 0.3 1 ( y ) = f x C u = y x ( 15) ( s150102) [ ] y/x du x = Cexp f(u) u (2) x y = xey/x ( 16) ( s160101)

More information

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) II 214-1 : October 2, 214 Version : 1.1 Kawahira, Tomoki TA (Kondo, Hirotaka ) http://www.math.nagoya-u.ac.jp/~kawahira/courses/14w-biseki.html pdf 1 2 1 9 1 16 1 23 1 3 11 6 11 13 11 2 11 27 12 4 12 11

More information

20 6 4 1 4 1.1 1.................................... 4 1.1.1.................................... 4 1.1.2 1................................ 5 1.2................................... 7 1.2.1....................................

More information

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2016 2Q H) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F F 1 F 2 F, (3) F λ F λ F λ F. 3., A λ λ A λ. B λ λ

More information

untitled

untitled 2 : n =1, 2,, 10000 0.5125 0.51 0.5075 0.505 0.5025 0.5 0.4975 0.495 0 2000 4000 6000 8000 10000 2 weak law of large numbers 1. X 1,X 2,,X n 2. µ = E(X i ),i=1, 2,,n 3. σi 2 = V (X i ) σ 2,i=1, 2,,n ɛ>0

More information

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi) 0. A A = 4 IC () det A () A () x + y + z = x y z X Y Z = A x y z ( 5) ( s5590) 0. a + b + c b c () a a + b + c c a b a + b + c 0 a b c () a 0 c b b c 0 a c b a 0 0. A A = 7 5 4 5 0 ( 5) ( s5590) () A ()

More information

meiji_resume_1.PDF

meiji_resume_1.PDF β β β (q 1,q,..., q n ; p 1, p,..., p n ) H(q 1,q,..., q n ; p 1, p,..., p n ) Hψ = εψ ε k = k +1/ ε k = k(k 1) (x, y, z; p x, p y, p z ) (r; p r ), (θ; p θ ), (ϕ; p ϕ ) ε k = 1/ k p i dq i E total = E

More information

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y)

x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) x, y x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 1 1977 x 3 y xy 3 x 2 y + xy 2 x 3 + y 3 = 15 xy (x y) (x + y) xy (x y) (x y) ( x 2 + xy + y 2) = 15 (x y) ( x 2 y + xy 2 x 2 2xy y 2) = 15 (x y) (x + y) (xy

More information

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g( 06 5.. ( y = x x y 5 y 5 = (x y = x + ( y = x + y = x y.. ( Y = C + I = 50 + 0.5Y + 50 r r = 00 0.5Y ( L = M Y r = 00 r = 0.5Y 50 (3 00 0.5Y = 0.5Y 50 Y = 50, r = 5 .3. (x, x = (, u = = 4 (, x x = 4 x,

More information

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,. 9 α ν β Ξ ξ Γ γ o δ Π π ε ρ ζ Σ σ η τ Θ θ Υ υ ι Φ φ κ χ Λ λ Ψ ψ µ Ω ω Def, Prop, Th, Lem, Note, Remark, Ex,, Proof, R, N, Q, C [a, b {x R : a x b} : a, b {x R : a < x < b} : [a, b {x R : a x < b} : a,

More information

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y (2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = a c b d (a c, b d) P = (a, b) O P a p = b P = (a, b) p = a b R 2 { } R 2 x = x, y R y 2 a p =, c q = b d p + a + c q = b + d q p P q a p = c R c b

More information

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a = [ ] 9 IC. dx = 3x 4y dt dy dt = x y u xt = expλt u yt λ u u t = u u u + u = xt yt 6 3. u = x, y, z = x + y + z u u 9 s9 grad u ux, y, z = c c : grad u = u x i + u y j + u k i, j, k z x, y, z grad u v =

More information

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x [ ] IC. f(x) = e x () f(x) f (x) () lim f(x) lim f(x) x + x (3) lim f(x) lim f(x) x + x (4) y = f(x) ( ) ( s46). < a < () a () lim a log xdx a log xdx ( ) n (3) lim log k log n n n k=.3 z = log(x + y ),

More information

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2 II No.1 [n/] [1]H n x) H n x) = 1) r n! r!n r)! x)n r r= []H n x) n,, H n x) = 1) n H n x) [3] H n x) = 1) n dn x e dx n e x [4] H n+1 x) = xh n x) nh n 1 x) ) d dx x H n x) = H n+1 x) d dx H nx) = nh

More information

201711grade1ouyou.pdf

201711grade1ouyou.pdf 2017 11 26 1 2 52 3 12 13 22 23 32 33 42 3 5 3 4 90 5 6 A 1 2 Web Web 3 4 1 2... 5 6 7 7 44 8 9 1 2 3 1 p p >2 2 A 1 2 0.6 0.4 0.52... (a) 0.6 0.4...... B 1 2 0.8-0.2 0.52..... (b) 0.6 0.52.... 1 A B 2

More information

IA hara@math.kyushu-u.ac.jp Last updated: January,......................................................................................................................................................................................

More information

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k

II R n k +1 v 0,, v k k v 1 v 0,, v k v v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ k σ dimσ = k 1.3. k II 231017 1 1.1. R n k +1 v 0,, v k k v 1 v 0,, v k v 0 1.2. v 0,, v k R n 1 a 0,, a k a 0 v 0 + a k v k v 0 v k k k v 0,, v k σ kσ dimσ = k 1.3. k σ {v 0,...,v k } {v i0,...,v il } l σ τ < τ τ σ 1.4.

More information

29

29 9 .,,, 3 () C k k C k C + C + C + + C 8 + C 9 + C k C + C + C + C 3 + C 4 + C 5 + + 45 + + + 5 + + 9 + 4 + 4 + 5 4 C k k k ( + ) 4 C k k ( k) 3 n( ) n n n ( ) n ( ) n 3 ( ) 3 3 3 n 4 ( ) 4 4 4 ( ) n n

More information

linearal1.dvi

linearal1.dvi 19 4 30 I 1 1 11 1 12 2 13 3 131 3 132 4 133 5 134 6 14 7 2 9 21 9 211 9 212 10 213 13 214 14 22 15 221 15 222 16 223 17 224 20 3 21 31 21 32 21 33 22 34 23 341 23 342 24 343 27 344 29 35 31 351 31 352

More information

20 9 19 1 3 11 1 3 111 3 112 1 4 12 6 121 6 122 7 13 7 131 8 132 10 133 10 134 12 14 13 141 13 142 13 143 15 144 16 145 17 15 19 151 1 19 152 20 2 21 21 21 211 21 212 1 23 213 1 23 214 25 215 31 22 33

More information

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 24 I 1.1.. ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x 1 (t), x 2 (t),, x n (t)) ( ) ( ), γ : (i) x 1 (t),

More information

pdf

pdf http://www.ns.kogakuin.ac.jp/~ft13389/lecture/physics1a2b/ pdf I 1 1 1.1 ( ) 1. 30 m µm 2. 20 cm km 3. 10 m 2 cm 2 4. 5 cm 3 km 3 5. 1 6. 1 7. 1 1.2 ( ) 1. 1 m + 10 cm 2. 1 hr + 6400 sec 3. 3.0 10 5 kg

More information

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,. (1 C205) 4 10 (2 C206) 4 11 (2 B202) 4 12 25(2013) http://www.math.is.tohoku.ac.jp/~obata,.,,,..,,. 1. 2. 3. 4. 5. 6. 7. 8. 1., 2007 ( ).,. 2. P. G., 1995. 3. J. C., 1988. 1... 2.,,. ii 3.,. 4. F. ( ),..

More information

006 11 8 0 3 1 5 1.1..................... 5 1......................... 6 1.3.................... 6 1.4.................. 8 1.5................... 8 1.6................... 10 1.6.1......................

More information

高校生の就職への数学II

高校生の就職への数学II II O Tped b L A TEX ε . II. 3. 4. 5. http://www.ocn.ne.jp/ oboetene/plan/ 7 9 i .......................................................................................... 3..3...............................

More information

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n . 99 () 0 0 0 () 0 00 0 350 300 () 5 0 () 3 {a n } a + a 4 + a 6 + + a 40 30 53 47 77 95 30 83 4 n S n S n = n = S n 303 9 k d 9 45 k =, d = 99 a d n a n d n a n = a + (n )d a n a n S n S n = n(a + a n

More information

2000年度『数学展望 I』講義録

2000年度『数学展望 I』講義録 2000 I I IV I II 2000 I I IV I-IV. i ii 3.10 (http://www.math.nagoya-u.ac.jp/ kanai/) 2000 A....1 B....4 C....10 D....13 E....17 Brouwer A....21 B....26 C....33 D....39 E. Sperner...45 F....48 A....53

More information

2011de.dvi

2011de.dvi 211 ( 4 2 1. 3 1.1............................... 3 1.2 1- -......................... 13 1.3 2-1 -................... 19 1.4 3- -......................... 29 2. 37 2.1................................ 37

More information

Z: Q: R: C:

Z: Q: R: C: 0 Z: Q: R: C: 3 4 4 4................................ 4 4.................................. 7 5 3 5...................... 3 5......................... 40 5.3 snz) z)........................... 4 6 46 x

More information

all.dvi

all.dvi 5,, Euclid.,..,... Euclid,.,.,, e i (i =,, ). 6 x a x e e e x.:,,. a,,. a a = a e + a e + a e = {e, e, e } a (.) = a i e i = a i e i (.) i= {a,a,a } T ( T ),.,,,,. (.),.,...,,. a 0 0 a = a 0 + a + a 0

More information

ランダムウォークの境界条件・偏微分方程式の数値計算

ランダムウォークの境界条件・偏微分方程式の数値計算 B L06(2018-05-22 Tue) : Time-stamp: 2018-05-22 Tue 21:53 JST hig,, 2, multiply transf http://hig3.net L06 B(2018) 1 / 38 L05-Q1 Quiz : 1 M λ 1 = 1 u 1 ( ). M u 1 = u 1, u 1 = ( 3 4 ) s (s 0)., u 1 = 1

More information

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,. 24(2012) (1 C106) 4 11 (2 C206) 4 12 http://www.math.is.tohoku.ac.jp/~obata,.,,,.. 1. 2. 3. 4. 5. 6. 7.,,. 1., 2007 (). 2. P. G. Hoel, 1995. 3... 1... 2.,,. ii 3.,. 4. F. (),.. 5... 6.. 7.,,. 8.,. 1. (75%)

More information

, = = 7 6 = 42, =

, = = 7 6 = 42, = http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1 1 2016.9.26, http://www.ss.u-tokai.ac.jp/~mahoro/2016autumn/alg_intro/ 1.1 1 214 132 = 28258 2 + 1 + 4 1 + 3 + 2 = 7 6 = 42, 4 + 2 = 6 2 + 8

More information

K E N Z OU

K E N Z OU K E N Z OU 11 1 1 1.1..................................... 1.1.1............................ 1.1..................................................................................... 4 1.........................................

More information

Note.tex 2008/09/19( )

Note.tex 2008/09/19( ) 1 20 9 19 2 1 5 1.1........................ 5 1.2............................. 8 2 9 2.1............................. 9 2.2.............................. 10 3 13 3.1.............................. 13 3.2..................................

More information

ver Web

ver Web ver201723 Web 1 4 11 4 12 5 13 7 2 9 21 9 22 10 23 10 24 11 3 13 31 n 13 32 15 33 21 34 25 35 (1) 27 4 30 41 30 42 32 43 36 44 (2) 38 45 45 46 45 5 46 51 46 52 48 53 49 54 51 55 54 56 58 57 (3) 61 2 3

More information

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P 1 1.1 (population) (sample) (event) (trial) Ω () 1 1 Ω 1.2 P 1. A A P (A) 0 1 0 P (A) 1 (1) 2. P 1 P 0 1 6 1 1 6 0 3. A B P (A B) = P (A) + P (B) (2) A B A B A 1 B 2 A B 1 2 1 2 1 1 2 2 3 1.3 A B P (A

More information

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K II. () 7 F 7 = { 0,, 2, 3, 4, 5, 6 }., F 7 a, b F 7, a b, F 7,. (a) a, b,,. (b) 7., 4 5 = 20 = 2 7 + 6, 4 5 = 6 F 7., F 7,., 0 a F 7, ab = F 7 b F 7. (2) 7, 6 F 6 = { 0,, 2, 3, 4, 5 },,., F 6., 0 0 a F

More information

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) 4 4 ) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8) a b a b = 6i j 4 b c b c 9) a b = 4 a b) c = 7

More information

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j = 72 Maxwell. Maxwell e r ( =,,N Maxwell rot E + B t = 0 rot H D t = j dv D = ρ dv B = 0 D = ɛ 0 E H = μ 0 B ρ( r = j( r = N e δ( r r = N e r δ( r r = : 2005 ( 2006.8.22 73 207 ρ t +dv j =0 r m m r = e E(

More information

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2 filename=mathformula58.tex ax + bx + c =, x = b ± b 4ac, (.) a x + x = b a, x x = c a, (.) ax + b x + c =, x = b ± b ac. a (.3). sin(a ± B) = sin A cos B ± cos A sin B, (.) cos(a ± B) = cos A cos B sin

More information

Microsoft Word - 11問題表紙(選択).docx

Microsoft Word - 11問題表紙(選択).docx A B A.70g/cm 3 B.74g/cm 3 B C 70at% %A C B at% 80at% %B 350 C γ δ y=00 x-y ρ l S ρ C p k C p ρ C p T ρ l t l S S ξ S t = ( k T ) ξ ( ) S = ( k T) ( ) t y ξ S ξ / t S v T T / t = v T / y 00 x v S dy dx

More information

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign( I n n A AX = I, YA = I () n XY A () X = IX = (YA)X = Y(AX) = YI = Y X Y () XY A A AB AB BA (AB)(B A ) = A(BB )A = AA = I (BA)(A B ) = B(AA )B = BB = I (AB) = B A (BA) = A B A B A = B = 5 5 A B AB BA A

More information

Untitled

Untitled II 14 14-7-8 8/4 II (http://www.damp.tottori-u.ac.jp/~ooshida/edu/fluid/) [ (3.4)] Navier Stokes [ 6/ ] Navier Stokes 3 [ ] Reynolds [ (4.6), (45.8)] [ p.186] Navier Stokes I 1 balance law t (ρv i )+ j

More information

koji07-01.dvi

koji07-01.dvi 2007 I II III 1, 2, 3, 4, 5, 6, 7 5 10 19 (!) 1938 70 21? 1 1 2 1 2 2 1! 4, 5 1? 50 1 2 1 1 2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 3 1, 2 1, 3? 2 1 3 1 2 1 1, 2 2, 3? 2 1 3 2 3 2 k,l m, n k,l m, n kn > ml...?

More information

( )

( ) 7..-8..8.......................................................................... 4.................................... 3...................................... 3..3.................................. 4.3....................................

More information

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2 2005 9/8-11 2 2.2 ( 2-5) γ ( ) γ cos θ 2πr πρhr 2 g h = 2γ cos θ ρgr (2.1) γ = ρgrh (2.2) 2 cos θ θ cos θ = 1 (2.2) γ = 1 ρgrh (2.) 2 2. p p ρgh p ( ) p p = p ρgh (2.) h p p = 2γ r 1 1 (Berry,1975) 2-6

More information

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e, ( ) L01 I(2017) 1 / 19

I L01( Wed) : Time-stamp: Wed 07:38 JST hig e,   ( ) L01 I(2017) 1 / 19 I L01(2017-09-20 Wed) : Time-stamp: 2017-09-20 Wed 07:38 JST hig e, http://hig3.net ( ) L01 I(2017) 1 / 19 ? 1? 2? ( ) L01 I(2017) 2 / 19 ?,,.,., 1..,. 1,2,.,.,. ( ) L01 I(2017) 3 / 19 ? I. M (3 ) II,

More information

50. (km) A B C C 7 B A 0

50. (km) A B C C 7 B A 0 49... 5 A B C. (. )?.. A A B C. A 4 0 50. (km) A B C..9 7. 4.5.9. 5. 7.5.0 4..4 7. 5.5 5.0 4. 4.. 8. 7 8.8 9.8. 8 5. 5.7.7 9.4 4. 4.7 0 4. 7. 8.0 4.. 5.8.4.8 8.5. 8 9 5 C 7 B 5 8 7 4 4 A 0 0 0 4 5 7 8

More information

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x . P (, (0, 0 R {(,, R}, R P (, O (0, 0 OP OP, v v P (, ( (, (, { R, R} v (, (, (,, z 3 w z R 3,, z R z n R n.,..., n R n n w, t w ( z z Ke Words:. A P 3 0 B P 0 a. A P b B P 3. A π/90 B a + b c π/ 3. +

More information

³ÎΨÏÀ

³ÎΨÏÀ 2017 12 12 Makoto Nakashima 2017 12 12 1 / 22 2.1. C, D π- C, D. A 1, A 2 C A 1 A 2 C A 3, A 4 D A 1 A 2 D Makoto Nakashima 2017 12 12 2 / 22 . (,, L p - ). Makoto Nakashima 2017 12 12 3 / 22 . (,, L p

More information

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1

68 A mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 67 A Section A.1 0 1 0 1 Balmer 7 9 1 0.1 0.01 1 9 3 10:09 6 A.1: A.1 1 10 9 68 A 10 9 10 9 1 10 9 10 1 mm 1/10 A. (a) (b) A.: (a) A.3 A.4 1 1 A.1. 69 5 1 10 15 3 40 0 0 ¾ ¾ É f Á ½ j 30 A.3: A.4: 1/10

More information

211 kotaro@math.titech.ac.jp 1 R *1 n n R n *2 R n = {(x 1,..., x n ) x 1,..., x n R}. R R 2 R 3 R n R n R n D D R n *3 ) (x 1,..., x n ) f(x 1,..., x n ) f D *4 n 2 n = 1 ( ) 1 f D R n f : D R 1.1. (x,

More information

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) = 1 1 1.1 I R 1.1.1 c : I R 2 (i) c C (ii) t I c (t) (0, 0) c (t) c(i) c c(t) 1.1.2 (1) (2) (3) (1) r > 0 c : R R 2 : t (r cos t, r sin t) (2) C f : I R c : I R 2 : t (t, f(t)) (3) y = x c : R R 2 : t (t,

More information

ρ /( ρ) + ( q, v ) : ( q, v ), L < q < q < q < L 0 0 ( t) ( q ( t), v ( t)) dq ( t) v ( t) lmr + 0 Φ( r) dt lmr + 0 Φ ( r) dv ( t) Φ ( q ( t) q ( t)) + Φ ( q+ ( t) q ( t)) dt ( ) < 0 ( q (0), v (0)) (

More information

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V

V 0 = + r pv (H) + qv (T ) = + r ps (H) + qs (T ) = S 0 X n+ (T ) = n S n+ (T ) + ( + r)(x n n S n ) = ( + r)x n + n (d r)s n = ( + r)v n + V n+(h) V I (..2) (0 < d < + r < u) X 0, X X = 0 S + ( + r)(x 0 0 S 0 ) () X 0 = 0, P (X 0) =, P (X > 0) > 0 0 H, T () X 0 = 0, X (H) = 0 us 0 ( + r) 0 S 0 = 0 S 0 (u r) X (T ) = 0 ds 0 ( + r) 0 S 0 = 0 S 0 (d r)

More information

熊本県数学問題正解

熊本県数学問題正解 00 y O x Typed by L A TEX ε ( ) (00 ) 5 4 4 ( ) http://www.ocn.ne.jp/ oboetene/plan/. ( ) (009 ) ( ).. http://www.ocn.ne.jp/ oboetene/plan/eng.html 8 i i..................................... ( )0... (

More information

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds 127 3 II 3.1 3.1.1 Φ(t) ϕ em = dφ dt (3.1) B( r) Φ = { B( r) n( r)}ds (3.2) S S n( r) Φ 128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds

More information

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10% 1 2006.4.17. A 3-312 tel: 092-726-4774, e-mail: hara@math.kyushu-u.ac.jp, http://www.math.kyushu-u.ac.jp/ hara/lectures/lectures-j.html Office hours: B A I ɛ-δ ɛ-δ 1. 2. A 1. 1. 2. 3. 4. 5. 2. ɛ-δ 1. ɛ-n

More information

i

i i 3 4 4 7 5 6 3 ( ).. () 3 () (3) (4) /. 3. 4/3 7. /e 8. a > a, a = /, > a >. () a >, a =, > a > () a > b, a = b, a < b. c c n a n + b n + c n 3c n..... () /3 () + (3) / (4) /4 (5) m > n, a b >, m > n,

More information

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s ... x, y z = x + iy x z y z x = Rez, y = Imz z = x + iy x iy z z () z + z = (z + z )() z z = (z z )(3) z z = ( z z )(4)z z = z z = x + y z = x + iy ()Rez = (z + z), Imz = (z z) i () z z z + z z + z.. z

More information

solutionJIS.dvi

solutionJIS.dvi May 0, 006 6 morimune@econ.kyoto-u.ac.jp /9/005 (7 0/5/006 1 1.1 (a) (b) (c) c + c + + c = nc (x 1 x)+(x x)+ +(x n x) =(x 1 + x + + x n ) nx = nx nx =0 c(x 1 x)+c(x x)+ + c(x n x) =c (x i x) =0 y i (x

More information

( ) 2002 1 1 1 1.1....................................... 1 1.1.1................................. 1 1.1.2................................. 1 1.1.3................... 3 1.1.4......................................

More information

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6 1 1 1.1 64 A6, 1) B1, 1) 65 C A, 1) B, ) C 66 + 1 = 0 A1, 1) B, 0) P 67 A, ) B1, ) C4, 0) 1) ABC G ) A B C P 64 A 1, 1) B, ) AB AB = 1) + 1) A 1, 1) 1 B, ) 1 65 66 65 C0, k) 66 1 p, p) 1 1 A B AB A 67

More information

R R 16 ( 3 )

R R 16   ( 3 ) (017 ) 9 4 7 ( ) ( 3 ) ( 010 ) 1 (P3) 1 11 (P4) 1 1 (P4) 1 (P15) 1 (P16) (P0) 3 (P18) 3 4 (P3) 4 3 4 31 1 5 3 5 4 6 5 9 51 9 5 9 6 9 61 9 6 α β 9 63 û 11 64 R 1 65 13 66 14 7 14 71 15 7 R R 16 http://wwwecoosaka-uacjp/~tazak/class/017

More information

n ( (

n ( ( 1 2 27 6 1 1 m-mat@mathscihiroshima-uacjp 2 http://wwwmathscihiroshima-uacjp/~m-mat/teach/teachhtml 2 1 3 11 3 111 3 112 4 113 n 4 114 5 115 5 12 7 121 7 122 9 123 11 124 11 125 12 126 2 2 13 127 15 128

More information

The Physics of Atmospheres CAPTER :

The Physics of Atmospheres CAPTER : The Physics of Atmospheres CAPTER 4 1 4 2 41 : 2 42 14 43 17 44 25 45 27 46 3 47 31 48 32 49 34 41 35 411 36 maintex 23/11/28 The Physics of Atmospheres CAPTER 4 2 4 41 : 2 1 σ 2 (21) (22) k I = I exp(

More information

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます.   このサンプルページの内容は, 初版 1 刷発行時のものです. 微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. ttp://www.morikita.co.jp/books/mid/00571 このサンプルページの内容は, 初版 1 刷発行時のものです. i ii 014 10 iii [note] 1 3 iv 4 5 3 6 4 x 0 sin x x 1 5 6 z = f(x, y) 1 y = f(x)

More information

keisoku01.dvi

keisoku01.dvi 2.,, Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 4 Mon, 2006, 401, SAGA, JAPAN Dept. of Mechanical Engineering, Saga Univ., JAPAN 5 Mon, 2006, 401, SAGA, JAPAN Dept.

More information

untitled

untitled 0. =. =. (999). 3(983). (980). (985). (966). 3. := :=. A A. A A. := := 4 5 A B A B A B. A = B A B A B B A. A B A B, A B, B. AP { A, P } = { : A, P } = { A P }. A = {0, }, A, {0, }, {0}, {}, A {0}, {}.

More information

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C 8 ( ) 8 5 4 I II III A B C( ),,, 5 I II A B ( ),, I II A B (8 ) 6 8 I II III A B C(8 ) n ( + x) n () n C + n C + + n C n = 7 n () 7 9 C : y = x x A(, 6) () A C () C P AP Q () () () 4 A(,, ) B(,, ) C(,,

More information

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy

z f(z) f(z) x, y, u, v, r, θ r > 0 z = x + iy, f = u + iv C γ D f(z) f(z) D f(z) f(z) z, Rm z, z 1.1 z = x + iy = re iθ = r (cos θ + i sin θ) z = x iy z fz fz x, y, u, v, r, θ r > z = x + iy, f = u + iv γ D fz fz D fz fz z, Rm z, z. z = x + iy = re iθ = r cos θ + i sin θ z = x iy = re iθ = r cos θ i sin θ x = z + z = Re z, y = z z = Im z i r = z = z

More information

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3 II (Percolation) 12 9 27 ( 3-4 ) 1 [ ] 2 [ ] 3 [ ] 4 [ ] 1992 5 [ ] G Grimmett Percolation Springer-Verlag New-York 1989 6 [ ] 3 1 3 p H 2 3 2 FKG BK Russo 2 p H = p T (=: p c ) 3 2 Kesten p c =1/2 ( )

More information

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B 1 1.1 1 r 1 m A r/m i) t ii) m i) t Bt; m) Bt; m) = A 1 + r ) mt m ii) Bt; m) Bt; m) = A 1 + r ) mt m { = A 1 + r ) m } rt r m n = m r m n Bt; m) Aert e lim 1 + 1 n 1.1) n!1 n) e a 1, a 2, a 3,... {a n

More information

December 28, 2018

December 28, 2018 e-mail : kigami@i.kyoto-u.ac.jp December 28, 28 Contents 2............................. 3.2......................... 7.3..................... 9.4................ 4.5............. 2.6.... 22 2 36 2..........................

More information

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P 9 (Finite Element Method; FEM) 9. 9. P(0) P(x) u(x) (a) P(L) f P(0) P(x) (b) 9. P(L) 9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L)

More information

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + 2.6 2.6.1 ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.121) Z ω ω j γ j f j

More information

2 2 MATHEMATICS.PDF 200-2-0 3 2 (p n ), ( ) 7 3 4 6 5 20 6 GL 2 (Z) SL 2 (Z) 27 7 29 8 SL 2 (Z) 35 9 2 40 0 2 46 48 2 2 5 3 2 2 58 4 2 6 5 2 65 6 2 67 7 2 69 2 , a 0 + a + a 2 +... b b 2 b 3 () + b n a

More information

) 9 81

) 9 81 4 4.0 2000 ) 9 81 10 4.1 natural numbers 1, 2, 3, 4, 4.2, 3, 2, 1, 0, 1, 2, 3, integral numbers integers 1, 2, 3,, 3, 2, 1 1 4.3 4.3.1 ( ) m, n m 0 n m 82 rational numbers m 1 ( ) 3 = 3 1 4.3.2 3 5 = 2

More information

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t 6 6.1 6.1 (1 Z ( X = e Z, Y = Im Z ( Z = X + iy, i = 1 (2 Z E[ e Z ] < E[ Im Z ] < Z E[Z] = E[e Z] + ie[im Z] 6.2 Z E[Z] E[ Z ] : E[ Z ] < e Z Z, Im Z Z E[Z] α = E[Z], Z = Z Z 1 {Z } E[Z] = α = α [ α ]

More information

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+

2 7 V 7 {fx fx 3 } 8 P 3 {fx fx 3 } 9 V 9 {fx fx f x 2fx } V {fx fx f x 2fx + } V {{a n } {a n } a n+2 a n+ + a n n } 2 V 2 {{a n } {a n } a n+2 a n+ R 3 R n C n V??,?? k, l K x, y, z K n, i x + y + z x + y + z iv x V, x + x o x V v kx + y kx + ky vi k + lx kx + lx vii klx klx viii x x ii x + y y + x, V iii o K n, x K n, x + o x iv x K n, x + x o x

More information

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s [ ]. lim e 3 IC ) s49). y = e + ) ) y = / + ).3 d 4 ) e sin d 3) sin d ) s49) s493).4 z = y z z y s494).5 + y = 4 =.6 s495) dy = 3e ) d dy d = y s496).7 lim ) lim e s49).8 y = e sin ) y = sin e 3) y =

More information

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A .. Laplace ). A... i),. ω i i ). {ω,..., ω } Ω,. ii) Ω. Ω. A ) r, A P A) P A) r... ).. Ω {,, 3, 4, 5, 6}. i i 6). A {, 4, 6} P A) P A) 3 6. ).. i, j i, j) ) Ω {i, j) i 6, j 6}., 36. A. A {i, j) i j }.

More information

untitled

untitled 3 3. (stochastic differential equations) { dx(t) =f(t, X)dt + G(t, X)dW (t), t [,T], (3.) X( )=X X(t) : [,T] R d (d ) f(t, X) : [,T] R d R d (drift term) G(t, X) : [,T] R d R d m (diffusion term) W (t)

More information

i I II I II II IC IIC I II ii 5 8 5 3 7 8 iii I 3........................... 5......................... 7........................... 4........................ 8.3......................... 33.4...................

More information

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P

5 n P j j (P i,, P k, j 1) 1 n n ) φ(n) = n (1 1Pj [ ] φ φ P j j P j j = = = = = n = φ(p j j ) (P j j P j 1 j ) P j j ( 1 1 P j ) P j j ) (1 1Pj (1 1P p P 1 n n n 1 φ(n) φ φ(1) = 1 1 n φ(n), n φ(n) = φ()φ(n) [ ] n 1 n 1 1 n 1 φ(n) φ() φ(n) 1 3 4 5 6 7 8 9 1 3 4 5 6 7 8 9 1 4 5 7 8 1 4 5 7 8 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 19 0 1 3 4 5 6 7

More information

入試の軌跡

入試の軌跡 4 y O x 4 Typed by L A TEX ε ) ) ) 6 4 ) 4 75 ) http://kumamoto.s.xrea.com/plan/.. PDF) Ctrl +L) Ctrl +) Ctrl + Ctrl + ) ) Alt + ) Alt + ) ESC. http://kumamoto.s.xrea.com/nyusi/kumadai kiseki ri i.pdf

More information

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + ( IA 2013 : :10722 : 2 : :2 :761 :1 23-27) : : 1 1.1 / ) 1 /, ) / e.g. Taylar ) e x = 1 + x + x2 2 +... + xn n! +... sin x = x x3 6 + x5 x2n+1 + 1)n 5! 2n + 1)! 2 2.1 = 1 e.g. 0 = 0.00..., π = 3.14..., 1

More information

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f 22 A 3,4 No.3 () (2) (3) (4), (5) (6) (7) (8) () n x = (x,, x n ), = (,, n ), x = ( (x i i ) 2 ) /2 f(x) R n f(x) = f() + i α i (x ) i + o( x ) α,, α n g(x) = o( x )) lim x g(x) x = y = f() + i α i(x )

More information