// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: ) [ ]< 35, 36 > δq =0 du

Similar documents
3.2 [ ]< 86, 87 > ( ) T = U V,N,, du = TdS PdV + µdn +, (3) P = U V S,N,, µ = U N. (4) S,V,, ( ) ds = 1 T du + P T dv µ dn +, (5) T 1 T = P U V,N,, T

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

flMŠÍ−w−î‚b

untitled

September 25, ( ) pv = nrt (T = t( )) T: ( : (K)) : : ( ) e.g. ( ) ( ): 1

70 5. (isolated system) ( ) E N (closed system) N T (open system) (homogeneous) (heterogeneous) (phase) (phase boundary) (grain) (grain boundary) 5. 1

現代物理化学 2-1(9)16.ppt

6 6.1 B A: Γ d Q S(B) S(A) = S (6.1) T (e) Γ (6.2) : Γ B A R (reversible) 6-1

P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

all.dvi

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

現代物理化学 1-1(4)16.ppt

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

30

Untitled

iBookBob:Users:bob:Documents:CurrentData:flMŠÍ…e…L…X…g:Statistics.dvi

i 18 2H 2 + O 2 2H 2 + ( ) 3K

( ) ( )

Microsoft Word - 11問題表紙(選択).docx


master.dvi

0201

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re


1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

理想気体ideal gasの熱力学的基本関係式

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

δf = δn I [ ( FI (N I ) N I ) T,V δn I [ ( FI N I ( ) F N T,V ( ) FII (N N I ) + N I ) ( ) FII T,V N II T,V T,V ] ] = 0 = 0 (8.2) = µ (8.3) G

OHP.dvi

KENZOU

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

TEL URL B HP A4 pdf pdf ( )

i

December 28, 2018


No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

( ) ,

構造と連続体の力学基礎

II

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

The Physics of Atmospheres CAPTER :

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

C A B A = B (conservation of heat) (thermal equilibrium) Advanced m A [g], c A [J/(g K)] T A [K] A m B [g], c B [J/(g K)] T B [K] B T E [K] T

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

“‡Łª”qŠn›tflMŠÍ−w

生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

I II III 28 29


9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

housoku.dvi

all.dvi

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

i Γ


1 1 x y = y(x) y, y,..., y (n) : n y F (x, y, y,..., y (n) ) = 0 n F (x, y, y ) = 0 1 y(x) y y = G(x, y) y, y y + p(x)y = q(x) 1 p(x) q(

gr09.dvi

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α


Maxwell

chap9.dvi

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

201711grade1ouyou.pdf

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d


untitled

all.dvi

読めば必ずわかる 分散分析の基礎 第2版

C (q, p) (1)(2) C (Q, P ) ( Qi (q, p) P i (q, p) dq j + Q ) i(q, p) dp j P i dq i (5) q j p j C i,j1 (q,p) C D C (Q,P) D C Phase Space (1)(2) C p i dq

S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

i

~nabe/lecture/index.html 2


2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

untitled

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

Note.tex 2008/09/19( )

TOP URL 1

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

AHPを用いた大相撲の新しい番付編成

7-12.dvi

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

Dynkin Serre Weyl

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

BayesfiI‡É“ÅfiK‡È−w‘K‡Ì‡½‡ß‡ÌChow-Liu…A…‰…S…−…Y…•


C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

Introduction to Numerical Analysis of Differential Equations Naoya Enomoto (Kyoto.univ.Dept.Science(math))

b3e2003.dvi

Ł\”ƒ-2005

Transcription:

2 2.1 1 [ 1 ]< 33, 34 > 1 (the first law of thermodynamics) U du = δw + δq (1) (internal energy)u (work)w δw rev = PdV (2) P (heat)q 1 1. U ( U ) 2. 1 (perpetuum mobile) 3. du 21

// //( ) (Helmholtz, Hermann Ludwig Ferdinand von: 1821 1894) 1842 1843 1842 1849 1855 1852 1858 1868 1869 1871 1877 1888 1892 [ ]< 35, 36 > δq =0 du = δw rev = PdV (3) ( ) du = C V (T )dt (4) C V ( C V =(3/2)Nk B ) γ = C P /C V C V dt = PdV = Nk BT dv (5) V C V ln T = ln V (6) Nk B T 0 V 0 TV 2/3 = const. (7) PV 5/3 = const. (8) T P 2/5 = const. (9) γ 1 γ (γ 1)/γ C V (3/2)Nk B 2 2 C V (5/2)Nk B 22

[ ]< 36, 37 > 1 du = δw rev + δq rev = δw irr + δq irr (10) δq irr =0 du du? δw (δw) δw irr >δw rev = PdV. (11) du δq δq irr <δq rev. (12) [ ]< 37 > (working material) (cycle) du = 0 (13) 1 2 23

2.2 ( ) [ ]< 37 39 > (Carnot s cycle) ( 1824 ) (heat engine). P 1 IV I 2 4 II III 3 V Figure 2: I) II) III) IV) 1. (T h,v 1,P 1 ) (T h,v 2,P 2 ) 2. (T h,v 2,P 2 ) (T c,v 3,P 3 ) V 2 V 1 = P 1 P 1 (14) U I = 0 (15) Q I = W I = Nk B T h ln V 2 V 1 > 0 (16) V 3 V 2 = 24 ( Th T c ) 3/2 (17)

Q II = 0 (18) W II = U II = C V (T c T h ) < 0 (19) 3. (T c,v 3,P 3 ) (T c,v 4,P 4 ) 4. (T c,v 4,P 4 ) (T h,v 1,P 1 ) V 4 V 3 = P 3 P 4 (20) U III = 0 (21) Q III = W III = Nk B T c ln V 4 V 2 < 0 (22) V 1 V 4 = ( Tc T h ) 3/2 (23) Q IV = 0 (24) W IV = U IV = C V (T h T c ) > 0 (25) Q I Q III W = Q I + Q III (17) (23) V 3 /V 2 = V 4 /V 1 V 3 /V 4 = V 2 /V 1 (16) (22) Q I T h + Q III T c = 0 (26) (26) ( ) ( 1848 ) // //( Home ) (Carnot, Nicolas Leonard: 1796 1832) 2 L.N.M. 1814 24 (1824) ( ) 25

( ) 2 B.E. [ ]< 39 41 > (26) ( ) Q ( ) δqrev T = 0 (27) 2 δq rev (28) 1 T δq rev /T δq 1/T δq rev /T (entropy) ds = δq 1 rev T, S δq rev 1 S 0 = 0 T (29) [ ] W = Nk B (T h T c )ln V 2 V 1 = Q I + Q III (30) (effciency) η = W = Q I Q III. (31) δq 1 Q I (16) (22) η = T h T c T h =1 T c T h. (32) 26

2.3 [ ]< 41 > 2 ( ) 2 1. ( ) 2. 3. 2 2. 3. 1. 2. 1. 2. (26) (12) ( ) Q I T h (29) [ ]< 41 > δq T + Q III T c 0 (33) δq rev T = ds (34) A B B A A B (34) B δq B rev δq S(B) S(A) = A T A T. (35) δq =0 : ds > 0 (36) 27

// //( ) (Clausius, Rudolf Julius Emmanuel: 1822 1888) 1850 1855 1867 1869 1850 1854 1865 [ ]< 41, 42 > (1) 1 ( ) ( ) 1 du = δq rev + δw rev = TdS PdV + µdn ( φdq) (37) (S, V, N, q, ) U T = U P = U µ = U (38) S V,N,q,, V S,N,q,, N S,V,q,, φ = U (39) q S,V,N,, T V U = T S = dq = C T V T V dt V, (40) V U = T S P, (41) V T V T U(S, V, N) S S(U, V, N) 28

ds = 1 T du + P T dv µ dn (42) T (ds =0) [ ]< 42, 43 > U =(3/2)Nk B T PV = Nk B T ds = 3 2 Nk du B U + Nk dv B V, (43) S(U, V ) = [ ( )3/2 ( ) ] U V S(U 0,V 0 )+Nk B ln U 0 V 0 (44) = 3 2 Nk B ln U + Nk B ln V + const. (45) U V S(T,V ) = [ ( )3/2 ( ) ] T V S(T 0,V 0 )+Nk B ln T 0 V 0 (46) = 3 2 Nk B ln T + Nk B ln V + const., (47) [ ( T S(T,P) = S(T 0,P 0 )+Nk B ln T 0 ) 5/2 ( ) ] P0 (48) P = 5 2 Nk B ln T Nk B ln P + const. (49) 3 δq = du + PdV. (50) δq = Nk B ( 3 2 dt + T V dv ) (51) 1/T ( δq 3 T = Nk dt B 2 T + dv V ds S (47) ) (52) 29

2.4 [ ]< 52, 53 > 1 W (11) (12) W (δw rev )! [ ]< 53 55 > T h T c (<T h ) W Q h Q c W + Q h + Q c = 0 (53) ( W <0, Q h > 0, Q c < 0) η = W Q h (54) 2 2 2 // //( ) (Kelvin, Willam Thomson, The Baron Kelvin of Larg: 1824 1907) 10 1845 1846 1848 = 1857 1892 Largs Kelvin Kelvin Largs 30

2.5 2 [ H ]< 43, 44 > (Boltzmann s eta theorem) f( v, t) ( v 1, v 2 ) ( v 3, v) f( v, t) = [f( v 1 )f( v 2 ) f( v 3 )f( v)] σ( v 1, v 2, v 3, v)d 3 v 3 d 3 v 1 (55) t σ( v 1, v 2, v 3, v) v 1 v 2 v 3 v 2 σ ( E ) H(t) f( v, r, t)lnf( v, r, t)d 3 vd 3 r. (56) dh(t) = d 3 v [ f( v, t)lnf( v, t)+ f( v, dt t) ] (57) f (55) dh(t) dt = 1 d 3 v d 3 v 3 d 3 v 1 [f( v 1 )f( v 2 ) f( v 3 )f( v)] [ln(f( v 3 )f( v)) ln(f( v 1 )f( v 2 ))] 4 σ( v 1, v 2, v 3, v). (58) (x y)(ln x ln y) 0 dh(t) 0 (59) dt H H f( v 1,t)f( v 2,t)=f( v 3,t)f( v, t) H [ ] i f i ( ) i j w i j ( ) df i dt = j f j w j i j 31 f i w i j. (60)

w j i = w i j. (61) d dt f i = 0 (62) i S k B f i ln f i (63) i w ji = w ij ( ) i j ds dt = k B = k B 2 = k B 2 ( f i ln f i + f ) i i i j i j [(f j w ji f i w ij )lnf i +(f i w ij f j w ji )lnf j ] (f i f j )w ij (ln f i ln f j ) (64) ds(t) dt 0 (65) f i = const. (66) [ ]< 45 > (Loschmidt 1876 ) (Zermero 1986 ) (Poincaré) H H 32

(Ostwald) (Mach) // //( ) (Ostwald, Friedrich Wilhelm: 1853 1932) 1878 1887 1906 1880 1891 1909 Ostwald Wolfgang 1883 1943 (Mach, Ernst: 1838 1916) 1860 1864 1867 1883 1886 1895 [ ]< 45 49 > (microstate) 6N (phase space) (q ν,p ν ) (q ν (t 0 ),p ν (t 0 )) (q ν (t f ),p ν (t f )) (q ν (t f ), p ν (t f )) 33

( ) (q ν (t f ), p ν (t f )) Ω 6N A 3N ( V ) Ω(V )=AV N. (67) Ω(V/2) = A(V/2) N Ω(V/2)/Ω(V ) (1/2) N N 10 23 S Ω? Ω tot =Ω 1 Ω 2, (68) S tot = S 1 + S 2 (69) S ln Ω (70) ( ) 34

2.6 [ ]< 50, 51 > U 1 + U 2 = U = const., V 1 + V 2 = V = const., N 1 + N 2 = N = const. (71) S = S 1 + S 2. (72) ds 1 = 1 T 1 du 1 + P 1 T 1 dv 1 µ 1 T 1 dn 1 (73) ds 2 = 1 T 2 du 2 + P 2 T 2 dv 2 µ 2 T 2 dn 2 (74) (71) du 2 = du 1 dv 2 = dv 1 dn 2 = dn 1 ds = ds 1 + ds 2 = ( 1 1 ) ( P1 du 1 + P ) ( 2 µ1 dv 1 µ ) 2 dn 1 (75) T1 T2 T 1 T 2 T 1 T 2 ds =0 T 1 = T 2, P 1 = P 2, µ 1 = µ 2 (76) (V 1,N 1 = const.) (75) dv 1 =0 dn 1 =0 T 1 = T 2. (P 1 P 2, µ 1 µ 2 ) (77) S = S 1 +S 2 ds 2 = ds 1 (75) du = du 1 + du 2 =(T 1 T 2 ) ds 1 (P 1 P 2 ) dv 1 +(µ 1 µ 2 ) dn 1 (78) (S 1,N 1 = const.) (78) ds 1 =0 dn 1 =0 P 1 = P 2. (T 1 T 2, µ 1 µ 2 ) (79) 35

[ ]< 51, 52 > (partial equilibrium) (local equilibrium) (global equilibrium) ( ) 36

2.7 [ ]< 59, 60 > U S V N du = TdS PdV + µdn. (80) K du = TdS PdV + µ i dn i (81) i=1 U(αS, αv, αn 1,,αN K )=αu(s, V, N 1,,N K ). (82) α =1+ɛ ɛ (Euler s quation) K U = TS PV + µ i N i. (83) i=1 du (Gibbs-Duhem relation) K SdT VdP + N i dµ i = 0 (84) i=1 (81) [ ]< 60 62 > (84) dµ(p, T) = S(P, T) N V (P, T) dt + dp. (85) N [ ( T S(P, T) =S(P 0,T 0 )+Nk B ln T 0 ) 5/2 ( ) ] P0 (86) P 37

V (P, T) =Nk B T/P ( [ ( T dµ(p, T) = s(p 0,T 0 )k B + k B ln T 0 ) 5/2 ( ) ]) P0 dt + k BT dp. (87) P P dt dp dµ (P 0,T 0 ) (P 0,T) (P, T) (s 0 s(p 0,T 0 )) [ ( ) T 5/2 ( ) ] ( P0 5 µ(p, T) =µ(p 0,T 0 ) k B T ln + 0) P 2 s k B (T T 0 ). (88) T 0 µ(p 0,T 0 )=( 5 2 s 0 ) k B T 0 (89) ( [ ( µ(p0,t 0 ) T µ(p, T) =k B T ln k B T 0 T 0 ) 5/2 ( ) ]) P0 (90) P 38