B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

Similar documents
120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

Gmech08.dvi

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

all.dvi

応力とひずみ.ppt

1 26 ( ) ( ) 1 4 I II III A B C (120 ) ( ) 1, 5 7 I II III A B C (120 ) 1 (1) 0 x π 0 y π 3 sin x sin y = 3, 3 cos x + cos y = 1 (2) a b c a +

Quiz x y i, j, k 3 A A i A j A k x y z A x A y A z x y z A A A A A A x y z P (x, y,z) r x i y j zk P r r r r r r x y z P ( x 1, y 1, z 1 )

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

4‐E ) キュリー温度を利用した消磁:熱消磁

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

Microsoft Word - 触ってみよう、Maximaに2.doc

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

mugensho.dvi

TOP URL 1

DVIOUT

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

koji07-02.dvi

i

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

高等学校学習指導要領

高等学校学習指導要領

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

Chap11.dvi

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

Part y mx + n mt + n m 1 mt n + n t m 2 t + mn 0 t m 0 n 18 y n n a 7 3 ; x α α 1 7α +t t 3 4α + 3t t x α x α y mx + n

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

2012 IA 8 I p.3, 2 p.19, 3 p.19, 4 p.22, 5 p.27, 6 p.27, 7 p

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P


i

all.dvi

入試の軌跡

No2 4 y =sinx (5) y = p sin(2x +3) (6) y = 1 tan(3x 2) (7) y =cos 2 (4x +5) (8) y = cos x 1+sinx 5 (1) y =sinx cos x 6 f(x) = sin(sin x) f 0 (π) (2) y

0.6 A = ( 0 ),. () A. () x n+ = x n+ + x n (n ) {x n }, x, x., (x, x ) = (0, ) e, (x, x ) = (, 0) e, {x n }, T, e, e T A. (3) A n {x n }, (x, x ) = (,

70 : 20 : A B (20 ) (30 ) 50 1

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

7-12.dvi

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

17 ( ) II III A B C(100 ) 1, 2, 6, 7 II A B (100 ) 2, 5, 6 II A B (80 ) 8 10 I II III A B C(80 ) 1 a 1 = 1 2 a n+1 = a n + 2n + 1 (n = 1,

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

II 2 II

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

29

Gmech08.dvi

f (x) x y f(x+dx) f(x) Df 関数 接線 x Dx x 1 x x y f f x (1) x x 0 f (x + x) f (x) f (2) f (x + x) f (x) + f = f (x) + f x (3) x f

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

Note.tex 2008/09/19( )

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

高校生の就職への数学II

熊本県数学問題正解

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google


) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

2S III IV K A4 12:00-13:30 Cafe David 1 2 TA 1 appointment Cafe David K2-2S04-00 : C

2 (1) a = ( 2, 2), b = (1, 2), c = (4, 4) c = l a + k b l, k (2) a = (3, 5) (1) (4, 4) = l( 2, 2) + k(1, 2), (4, 4) = ( 2l + k, 2l 2k) 2l + k = 4, 2l

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C602E646F63>

96 7 1m = N 1A a C (1) I (2) A C I A A a A a A A a C C C 7.2: C A C A = = µ 0 2π (1) A C 7.2 AC C A 3 3 µ0 I 2 = 2πa. (2) A C C 7.2 A A

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

1 29 ( ) I II III A B (120 ) 2 5 I II III A B (120 ) 1, 6 8 I II A B (120 ) 1, 6, 7 I II A B (100 ) 1 OAB A B OA = 2 OA OB = 3 OB A B 2 :

untitled

() Remrk I = [0, ] [x i, x i ]. (x : ) f(x) = 0 (x : ) ξ i, (f) = f(ξ i )(x i x i ) = (x i x i ) = ξ i, (f) = f(ξ i )(x i x i ) = 0 (f) 0.

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

曲面のパラメタ表示と接線ベクトル

( 4) ( ) (Poincaré) (Poincaré disk) 1 2 (hyperboloid) [1] [2, 3, 4] 1 [1] 1 y = 0 L (hyperboloid) K (Klein disk) J (hemisphere) I (P

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

Gmech08.dvi

5. F(, 0) = = 4 = 4 O = 4 =. ( = = 4 ) = 4 ( 4 ), 0 = 4 4 O 4 = 4. () = 8 () = 4


1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

m dv = mg + kv2 dt m dv dt = mg k v v m dv dt = mg + kv2 α = mg k v = α 1 e rt 1 + e rt m dv dt = mg + kv2 dv mg + kv 2 = dt m dv α 2 + v 2 = k m dt d

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

数学Ⅱ演習(足助・09夏)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

KENZOU

. p.1/14

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

f(x,y) (x,y) x (x,y), y (x,y) f(x,y) x y f x (x,y),f y (x,y) B p.1/14

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

Untitled

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

Transcription:

8 Biot-Svt Ampèe Biot-Svt 8.1 Biot-Svt 8.1.1 Ampèe B B B = µ 0 2π. (8.1) B N df B ds A M 8.1: Ampèe 107

108 8 0 B line of mgnetic induction 8.1 8.1 AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π 8.1 8.2 A B P P O s s Q PQ R QP AB θ 0 <θ<π Q ds P db db = µ 0 sin θ ds R 2 n AB n s B Q θ B θ O R P A θ A 8.2: R = dθ, ds = sin θ sin 2 θ

B AB = µ 0 B A sin θ R 2 8.1 Biot-Svt 109 ds n = µ 0 ( cos θ A cos θ B ) n θ A 0 θ B π B = µ 0 2π n 8.2 8.3 n θ 2 O R O θ 1 8.3: n 8.3 n O B 1 = µ 0 R ( cos θ 1 cos θ 2 ) R θ 1 θ 2 R = cos π n, θ 1 = n 2 2n π, θ 2 = n +2 2n π cos n 2 n +2 π cos 2n 2n π = 2 sin π ( 2 sin π ) = 2 sin π n n B 1 = µ 0 2π tn π n n B = nb 1 = nµ 0 2π tn π n.

110 8 8.1.2 Biot-Svt ds Biot Svt Biot-Svt ds ds db db = µ 0 ds 3 (8.2) Biot-Svt Biot-Svt s lw T T =N A 1 m 1 =Wb m 2 (8.3) Wb B P ds Q 8.4: Biot-Svt 8.4 Biot-Svt (8.2) A B P ds Q db db = µ 0 ds 2 sin θ θ ds = PQ db ds ds θ

8.1 Biot-Svt 111 q v B = µ 0 q v 3 (8.4) Biot-Svt S = nqvs n q v ds ds = nqvs ds = ns ds qv ds S ds ns ds qv v ds Biot-Svt (8.2) ds qv ds db B (8.4) 8.3 8.5 O z Q ds z P (8.2) db = µ 0 ds 3 Q P db ds = QP z db z 0 z db z B = db z = µ 0 ds 2 + z 2 cos φ = µ 0 2( 2 + z 2 cos φ. )

112 8 P z P z φ B z z O ds Q O ds Q 8.5: φ db z cos φ = / 2 + z 2 B = µ 0 2 2( 2 + z 2 ) 3/2. n n 8.2 lim n tn π n n = π B = µ 0 2 z =0 8.4 Helmholtz 8.6 x x = /2 x = /2 µ B(x) = 0 2 2[ 2 +(/2+x) 2 ] 3/2 + µ 0 2 2[ 2 +(/2 x) 2 ] 3/2 x Tylo B(x) = k=0 1 k! d k B(x) dx k x k x=0

8.1 Biot-Svt 113 x 8.6: Helmholtz B(x) x 0 d 2 B(x) dx 2 =0 x=0 0 x x 4 B(x) = µ 0 ( 4 5 ) 3/2 + O(x 4 )

114 8 8.2 8.2.1 B = µ 0 p m 2π 3 cos θ e + µ 0 p m 3 sin θ e θ (8.5) p m = π 2 (8.5) 8.7 O xy P yz y z x y z P e θ R e θ x e x O φ dφ Q ds y 8.7: Q ds P db QP = R db = µ 0 ds R R 3 (8.6) ds R = OP e yz e θ x e x ds R ds = dφ ( sin θ cos φ e + cos θ cos φ e θ sin φ e x ) R = OQ=( sin θ sin φ) e cos θ sin φ e θ cos φ e x

8.2 115 e e x = e θ, e θ e = e x, e x e θ = e, e x e x = e e = e θ e θ =0 [ ] ds R = dφ cos θ e +(sin φ sin θ) e θ + cos θ cos φ e x (8.7) R 3 e e = e θ e θ = e x e x =1, e e θ = e θ e x = e x e =0 R 3 = [ ( sin θ sin φ) 2 +( cos θ sin φ) 2 +( cos φ) 2 ] 3/2 = [ 2 + 2 2 sin θ sin φ ] 3/2 (8.8) (8.7) (8.8) (8.6) ds P db db = µ 0 cos θ e +( sin φ sin θ) e θ + cos θ cos φ e x [ 2 + 2 2 sin θ sin φ ] 3/2 dφ dφ 0 2π sin φ P 1/R 3 / Tylo 1 R 3 = 1 [ 2 + 2 2 sin θ sin φ ] 3/2 = 1 3 db = µ 0 [( 3 cos θ + 32 (1+ sin θ cos θ sin φ ) e 3 sin θ sin φ + ). ( ) + sin φ sin θ +3sin θ sin 2 φ 32 sin2 θ sin φ ] ( ) + cos θ cos φ +3sin θ cos θ sin φ cos φ e x dφ e θ φ 0 2π cos φ sin φ sin φ cos φ = 1 2 sin 2φ 0 2π 0 cos φ dφ = 2π 0 cos φ dφ = 2π 0 sin φ cos φ dφ =0.

116 8 e e e θ e x 0 e θ sin 2 φ = 1 2 1 cos 2φ 2 0 e e e θ e x (8.5) (8.5) B = µ 0 p m cos θ 2π 3 e + µ 0 p m sin θ 3 e θ 1 p cos θ E = 2πε 0 3 e + 1 p sin θ ε 0 3 e θ p m p µ 0 1/ε 0 (8.5) Tylo / φ 2 0 3 ds p m = ds (8.5) C ds i 8.8: C 8.8 C S ds i C

8.2 117 ds i C ds i C C 8.2.2 S p m = S 8.9 q m L p m V q 8.9: V S L = m V = mv S = π 2, = qv 2π p m = S = qv 2π π2 = qv 2 p m = q 2m L (8.9) p m L (8.9)

118 8 8.2.3 H p m (7.12) L dl/dt = N dl dt = q 2m L H (8.10) L 8.10 H L 8.10: Plnck 1/2 J p m = gj. (8.11) g 8.9 g = q/(2m) H dj dt = g J H (8.12)