A c b c c c ] := A cp b cp c c b cp A c c cp (9) (8) T u { xk ] = Asxk] b suk] yk] = c s xk] 3 () Moving ifference long sampling observer: N uk N] xk]

Similar documents
Table. Stage model parameters. Mass of pole part m.4 kg Mass of table part M 22 kg Thrust viscous constant c x 2. 2 N s/m Twist dumping constant of jo

SPC PWM IPM Proposal of Control Method for IPM Motor Based on PWM Hold Model in Overmodulation Range Takayuki Miyajima, Hiroshi Fujimoto (Yokoha

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

SICE東北支部研究集会資料(2012年)

Proposal of Driving Torque Control Method for Electric Vehicle with In-Wheel Motors Masataka Yoshimura (Yokohama National University) Hiroshi Fujimoto

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se

鉄鋼協会プレゼン

IIC Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

2007-Kanai-paper.dvi

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

XFEL/SPring-8

MEC NC High frequency variation speed control of spindle motor for self-excited chattering vibration suppression in NC Machine tools. Teruaki I

T k Current Reference Generator i k i qk Decoupling Control Cz Cz 1 Tu Vc Tu Vc T k T SVM qk θek θek SPMSM INV i uk uw i wk θ ek q k k T k Current Ref

36 581/2 2012

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE.

A Construction of Hybrid Adaptive Control System Using a Fixed Compensator Shiro MASUDA*, Hiroshi OKAMOTO** and Akira INOUE* In this paper, we propose

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

17 Proposal of an Algorithm of Image Extraction and Research on Improvement of a Man-machine Interface of Food Intake Measuring System

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

013858,繊維学会誌ファイバー1月/報文-02-古金谷

Vol.55 No (Jan. 2014) saccess 6 saccess 7 saccess 2. [3] p.33 * B (A) (B) (C) (D) (E) (F) *1 [3], [4] Web PDF a m

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

1

<95DB8C9288E397C389C88A E696E6462>

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

ばらつき抑制のための確率最適制御

149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

alternating current component and two transient components. Both transient components are direct currents at starting of the motor and are sinusoidal

A Feasibility Study of Direct-Mapping-Type Parallel Processing Method to Solve Linear Equations in Load Flow Calculations Hiroaki Inayoshi, Non-member

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

人文学部研究年報12号.indb

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

, (GPS: Global Positioning Systemg),.,, (LBS: Local Based Services).. GPS,.,. RFID LAN,.,.,.,,,.,..,.,.,,, i

B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

2 ( ) i

21 Effects of background stimuli by changing speed color matching color stimulus

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

MPC MPC R p N p Z p p N (m, σ 2 ) m σ 2 floor( ), rem(v 1 v 2 ) v 1 v 2 r p e u[k] x[k] Σ x[k] Σ 2 L 0 Σ x[k + 1] = x[k] + u[k floor(l/h)] d[k]. Σ k x

johnny-paper2nd.dvi

Sobel Canny i

AD8212: 高電圧の電流シャント・モニタ

LM35 高精度・摂氏直読温度センサIC

2. ICA ICA () (Blind Source Separation BBS) 2) Fig. 1 Model of Optical Topography. ( ) ICA 2.2 ICA ICA 3) n 1 1 x 1 (t) 2 x 2 (t) n x(t) 1 x(t

/ Motor Specifications Direct Motor Drive Ball Screws / Precision Ball Screw type MB / MB MB Precision Ball Screw type MB / MoBo C3 5 5 Features A 5-p

2.2 (a) = 1, M = 9, p i 1 = p i = p i+1 = 0 (b) = 1, M = 9, p i 1 = 0, p i = 1, p i+1 = 1 1: M 2 M 2 w i [j] w i [j] = 1 j= w i w i = (w i [ ],, w i [

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

特-3.indd

1 Table 1: Identification by color of voxel Voxel Mode of expression Nothing Other 1 Orange 2 Blue 3 Yellow 4 SSL Humanoid SSL-Vision 3 3 [, 21] 8 325

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

IPSJ SIG Technical Report Vol.2011-DBS-153 No /11/3 Wikipedia Wikipedia Wikipedia Extracting Difference Information from Multilingual Wiki

MmUm+FopX m Mm+Mop F-Mm(Fop-Mopum)M m+mop MSuS+FX S M S+MOb Fs-Ms(Mobus-Fex)M s+mob Fig. 1 Particle model of single degree of freedom master/ slave sy

ADC121S Bit, ksps, Diff Input, Micro Pwr Sampling ADC (jp)

P361

{ 8. { CHAPTER 8. Å (sampling time) x[k] =x(kå) u(ú) t t + Å (u[k]) x[k + 1] =A d x[k] +B d u[k] (8:) (diãerence equation) A d =e AÅ ; B d = Z Å 0 e A

Vol.53 No (Mar. 2012) 1, 1,a) 1, 2 1 1, , Musical Interaction System Based on Stage Metaphor Seiko Myojin 1, 1,a

S-6.indd

IPSJ SIG Technical Report Vol.2017-ARC-225 No.12 Vol.2017-SLDM-179 No.12 Vol.2017-EMB-44 No /3/9 1 1 RTOS DefensiveZone DefensiveZone MPU RTOS

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

System to Diagnosis Concrete Deterioration with Spectroscopic Analysis IHI IHI IHI The most popular method for inspecting concrete structures for dete

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

Fig. 1 KAMOME50-2 Table 1 Principal dimensions Fig.2 Configuration of the hydrofoils (Endurance and sprint foil) Fig. 3 Schematic view of the vortex l

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

news

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1


表紙参照.PDF

IPSJ SIG Technical Report Vol.2015-CVIM-196 No /3/6 1,a) 1,b) 1,c) U,,,, The Camera Position Alignment on a Gimbal Head for Fixed Viewpoint Swi

ID 3) 9 4) 5) ID 2 ID 2 ID 2 Bluetooth ID 2 SRCid1 DSTid2 2 id1 id2 ID SRC DST SRC 2 2 ID 2 2 QR 6) 8) 6) QR QR QR QR

kiyo5_1-masuzawa.indd

Steel Construction Vol. 6 No. 22(June 1999) Engineering

LMC6022 Low Power CMOS Dual Operational Amplifier (jp)

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

VHDL-AMS Department of Electrical Engineering, Doshisha University, Tatara, Kyotanabe, Kyoto, Japan TOYOTA Motor Corporation, Susono, Shizuok

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

〈論文〉興行データベースから「古典芸能」の定義を考える

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

log F0 意識 しゃべり 葉の log F0 Fig. 1 1 An example of classification of substyles of rap. ' & 2. 4) m.o.v.e 5) motsu motsu (1) (2) (3) (4) (1) (2) mot

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

P2P P2P peer peer P2P peer P2P peer P2P i

5) 2. Geminoid HI-1 6) Telenoid 7) Geminoid HI-1 Geminoid HI-1 Telenoid Robot- PHONE 8) RobotPHONE 11 InterRobot 9) InterRobot InterRobot irt( ) 10) 4

植物23巻2号

磁気測定によるオーステンパ ダクタイル鋳鉄の残留オーステナイト定量

..,,,, , ( ) 3.,., 3.,., 500, 233.,, 3,,.,, i

24 Depth scaling of binocular stereopsis by observer s own movements

原稿.indd

Transcription:

IIC 9 6 Proposal of Moving Difference Long Sampling Observer for Quantization Error Reuction Koichi Sakata, Hiroshi Fujimoto (Yokohama National University) Abstract High resolution encoers are employe to inustrial equipment which is require accuracy, for example, NC machine tools, exposure systems, an so on. Generally, the ocity of machines is calculate by the ifference of the position given by the encoer. Although the high resolution encoer is employe, the quantization error an the half sample elay inuce by the ifference cannot be avoie. These are problems in the case of require high precise ocity. In this paper, we propose an observer which can estimate state variables with reucing the quantization error. Finally, simulations an experiment with experimental precision stages are performe to show the avantages of the propose observer. (precision stage, observer, quantization error, ea-time compensation ). () M/T () (3) (4) (5) (6) (7). v if k] = z zt u yk] () = ˆvk ] () y y real q yk] = y real k] qk] (3) N N v if k] = zn z N NT u yk] (4) = ˆvk N ] (5) 3. 3 { ẋp (t) = A cp x p (t) b cp (u(t) (t)) (6) y(t) = c cpx p(t) { ẋ (t) = A c x (t) (7) (t) = c c x (t) x = x T p, x T ] T { ẋ(t) = Ac x(t) b c u(t) y(t) = c cx(t) (8) /6

A c b c c c ] := A cp b cp c c b cp A c c cp (9) (8) T u { xk ] = Asxk] b suk] yk] = c s xk] 3 () Moving ifference long sampling observer: N uk N] xk] = Axk N] B. () uk ] A ] B := A N s A N s b s b s ] () ˆxi ] = Aˆxi] Bui] H(yi] c s ˆxi]) (3) i NT u NT u N T u yi] NT u uk N] ˆxk] = Aˆxk N] B. uk ] H(yk N] c s ˆxk N]) (4) k T u N { ξi ] = Âξi] ˆByi] Ĵui] ˆxi] = Ĉξi] ˆDyi] (5) i NT u yk-n] uk-n] uk-n] uk-n-] uk-n-] (k-n)t u (k-n-)t u (k-n)t u (k-)t u (k-n)t u (k-n-)t u (k-n)t u (i-)t y yk-n-] yk-n-] yk-n] yk-n] yk-n] yk-] (i-) T y Sampling time. uk-] yk-] (k-) T u uk-] yk] kt u it y uk] uk ] yk] (k) T u uk N] ξk] = Âξk N] ˆByk N] Ĵ. ˆxk] = Ĉξk] ˆDyk] (6) k T u 3 3 n o (8) n o yk n o ] n o ˆxk n o ] ξk n o ] = Âξk N n o] ˆByk N n o ] uk N n o ] Ĵ. uk n o ] ˆxk n o ] = Ĉξk n o] ˆDyk n o ] (7) ˆxk] uk n o ] ˆxk] = A ˆxk n o ] B. (8) A B ] := A n o s uk ] A n o s b s b s ] (9) 4. 4 3 /6

uk] z -N-no z --no z -no z - ^J ξ B^ k-no] z -N C^ z -N A^ ξ yk-no] D^ k-n] x^ A k-no] B x^k] Magnitue B] Phase eg] 5 3 4 Characteristic from y to v if ifference per Tu ifference per NTu 3 4 4 Frequency response of ifference in N = 4. Moving ifference long sampling observer with ea-time. 5 x 3 (ifference per Tu) (ifference per NTu) u(t) H (T ) u (t) uk] - e -sti bc y(t) x(t) cc e-st o S S (T u) Encoer yk] Ac e -sti k] c s A s x p k] x k] Observer xk]..4.6.8. (a) Estimate ocity A cp 3 Block iagram of the system. Specifications of plant. Mass M 4.3 kg Viscosity B Thrust coefficient K t Sampling perio T u Input ea-time T i.8 N/(m/s) 8.5 N/A / s T u Output ea-time T o T u Resolution. µm b cp c cp ] = M B M () ] ] A c = () c c u(t).5 Hz (t) s.5 4 4 y v 5 N = 4 NT u T u N 4 3 6 y ˆv ˆ N = 4 5 x (ifference per Tu) (ifference per NTu)..4.6.8. (b) Estimate ocity error 5 Time response by ifference in N = 4. Stanar eviation of ocity errors an isturbance errors in simulation. Velocity Disturbance Singlerate min-orer.5e m/s 4. mn Singlerate full-orer 9.6e m/s.6 mn 8.58e m/s. mn LPF LPF NT u 7 8 3σ 6 nm, 5 Hz 3/6

Magnitue B] Characteristic from y to v hat 5 singlerate min orer observer singlerate full orer observer 5 3 4 5 x 3 Phase eg] 3 4 (a) y to ˆv..4.6.8. (a) Estimate ocity Magnitue B] Phase eg] Characteristic from y to hat singlerate min orer observer singlerate full orer observer 3 4 3 3 4 (b) y to ˆ 6 Frequency response of observer in N = 4. Sensitivity characteristic x..4.6.8. x..4.6.8. x..4.6.8. (b) Estimate ocity error Magnitue B] 3 Singlerate min orer observer Singlerate full orer observer 3 4 7 Sensitivity characteristic of observer in N = 4. 9 6 5. nm. µm 3 3σ nm, 5 Hz Disturbance N] Disturbance error N]..5 Disturbance trajectory.5 hat (singlerate min orer observer) hat (singlerate full orer observer) hat ()...4.6.8....... (c) Estimate isturbance Disturbance error hat (singlerate min orer observer)..4.6.8. hat (singlerate full orer observer)..4.6.8. hat ()..4.6.8. () Estimate isturbance error 8 Time response by observer in N = 4. 4 4/6

3 5 x..4.6.8. 図 Experimental precision stage. x..4.6.8. 5..4.6.8. Frequency response of plant (from force to stage position) x Phase eg] Magnitue B] (a) Estimate ocity Measurement Moel x 図..4.6.8. Frequency response of experimental precision stage. (b) Estimate ocity error 5 x (ifference per Tu) (ifference per NTu) Disturbance trajectory. Disturbance N].5.5 hat (singlerate min orer observer) hat (singlerate full orer observer) hat ()...4.6.8...4.6.8. (a) Estimate ocity (c) Estimate isturbance 5 x (ifference per Tu) (ifference per NTu) hat. (singlerate min orer observer) Disturbance error N]...4.6.8. hat (singlerate full orer observer). Disturbance error...4.6.8 hat...4.6.8. (b) Estimate ocity error (). 図 Experimental results by ifference in N = 4....4.6.8. () Estimate isturbance error 図9 Time response by observer with sinusoial noise in N = 4. 6. ま と め 移動差分による速度導出では 最低でも半サンプルの遅 れは避けられず 量子化誤差低減のために差分周期を長く するとさらに遅れてしまう これに対し オブザーバを用 いた速度導出ではプラントモデルを必要とするがサンプル 遅れの問題は解消される オブザーバの更新を移動差分的 に行うことで シングルレート同一次元オブザーバおよび シングルレート最小次元オブザーバに比べて量子化誤差成 分を低減できるオブザーバを提案した さらに提案法は特 定周波数のノイズに対して非干渉化できることも特徴であ る 最後にシミュレーションおよび実験により 提案法の 5/6

5 x 5 x..4.6.8. (a) Estimate ocity..4.6.8. (a) Estimate ocity x..4.6.8. x..4.6.8. x..4.6.8. x..4.6.8. x x..4.6.8. (b) Estimate ocity error 3 Experimental results by observer in N = 4. 3 Stanar eviation of ocity errors in experiment. Singlerate min-orer Singlerate full-orer Velocity 9.6e m/s.3e m/s 8.7e m/s 868636, 6868 R. C. Kavanagh an J. M. D. Murphy, The effects of quantization noise an sensor nonieality on igital-ifferentiator-base ocity measurement, IEEE Trans. Instrumentation an Measurement, vol. 47, no. 6, pp. 457 463, 998. T. Ohmae, T. Matsua, K. Kamiyama, an M. Tachikawa, A microprocessor-controlle highaccuracy wie-range spee regulator for motor rives, IEEE Trans. Inustrial Electronics, vol. 9, no. 3, pp. 7, 98. 3 R C. Kavanagh, Improve igital tachometer with reuce sensitivity to sensor nonieality, IEEE Trans. Inustrial Electronics, vol. 47, vo. 4, pp. 89 897,. 4 T. Tsuji, T. Hashimoto, H. Kobayashi, M. Mizuochi, 4..4.6.8. (b) Estimate ocity error Experimental results by observer with sinusoial noise in N = 4. an K. Ohnishi, A wie-range ocity measurement metho for motion control, in IEEE Trans. Inustrial Electronics, vol. 56, no., pp. 5 59, 9. 5 N. Iiyama, K. Ohnishi, an T. Tsuji, An approach to estimate ocity for acceleration control, in Proc. th IEEE International Workshop on Avance Motion Control, pp. 687-69, 8. 6 K. Fujita an K. Sao, Instantaneous spee etection with parameter ientification for ac servo systems, IEEE Trans. Inustry Applications, vol. 8, no. 4, pp. 864 87, 99. 7 Y. Hori, T. Umeno, T. Uchia, an Y. Konno, An instantaneous spee observer for high performance control of c servo motor using DSP an low precision shaft encoer, in Proc. 4th European Conf. Power Electronics, vol. 3, pp. 647 65, 99. 8 Hiroshi Fujimoto an Yoichi Hori, Visual servoing base on multirate control an ea-time compensation, Journal of the Robotics Society of Japan, vol., no. 6, pp. 78 787, 4. (in Japanese) 6/6