ohpr.dvi

Similar documents
ohpr.dvi

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2



( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

Part () () Γ Part ,



18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


P F ext 1: F ext P F ext (Count Rumford, ) H 2 O H 2 O 2 F ext F ext N 2 O 2 2

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

meiji_resume_1.PDF

86 6 r (6) y y d y = y 3 (64) y r y r y r ϕ(x, y, y,, y r ) n dy = f(x, y) (6) 6 Lipschitz 6 dy = y x c R y(x) y(x) = c exp(x) x x = x y(x ) = y (init

CRA3689A

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

untitled

Report10.dvi

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

構造と連続体の力学基礎

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

TOP URL 1

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

A

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

C : q i (t) C : q i (t) q i (t) q i(t) q i(t) q i (t)+δq i (t) (2) δq i (t) δq i (t) C, C δq i (t 0 )0, δq i (t 1 ) 0 (3) δs S[C ] S[C] t1 t 0 t1 t 0

ohpr.dvi



23 1 Section ( ) ( ) ( 46 ) , 238( 235,238 U) 232( 232 Th) 40( 40 K, % ) (Rn) (Ra). 7( 7 Be) 14( 14 C) 22( 22 Na) (1 ) (2 ) 1 µ 2 4

第5章 偏微分方程式の境界値問題

chap9.dvi


1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

,,,17,,, ( ),, E Q [S T F t ] < S t, t [, T ],,,,,,,,

高知工科大学電子 光システム工学科

note1.dvi

~nabe/lecture/index.html 2

36 th IChO : - 3 ( ) , G O O D L U C K final 1


II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

OHP.dvi

I ( ) 2019

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

untitled

総研大恒星進化概要.dvi

untitled

i

B

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

The Physics of Atmospheres CAPTER :

d ϕ i) t d )t0 d ϕi) ϕ i) t x j t d ) ϕ t0 t α dx j d ) ϕ i) t dx t0 j x j d ϕ i) ) t x j dx t0 j f i x j ξ j dx i + ξ i x j dx j f i ξ i x j dx j d )

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2




Note.tex 2008/09/19( )

量子力学 問題

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

τ τ

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

物性物理学I_2.pptx

4‐E ) キュリー温度を利用した消磁:熱消磁

パーキンソン病治療ガイドライン2002

研修コーナー

液晶の物理1:連続体理論(弾性,粘性)

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.


master.dvi

( )

nosenote3.dvi


1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

1/68 A. 電気所 ( 発電所, 変電所, 配電塔 ) における変圧器の空き容量一覧 平成 31 年 3 月 6 日現在 < 留意事項 > (1) 空容量は目安であり 系統接続の前には 接続検討のお申込みによる詳細検討が必要となります その結果 空容量が変更となる場合があります (2) 特に記載

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

1 2 2 (Dielecrics) Maxwell ( ) D H

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

: , 2.0, 3.0, 2.0, (%) ( 2.

Microsoft Word - 章末問題

A B P (A B) = P (A)P (B) (3) A B A B P (B A) A B A B P (A B) = P (B A)P (A) (4) P (B A) = P (A B) P (A) (5) P (A B) P (B A) P (A B) A B P

Gmech08.dvi

30

Transcription:

2003-08-04

1984 VP-1001 CPU, 250 MFLOPS, 128 MB 2004ASCI Purple (LLNL)64 CPU 197, 100 TFLOPS, 50 TB, 4.5 MW PC 2 CPU 16, 4 GFLOPS, 32 GB, 3.2 kw 20028 CPU 640, 40 TFLOPS, 10 TB, 10 MW (ASCI: Accelerated Strategic Computing Initiative! Advanced Simulation and Computing Program)

analysis synthesis 1. 2. 3. 4. 5. 6. 7.

イオン 電子 クーロン力

dr j dr j = v j ; dv j = q m = v jke k + v drift (R j ;μ j ; t); dv jk (1) r j v j h i E(r j ; t) + v j B(r j ; t) dt dt R=μ= = q m E k(r j ;μ j ; t) dt dt

@n s @ρ m + @ @r (n su s ) = 0; n s m s du s = @p s fl m ρ p (2) (r; v) f (r; v; t), f (R;μ;v k ; t) (r) n(r; t), u(r; t), p(r; t) ψ! @ f f @ + v @ f @t @ f v B(r; t)] [E(r; = + t) @v coll @t @r + q m ψ! f Λ @ k e k + v drift (R;μ;t) @ f v + q m E k(r;μ;t) @ f = @v + k @r @t @ f coll @t d pn fl = 0 dt @t @r + n sq s (E + u B) + R s ; dt @ (ρ du mu) = 0; ρ m + = @p dt @r + j B; E + u B = j; d = 0 @t @r dt

(3)

r 2 Φ = ρ ext = 0 r 2 A k = μ 0 j k ; r 2 Φ = ρ ext = 0 ) 2 1=d r E = @B ; @t B = 1 c 2 @E @t + μ 0 j r

1. (consistency) 0 2. (accuarcy) 3. (stability) 4. (eciency)

(1) Lipschitz

(2) Explicit x (n+1) = F(x (n) ; t) t L x V V < x= t Implicit x (n+1) = F(x (n) ; x (n+1) ; t)

(3) (!$ I $ A) x = 0 $ A(!) x = 0 $ A(!) x = jxj!

CPU CPU CPU CPU CPU CPU Memory CPU CPU CPU CPU CPU CPU CPU Mem Mem Mem Mem Mem Mem CPU

=) 32bit CPU CPU 12 GB 64bit CPU : CPU 2 GB

ο 0:1mm ο 0:1mm ο 3mm ο 30 mm ο 1m ο 3m 140 GHz ο 100 GHz ο 100 GHz ο 3GHz ο 50 MHz ο 100 khz ο 10 khz ο 1s ο 1s ο EC LH IC MHD

(1) JFT-2M OFMC

(2)

70 20 TASK/WR Poloidal angle Toroidal angle beam 2m curvature Initial Ray/Beam Pro le Initial beam radius 0:05 m P abs Pro le j CD Pro le

f = 200 GHz, N = 0:2, r = 0:05 m r = 1:5m r=0.05 m r=1.5 f(p 0,p 0 )-f (-p 0,p 0 ) = f(p 0,p 0 ) = f = 200 GHz, N = 0:2, r = 0:05 m TASK/FP

=)

E θi P e E θi ITER P e ρ ρ TASK/WM

(3) DIII-D, JT-60 ITER JT-60 ITER JET, DIII-D

(1) Ware

@B 3 = @ @ρ = 1 V 0 @ + S s V 0 hjrρji 3 2 n st s V Es V 0 hjrρj 2 in s χ s @T s 0 B V *jrρj 2 R 2 + FR 0 hr 2 i hj Bi ext + P s (2) V:ρV 0 = dv=dρ 1 @ 0 V @t (n sv 0 ) = @ hjrρjin s V s hjrρj 2 id s @n s @ρ @ρ 1 @ 05=3 V 2 n st s V 05=3 @ρ @ρ @t» 0 F R 2 @ V 0 0 μ @ρ @t FR 0 hr 2 i F

χ TB = F(s;ff;»;! E1 ) ff 3=2! 2 pe >< >: 1 + G 1! 2 E1 1 + G 1! 2 E1 1 0 p 2s )(1 2s0 + 3s 02 ) 2(1 CDBM 2.5 F(s;ff;»;! E1 ) s ff c2 v A 2.0 ω E1 =0 ω E1 =0.1 1.5 dq F 1.0 ω E1 =0.2 ω E1 =0.3 qr s r q ff q 2 R dfi 0.5 dr» r R ψ dr 1 1 q 2! 0.0-0.5 0.0 0.5 1.0 s - α 8 qr de B A sv E B! E1 1 dr for s 0 = s ff < 0 F BM = 1 + p 2s 05=2 1 9 p 0 2s + 3s02 + 2s 03 ) 2(1 for s 0 = s ff > 0 E B

JT-60U : T [kev] Wdia [MJ] Ip [MA] τε / τε ITER89-P ne [10 19 m -3 ] TASK/TR Ip JT-60U T i (0.34a) t [s] Wdia t [s] n (0) t [s] t [s] T e (0) τ Ε / τ Ε ITER89-P P NBI Sn n (0.7) β N β N PNBI [MW] Sn [10 16 s -1 ] Ip [MA] Wdia [MJ] ne [10 19 m -3 ] T [kev] τ P NBI I BS n e (0) T i τ 1 W B t [s] t [s] t [s] <T e > t [s] Ip <n e > τ2 I OH <T i > Wi We T e τ Ε PNBI [MW] q T [kev] JT-60U r / a JT-60U r / a q t = 2.0 t = 2.8 t = 3.6 t = 4.4 t = 5.2 r [m] T [kev] t = 2.6 t = 2.5 t = 2.4 t = 2.3 t = 2.2 t = 2.1 t = 2.0 t = 2.8 t = 2.7 r [m] t [s] t [s]

@n s m s n s u s = 1 r @r (rn su sr ) + S s @r (rm sn s u 2 sr ) + 1 r m sn s u 2 s + e sn s (E r + u s B u s B ) @ @r n st s +F C s + FW s + FX s + FL s ψ 5 +P C s + PL s + PH s rn s m s μ s @r u s u s @ @t = 1 r @ @ @t (m sn s u sr )= 1 r ψ! @ sn s u s )= 1 @ r 2 (m @t @r (r2 m s n s u sr u s ) + e s n s (E u sr B ) + 1 r 2 @ r 3 n s m s μ s @ @r @r r NC s + F C s + FW s + FX s + FL s +F ψ! @ @ @ @ @t (rm sn s u sr u s ) + e s n s (E + u sr B ) + 1 r @r @r! @ r @r 2 u srn s T s n s χ s @ @r T e @ 3 + e s n s (E u s + E u s ) @t 2 n st s = 1 r

TASK/TX0:3m 2 =s10 m 2 =s JFT-2M NBI! =) =)

JFT-2M JFT-2M Ida et al.: Phys. Rev. Lett. 68 (1992) 182

ref: Z. Lin et al.: IAEA-2000 TH2-3

ref: W. Park et al.: IAEA-2002 TH5-1 (NTM) (RWM) (AE)

SOL JT-60U

EC LH IC MHD MHD MHD

ITER

TASK WR EQ WM TR DP FP

TASK EQ, TR, WR, WM EQ CDBM TR WR WM