dvi

Similar documents
2016 年熊本地震の余震の確率予測 Probability aftershock forecasting of the M6.5 and M7.3 Kumamoto earthquakes of 2016 東京大学生産技術研究所統計数理研究所東京大学地震研究所 Institute of Indus

yasi10.dvi

Time Variation of Earthquake Volume and Energy-Density with Special Reference to Tohnankai and Mikawa Earthquake Akira IKAMi and Kumizi IIDA Departmen


7-3 2004年新潟県中越地震

untitled

橡表紙参照.PDF

untitled

7-1 2007年新潟県中越沖地震(M6.8)の予測について

Fig. 1. Horizontal displacement of the second and third order triangulation points accompanied with the Tottori Earthquake of (after SATO, 1973)

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2


149 (Newell [5]) Newell [5], [1], [1], [11] Li,Ryu, and Song [2], [11] Li,Ryu, and Song [2], [1] 1) 2) ( ) ( ) 3) T : 2 a : 3 a 1 :

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

京都大学防災研究所年報第 60 号 A 平成 29 年 DPRI Annuals, No. 60 A, 2017 Generating Process of the 2016 Kumamoto Earthquake Yoshihisa IIO Synopsis The 2016 Kumamoto e


Microsoft Word - mitomi_v06.doc

29 Short-time prediction of time series data for binary option trade

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).


28 Horizontal angle correction using straight line detection in an equirectangular image

ブック

Key Words: wavelet transform, wavelet cross correlation function, wavelet F-K spectrum, 3D-FEM

untitled

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

先端社会研究 ★5★号/4.山崎

IPSJ SIG Technical Report Vol.2010-GN-74 No /1/ , 3 Disaster Training Supporting System Based on Electronic Triage HIROAKI KOJIMA, 1 KU

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

<95DB8C9288E397C389C88A E696E6462>

0-

untitled

km km ,620 8,360 32,261 [5] [6] [7

* Meso- -scale Features of the Tokai Heavy Rainfall in September 2000 Shin-ichi SUZUKI Disaster Prevention Research Group, National R

On the Detectability of Earthquakes and Crustal Movements in and around the Tohoku District (Northeastern Honshu) (I) Microearthquakes Hiroshi Ismi an

IR0036_62-3.indb

Trial Study to Aggregate the Flow of Relief Funds for the Great East Japan Earthquake: Matrix of Relief Fund Inflow and Outflow Abstract The 2011 Grea

浜松医科大学紀要

1., 1 COOKPAD 2, Web.,,,,,,.,, [1]., 5.,, [2].,,.,.,, 5, [3].,,,.,, [4], 33,.,,.,,.. 2.,, 3.., 4., 5., ,. 1.,,., 2.,. 1,,

研究シリーズ第40号

4.1 % 7.5 %

udc-2.dvi

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

Perspective-Taking Perspective-Taking.... Vol. No.

mm mm , ,000 Fig. 1 Locality map of the investigation area NE SW Fi

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of

untitled

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

ODA NGO NGO JICA JICA NGO JICA JBIC SCP

Hohenegger & Schär, a cm b Kitoh et. al., Gigerenzer et. al. Susan et. al.

1 (1997) (1997) 1974:Q3 1994:Q3 (i) (ii) ( ) ( ) 1 (iii) ( ( 1999 ) ( ) ( ) 1 ( ) ( 1995,pp ) 1

1) , 215, 1441, , 132, 1237, % College Analysis 2-4) 2

IPSJ SIG Technical Report Vol.2009-BIO-17 No /5/26 DNA 1 1 DNA DNA DNA DNA Correcting read errors on DNA sequences determined by Pyrosequencing

Study of the "Vortex of Naruto" through multilevel remote sensing. Abstract Hydrodynamic characteristics of the "Vortex of Naruto" were investigated b

JOURNAL OF THE JAPANESE ASSOCIATION FOR PETROLEUM TECHNOLOGY VOL. 66, NO. 6 (Nov., 2001) (Received August 10, 2001; accepted November 9, 2001) Alterna

首都直下地震における地方財政への影響

A5 PDF.pwd

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

3. ( 1 ) Linear Congruential Generator:LCG 6) (Mersenne Twister:MT ), L 1 ( 2 ) 4 4 G (i,j) < G > < G 2 > < G > 2 g (ij) i= L j= N

kiyo5_1-masuzawa.indd

1793 Detailed Distributions of Seismic Intensity and Tsunami Heights of the Kansei off Miyagi Prefecture Earthquake of February 17, 1793 Yuichi NAMEGA

1..FEM FEM 3. 4.

JFE.dvi

(1) 2

Detailed Spatial Distributions of Foreshock and Aftershock Activities of Small Earthquakes Kiyoshi ITO and Akio KUROISO Abuyama Seismological Observat

chisq.test corresp plot


[2] , [3] 2. 2 [4] 2. 3 BABOK BABOK(Business Analysis Body of Knowledge) BABOK IIBA(International Institute of Business Analysis) BABOK 7

dvi

<332D985F95B62D8FAC93638BA795DB90E690B62E706466>

高齢化とマクロ投資比率―国際パネルデータを用いた分析―

Table 1 Experimental conditions Fig. 1 Belt sanded surface model Table 2 Factor loadings of final varimax criterion 5 6


Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

SEJulyMs更新V7

<836F F312E706466>

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

揃 Lag [hour] Lag [day] 35

Modal Phrase MP because but 2 IP Inflection Phrase IP as long as if IP 3 VP Verb Phrase VP while before [ MP MP [ IP IP [ VP VP ]]] [ MP [ IP [ VP ]]]

(2003)

fiš„v5.dvi


20 Method for Recognizing Expression Considering Fuzzy Based on Optical Flow

論文08.indd

大学論集第42号本文.indb


2 10 The Bulletin of Meiji University of Integrative Medicine 1,2 II 1 Web PubMed elbow pain baseball elbow little leaguer s elbow acupun

...v.q.....r C

Web Stamps 96 KJ Stamps Web Vol 8, No 1, 2004

untitled

早稲田大学現代政治経済研究所 ダブルトラック オークションの実験研究 宇都伸之早稲田大学上條良夫高知工科大学船木由喜彦早稲田大学 No.J1401 Working Paper Series Institute for Research in Contemporary Political and Ec

2 The Bulletin of Meiji University of Integrative Medicine 3, Yamashita 10 11

,,.,.,,.,.,.,.,,.,..,,,, i

13....*PDF.p

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

: u i = (2) x i Smagorinsky τ ij τ [3] ij u i u j u i u j = 2ν SGS S ij, (3) ν SGS = (C s ) 2 S (4) x i a u i ρ p P T u ν τ ij S c ν SGS S csgs

tikeya[at]shoin.ac.jp The Function of Quotation Form -tte as Sentence-final Particle Tomoko IKEYA Kobe Shoin Women s University Institute of Linguisti

Visual Evaluation of Polka-dot Patterns Yoojin LEE and Nobuko NARUSE * Granduate School of Bunka Women's University, and * Faculty of Fashion Science,

Transcription:

2015 63 1 65 81 c 2015 2014 12 26 2015 3 11 3 17 1. 20 1995 2011 1 1990 M 6.5 10% 153 8505 4 6 1

66 63 1 2015 1 1990 6.5 Fig. 1. The epicenter distribution of earthquakes M 6.5 around Japan since 1990. 2 17 1995 30, 1998 Reasenberg and Jones, 1989; Gerstenberger et al., 2005;

67 2 Fig. 2. Spatial distribution and MT plot of aftershocks after the 2011 Tohoku-oki top and 1995 Hyogo-ken-Nambu bottom earthquakes. A star mark represents a main shock. Marzocchi and Lombardi, 2009 2. - 1894 1891 8.0 λ(t) (2.1) λ(t) = K t + c Omori, 1894 t

68 63 1 2015 3 Fig. 3. Time evolution of the aftershock frequency after the 2011 Tohoku-oki left and the 1995 Hyogo-ken-Nambu right earthquakes. K c c 3, 10, 100 1/3, 1/10, 1/100 1961 3 (2.2) λ(t) = K (t + c) p Utsu, 1961; Utsu et al., 1995 - p p p 0.9 1.5 3 - - - p p p p K, 2008, 2009 K K 2004 2007 6.8 7

69 Epidemic Type Aftershock Sequence ETAS Utsu, 1971 2004 M6.8 4 M6 - - 1988 - ETAS (2.3) λ(t H t)= t i <t K 0e α(m i M 0 ) (t t i + c) p Ogata, 1988 t i M i ETAS 2.3-4 5.5 3 Fig. 4. The aftershock frequency of aftershocks after the 2003 Chuetsu earthquake as a function of time. Arrows represent the timing of the large aftershocks M 5.5. Insets show the time evolution of the aftershock frequency after some large aftershocks.

70 63 1 2015 ETAS e α(m i M 0 ) - ETAS - 2.2 - Ogata, 1983 ETAS 2.3 ETAS Ogata, 1988 - - Gutenberg and Richter, 1944 1944 (2.4) m(m) 10 bm 5 b =1 1 10 1 b 5 - ETAS - 1995 Reasenberg and Jones, 1989;, 1998 - - 2.2 ETAS ETAS

71 5 G-R Fig. 5. Magnitude frequency distribution. The black dots and the line represent the observed value and Gutenberg-Richter law, respectively. ETAS ETAS 4 ETAS - ETAS 2009 6.3 ETAS Marzocchi and Lombardi, 2009 ETAS 4 3. Omi et al., 2013 1998, 2008, 2009

72 63 1 2015 Ogata, 1983; Utsu et al., 1995; Kagan, 2004; Iwata, 2008 6 A 10% 10 6 B3 G-R G-R 1 G-R (3.1) Φ(M) = M 1 (x μ)2 e 2σ 2 dx 2πσ 2 Ringdal, 1975; Ogata and Katsura, 1993 0 μ 0.5 50% 1 100% 6 B μ μ G-R 6 B 6 B1 B2 0.1 μ t μ μ(t) Ogata and Katsura, 2006 Akaike, 1980

73 6 A - µ(t) B 0.01 0.1 1 Fig. 6. The estimation of the detection rate function. A M-T plot of aftershocks after the 2003 Chuetsu earthquake with the estimated time-varying µ(t). B The magnitude frequency and the detection rate around the 0.01 B1, 0.1 B2, and1 day B3 after the main shock, respectively. Omi et al., 2013 6 A μ(t) 2011 -

74 63 1 2015 7 - µ(t) Omi et al. 2013 Fig. 7. The estimation of the detection rate function. M-T plot gray dots of aftershocks after the 2011 Tohoku-oki earthquake with the estimated time-varying µ(t) curves. ModifiedfromOmietal. 2013. 2011 NEIC NEIC NEIC 3, 6, 12, 24 3, 6, 12, 24 4 7 3, 6, 12, 24 50% μ(t) μ(t) μ(t) - 2.2 8

75 8 Omi et al. 2013 Fig. 8. Short-term forecasting of aftershocks shortly after the main shock. Modified from Omi et al. 2013. 95% 3 2 4. Omi et al., 2014; 2015-2.2 2004

76 63 1 2015 Akaike, 1978 p(θ Data) θ L(θ Data) π(θ) (4.1) p(θ Data) L(θ Data)π(θ) π(θ) 2004 ETAS θ p(θ Data) {θ i} 9 1 Maximum a posteriori MAP MAP MAP MAP

77 9 ETAS Fig. 9. The estimation uncertainty of the ETAS parameters. ETAS - ETAS - ETAS ETAS ETAS ETAS thining method Ogata, 1981 G-R 10 1995 1993

78 63 1 2015 10 ETAS Fig. 10. The comparison of performances between the plug-in and Bayesian forecasting by using the ETAS model. 1 31 MAP ETAS ETAS 1990 Omi et al., 2015 G-R

79 G-R Omi et al. 2015 5. - ETAS - 1 2 USGS FIRST JSPS 26240004 Akaike, H. 1978. A new look at the Bayes procedure, Biometrika, 65 1, 53 59. Akaike, H. 1980. Likelihood and the Bayes procedure, Bayesian Statistics eds. J. M. Bernardo, M. H. DeGroot, D. V. Lindley and A. F. M. Smith, 143 166 discussion 185 203, University Press, Valencia, Spain. Gerstenberger, M. C., Wiemer, S., Jones, L. M. and Reasenberg, P. A. 2005. Real-time forecasts of tomorrow s earthquakes in California, Nature, 435 7040, 328 331. Gutenberg, B. and Richter, C. F. 1944. Frequency of earthquakes in California, Bulletin of the Seismological Society of America, 34 4, 185 188. Iwata, T. 2008. Low detection capability of global earthquakes after the occurrence of large earthquakes: Investigation of the Harvard CMT catalogue, Geophysical Journal International, 174 3, 849 856. 1998., http://www.jishin.go.jp/main/yoshin2/yoshin2.htm. Kagan, Y. Y. 2004. Short-term properties of earthquake catalogs and models of earthquake source, Bulletin of the Seismological Society of America, 94 4, 1207 1228. 2008. 2007 11 2008 4, 80, 80 99 http://cais.gsi.go.jp/yochiren/report/kaihou80/04 01.pdf. 2009. 20 2008,, 81, 101 131 http://cais.gsi.go.jp/yochiren/report/kaihou81/03 04.pdf.

80 63 1 2015 Marzocchi, W. and Lombardi, A. M. 2009. Real-time forecasting following a damaging earthquake, Geophysical Research Letters, 36 21, L21302. Ogata, Y. 1981. On Lewis simulation method for point processes, IEEE Transactions on Information Theory, 27 1, 23 31. Ogata, Y. 1983. Estimation of the parameters in the modified Omori Formula for aftershock frequencies by the maximum likelihood procedure, Journal of Physics of the Earth, 31, 115 124. Ogata, Y. 1988. Statistical models for earthquake occurrences and residual analysis for point processes, Journal of the American Statistical Association, 83, 9 27. Ogata, Y. and Katsura, K. 1993. Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues, Geophysical Journal International, 113 3, 727 738. Ogata, Y. and Katsura, K. 2006. Immediate and updated forecasting of aftershock hazard, Geophysical Research Letters, 33 10, L10305. Omi, T., Ogata, Y., Hirata, Y. and Aihara, K. 2013. Forecasting large aftershocks within one day after the main shock, Scientific Reports, 3, 2218. Omi, T., Ogata, Y., Hirata, Y. and Aihara, K. 2014. Estimating the ETAS model from an early aftershock sequence, Geophysical Research Letters, 41, 850 857. Omi, T., Ogata, Y., Hirata, Y. and Aihara, K. 2015. Intermediate-term forecasting of aftershocks from an early aftershock sequence: Bayesian and ensemble forecasting approaches, Journal of Geophysical Research: Solid Earth Published online http://dx.doi.org/10.1002/2014jb011456. Omori, F. 1894. On the aftershocks of earthquake, Journal of the College of Science, Imperial University of Tokyo, 7, 111 200. Reasenberg, P. A. and Jones, L. M. 1989. Earthquake hazard after a mainshock in California, Science, 243 4895, 1173 1176. Ringdal, F. 1975. On the estimation of seismic detection thresholds, Bulletin of the Seismological Society of America, 65 6, 1631 1642. Utsu, T. 1961. A statistical study on the occurrence of aftershocks, Geophysical Magazine, 30, 521 605. Utsu, T. 1971. Aftershocks and earthquake statistics 2 : Further investigation of aftershocks and other earthquake sequences based on a new classification of earthquake sequences, Journal of the Faculty of Science, Hokkaido University. Series 7, Geophysics, 3, 197 266. Utsu, T., Ogata, Y. and Matsu ura, R. S. 1995. The centenary of the Omori formula for a decay law of aftershock activity, Journal of Physics of the Earth, 43 1, 1 33.

Proceedings of the Institute of Statistical Mathematics Vol. 63, No. 1, 65 81 (2015) 81 Real-time Short- and Intermediate-term Forecasting of Aftershocks after a Main Shock Takahiro Omi Institute of Industrial Science, The University of Tokyo A large earthquake triggers numerous aftershocks, and some strong aftershocks can cause additional damage in the disaster area. Thus, operational forecasting of aftershock activity has been carried out to reduce earthquake risks. However, there are some problems with current forecasting methods. First, early forecasting is very difficult because of the substantial deficiency of data shortly after a main shock, although aftershocks occur very frequently soon after a main shock. Second, because aftershock activity lasts for a long time, it is also important to achieve intermediate-term forecasting as soon as possible. Nevertheless, it is not easy to do this from limited data. To overcome these difficulties, we have employed statistical methodology to develop a practical forecasting method. In this contribution, we introduce our recent works in aftershock forecasting, and show the effectiveness of our method using actual data. Key words: Statistical seismology, point process, probability forecast, Bayesian statistics.