(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

Similar documents
No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

KENZOU Karman) x


(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

r d 2r d l d (a) (b) (c) 1: I(x,t) I(x+ x,t) I(0,t) I(l,t) V in V(x,t) V(x+ x,t) V(0,t) l V(l,t) 2: 0 x x+ x 3: V in 3 V in x V (x, t) I(x, t

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

meiji_resume_1.PDF

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

201711grade1ouyou.pdf

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)


f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

( ) ( )

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =


) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

TOP URL 1

TOP URL 1

Note.tex 2008/09/19( )

30

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

Untitled

v er.1/ c /(21)

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

pdf

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

TOP URL 1

JKR Point loading of an elastic half-space 2 3 Pressure applied to a circular region Boussinesq, n =

( )

TOP URL 1

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

II Karel Švadlenka * [1] 1.1* 5 23 m d2 x dt 2 = cdx kx + mg dt. c, g, k, m 1.2* u = au + bv v = cu + dv v u a, b, c, d R

II 2 II

Part () () Γ Part ,

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

i

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

ẍ = kx, (k > ) (.) x x(t) = A cos(ωt + α) (.). d/ = D. d dt x + k ( x = D + k ) ( ) ( ) k k x = D + i D i x =... ( ) k D + i x = or ( ) k D i x =.. k.

基礎数学I

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

量子力学 問題

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

4 Mindlin -Reissner 4 δ T T T εσdω= δ ubdω+ δ utd Γ Ω Ω Γ T εσ (1.1) ε σ u b t 3 σ ε. u T T T = = = { σx σ y σ z τxy τ yz τzx} { εx εy εz γ xy γ yz γ

( ) ,

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

1 nakayama/print/ Def (Definition ) Thm (Theorem ) Prop (Proposition ) Lem (Lemma ) Cor (Corollary ) 1. (1) A, B (2) ABC

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Microsoft Word - 11問題表紙(選択).docx

構造と連続体の力学基礎

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

5 5.1 E 1, E 2 N 1, N 2 E tot N tot E tot = E 1 + E 2, N tot = N 1 + N 2 S 1 (E 1, N 1 ), S 2 (E 2, N 2 ) E 1, E 2 S tot = S 1 + S 2 2 S 1 E 1 = S 2 E

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

1. A0 A B A0 A : A1,...,A5 B : B1,...,B

29

2011de.dvi

K E N Z OU

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

n=1 1 n 2 = π = π f(z) f(z) 2 f(z) = u(z) + iv(z) *1 f (z) u(x, y), v(x, y) f(z) f (z) = f/ x u x = v y, u y = v x

: , 2.0, 3.0, 2.0, (%) ( 2.


2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

I 1

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r




18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

液晶の物理1:連続体理論(弾性,粘性)

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

4.6 (E i = ε, ε + ) T Z F Z = e βε + e β(ε+ ) = e βε (1 + e β ) F = kt log Z = kt log[e βε (1 + e β )] = ε kt ln(1 + e β ) (4.18) F (T ) S = T = k = k

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

QMII_10.dvi

chap9.dvi

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

LLG-R8.Nisus.pdf

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

振動と波動

Transcription:

(5) 74 Re, bondar laer (Prandtl) Re z ω z = x

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

(5) 76 l V x ) 1/ 1 ( 1 1 1 δ δ = x Re x p V x t V l l (1-1) 1/ 1 δ δ δ δ = x Re p V x t V l l (1- ) 1 1 = x V l (1-3) t V t = l v V Re l = (1-4) V 1 / = V x δ δ l / δ = δ l

(5) 77 δ 1 x1 1 v = x v δ 1 1 δ 1 x 1 x v 1 v δ v δ x v δ x v 1 δ v δ v 1 δ

(5) 78 Re 1 Re δ v l l (1-5) δ p δ 1 p = v x ρ x (1-6) p = (1-7) = x (1-8) 1 p = (1-9) ρ x x =, = ( = ) ( x) ( ) (1-1) p = λρ (1-11) x λ λ 1/ l

(5) 79 v x

(5) 8 x η ψ, ψ = f n (η) (1-1) 1/ η = = R x (1-13) vx / x x R x = v ψ ( x, ) = v x f ( η) (1-14) ψ n ψ ψ η = = = f ( η) η ψ 1 v = = { ηf ( η) f ( η) } x x η η = = f ( η) x η x x η = = f ( η) η vx η = ( η) = f η vx vx (1-15) f ( η)

(5) 81 / 1 x /

(5) 8 1 p = v x ρ x = v (1-16) x f ff = (1-17) η f f (1-18) η f v =.865 (1-19) x

(5) 83 l 1-5 f, f, f 7 = Rx 1/ x 6 5 4 3 = Rx 1/ x 6 5 4 3 1 1..4.6.8 1. (a).4.8 (b) R x 1/

(5) 84 δ(x) = f ( η) =. 99 (11-1) η η δ = 5. vx = 5.xR 1/ x (11- ) = [ ) ] q ( d (11-3) * δ * δ = * δ = q (11-4) 1 d * δ (displacement thickness) vx x * δ = 1.73 = 1. 73 1/ R x (11-5)

(5) 85.99 () d

[ ] (5) 86 ρ d ρ θ (momentm thickness) θ = 1 d (11-6) vx x θ =.664 =.664 1/ R x (11-7) l D l D = µ dx =.664 µρl = D( l) C f =, ( A = bl) (1/ ) ρa (11-8) 1. 38 C f = (11-9) R l R l = l / v Rl Rl

(5) 87 l (Dail-Harleman, Addison-Wesle )

(5) 88 d p / d x (adverse pressre gradient) (separation) p = const. ρ PA A = ρ PC PB 1 = ρ ρ PB = ρ ( ) B C B = P C ρ C (11-1) (11-11) E = p ρ A A = p ρ B B E A B = p C ρ C E A C (11-1)

(5) 89 (a) (b) (c) A A B B C C D D

(5) 9 C p pb pc B = EB C (11-13) p = ρ ρ 1 C B ( B C ) B C ρ E (11-14) d p / d x =, ( = ) (bondar laer control)

(5) 91 = = h x h h h h h 1 p d d v d d t x = ν ρ x (1-1) h h d = d x h d v = x (1- ) h 1 p = d d d ρ x t x (1-3) τ µ / ( / ) = h = ( ) = µ τ ν = = (1-4) ρ ρ = h h h v d = d d x (1-5) h h = d d x x h h h = h 1 p τ d d d d (1-6) t x x ρ x ρ δx h h dδx δx d vδx t x =

(5) 9

(5) 93 x x δx h ( ) d [ ] d τ ( ) ( ) d = (1-7) t x x ρ h x d a da db a f ( x, α) dx = f ( a, α) f ( b, α) b fdx dα dα dα b α (1-8) ( δ * ) * τ ( θ ) δ = t x x ρ (1-9) = : = = : =, =

(5) 94 B v d x = D δx x A C x

(5) 95 d/dx t dθ ( x) τ ( x) = d x ρ (1-1) θ (x) τ ( x) = f (η ) (1-11) η = / δ ( x) 1 θ = ( )d = δ ( x) f (1 f )dη α1δ ( x) = (1-1) α = 1 f ( 1 f ) dη (1-13) τ ν ( / ) ν = ν = = β1 ρ δ η δ = η = (1-14) β1 = f () (1-15) * δ f * δ = α δ ( x) (1-16) α ( 1 f ) η (1-17) = 1 d dδ β1 ν δ = d x α1 (1-18) x =, δ = δ ( x) = β1 νx α1 (1-19) * δ * β1 νx δ = α α1 (1- )

(5) 96 θ = α1 β1 νx α1 (1-1) D(l) C f ( = D( l) /{ bl( ρ / )}) α1β1 x τ ( x) = µ x ν (1- ) 3 D ( l) = b α 1β1 µρl (1-3) C f α 1β1 = l / ν (1-4)

(5) 97 f ( η) = η ( < η < 1) (1-5) f ( ) = f ( 1) = 1 f (1) = = 1 ( < η < 1) f ( η) = ( η = 1) (1-6) 1 1 α 1 = η(1 η)dη = 6 1 1 α = (1 η)dη = (1-7) β 1 = f () = 1 * νx δ = 1. 73 (1-8) C f ν = 1.155 (1-9) l

(5) 98 3

(5) 99 3 4 f ( η) = A A1η Aη A3η A4η (1-3) = : = ( f () = ) 1 d p d = : v = = ( f () = ) ρ d x d x = δ : = ( f (1) = 1) = δ : = ( f (1) = ) = δ : = ( f (1) = ) (1-31) A =, A1 =, A =, A3 =, A4 = 1 (1-3) 3 4 f ( η ) = η η η (1-33) 1 1 1 7 367 37 α f (1 f )dη = d d = 1 f η f η 1 63 315 β 1 = f () = (1-34) 1 1 3 α = (1 f )dη = 1 d = f η 1 = x = * 3 315 δ 1. 751 1 37 (1-35) C f = 4 37 ν 315 l (1-36)

(5) 1 1-1

(5) 11 Re = D / ν = D ν Re C 3 5 16. 1 < Re < 1 C

(5) 1

(5) 13 = v = v v (13-1) w = w w, v, w, v, w = v = v (13- ) w = ρ v d A ρ v d A τ = ρv (13-3) σxx τx τxz ρ ρv ρw τx σ τz = ρv ρvv ρvw τzx τz σ zz ρw ρwv ρww (13-4) p = p p ρ ρ µ ρ v w p v w = Fx t x z x x z ρ v ρ µ ρ v v v w v p v v vw = F v t x z x z (13-5) ρ w ρ µ ρ w v w w w p w vw w = Fz w t x z z x z

(5) 14

(5) 15 ρνd /d ρ v = ρν T d /d (13-6) ν ν T T ν d v l (13-7) d d d ρ v = ρl d d (13-8) d ν T = l d l l = k (13-9) ρv = ρk d d d d (13-1)

(5) 16 τ ρ τ / ρ 14-1 * = * η η * = 14- ν ( ) * = fn 14-3 * ν max ( ) = fn 14-4 * a

(5) 17 l E (a) l E (b) (Dail-Harleman, Addison-Wesle)

(5) 18 d τ τ = µ 14-5 d ( ) * = 14-6 * ν τ l = k τ τ τ = τ = const. l = k τ d = ( k) d ρ * = τ / ρ d * = d k 14-7 ( ) 1 = ln C1 * k 14-8 ( ) 1 * = ln AS * k ν 14-9 AS k =.4 AS ( ) * = 5.75log1 * ν 14-1

(5) 19 log S ( ) (a)

(5) 11 * 4 < < ν 4 < * < 14-11 ν * < ν = a max 1 * a = ln AS * k ν 14-1 max ( ) 1 a = ln * k 14-13

(5) 111

(5) 11 ν ks ( ) = f n 14-14 * ks ( ) 1 = ln Ar 14-15 * k ks Ar ks Ar ( ) = 5.75log1 14-16 * k S ks

(5) 113 k S * ν * ks /ν k S δ S k S / δ S * ks /ν δ S / k S * ks /ν δ S / k S * ks /ν δ S / k S * ks /ν ( ) 1 * ks = ln A 14-17 * k ks ν A * ks /ν A = A ln( * k S / ν ) 14-18 1 / n ( ) = 14-19 max a 5 Re 1 n 5 Re > 1 n n = log1 Re 14-1 n

(5) 114 * * = 1 ln As x ν * = 1 ln Ar x ks = * * S s a δ S A (Schlichting, McGraw-Hill)

(5) 115 L ( p1 p )( π ) τ ( π L) = a a ( p1 p )( π ) ( τ π L) p1 p a d p τ = = 14-1 L d x τ D = a a d p D d p τ = = 14- d x 4 d x f = Q /( π ) D p1 p L = f D 1 ρ a 14-3 d p 1 1 f = / ρ d x D 14-4 (14-1) τ * f = 8 = 8 ρ 14-5 max ( ) 1 a = ln ( ) = π ( a ) d * k πa ( max ) π a a = ln ( a )d * k πa = k = 3.75πa ( 1 ξ ) a 1 ln dξ ξ ( ξ = / a) 14-6 = max 3. 75 * 14-7

(5) 116 p 1 p max 1 * a = ln A S * k ν max 1 * a = ln 1. 75 14-8 k ν * ( ) 1 (14-1) (14-15) = ln Ar * k ks a = A max *.5ln r ks 14-9 / * a =.5ln 4. 75 * k S 14-3 f 1 a =.log1 f. 8 14-31 f ν 1 ks =.log1 1. 14 f D 14-3 f k S / D f =.3164 Re / 4 Re = 14-33.37 f =.3.1Re Re = 14-34

{ log ( Re ). } f = 1/ f Re = 1 8 (5) 117 14-35 64/Re, (7-1) ( ) (14-1) f n (Re), (14-31) (14-16) f n (k s /D), (14-3) ( ) ( ) ( ) ( ) ( )

(5) 118 Re C 4 Re C 4

(5) 119

(5) 1 x p p = = x (15-1) τ t x v ρ (15- ) v v = x (15-3) τ ρv = ρl ε = l d d d d d d (15-4) x b τ ρε = (15-5) ( ε = kb 1 max min) (15-6) ε R ε b ( ) max min R ε = ε 1 = = const (15-7) k 1

- (5) 11 min v =ε x (15-8) ε = kb 1 max (15-9) x = s S b S x max x max ( x) = S f1( x/ s) m bx ( ) = bs f ( x/ s) = bs( x/ s) (15-1)

(5) 1

(5) 13 η φ( x, ) η = bx ( ) (15-11) Ψ( x, ) = f( x) ψ ( η ) P f ( x) = bss( x/ s) (15-1) dp / dx = J = ρ = ρ = ρb S = const ( x, )d b( x) S ( x / s) ( x, η)dη P m { ψ ( η) } dη (15-13) ε S s ( ψ ) ψψ ψ = b S S (15-14) = : / =, v = : η = : ψ =, ψ = 1 (15-15) : ψ b S b ε σ = = S S 4k1 = s s S (15-16) η ψ ( η) = tanhη (15-17)

(5) 14 z z z e e z e e z z z z z cosh sinh tanh cosh sinh = = =

S, v 3 J S = ρσs 3 J = ( 1 tanh η) ρσx 3 Jσ v = { η( 1 tanh η) tanhη} 4 ρx = 1 η σ x (5) 15 (15-18) σ σ = 1/ 767. (15-19) b 1 / b b 1 1 1 tanh / = b b = 115. b 1 / (15- ) ε = kb 115. σ = b1 4 =. 37b 1 max / max 1 / max (15-1)

(5) 16 (form drag), pressre drag (frictional drag)

(5) 17 (a) (b) (c) L R D

(5) 18 D D f D p D = D f D p ρ ρ ρ (16-1) = C f A C p A = CD A C f C p C D A da p wda da pda pdacos da wda wda sin D p = p cosθda (16- ) A D τ sinθda (16-3) f = A w C D

(5) 19 da w da w da sin pda 16-1 (Re =1 4 1 6 ) (Re =1 4 1 6 ) C D 6 9 1.161. 1.5 1.55 1.98.5..3 [ (1976) 4-4 p.8 3] 16- (Re =1 4 1 6 ) C D C D sting spport.47 separation 1.17.38 1.17.4 1.4 3 4.59 1.38 cbe.8 cbe 1.5 6.5 )

(5) 13 d Red/ν (16-4) Re Re Re Re áá Re áá Re Re Re

(5) 131

(5) 13 p D C D = (16-5) 1 ρ d D Re 1 Re 1 Re 1 5 C D 11. D 5 Re 1 6 5

(5) 133 1-1 - -3 3 6 9 1 15 18 Re < 4 1 5 4 1 5 < Re < 3 1 6 Re > 3 1 6

(5) 134 x x x x x t l l tt Y(T) l (t) Y ( T ) = T l ( t) dt 17-1) t tt (17- ) Y ( T ) = T l ( T ξ) dξ 17-3) T dy l ( T ) = dt 17-4) C l Y CY(C/) l Y(C/) F C = ( ly ) 17-5) = l Y 17-6) l Y T ( T ) Y ( T ) = ( T ) ( T ξ) dξ 17-7) l l l l (T) ( T ) Y ( T ) ( T ) ( T ξ) dξ 17-8) l = T l l

(5) 135 v l (t) Y (t) v l (o)

(5) 136 l (T)Y(T) l Y dy 1 dy ly = Y = dt dt 17-9) (ensemble mean) l ( T ) Y( T ) 1 dy T = l Y = = l ( T ) l ( T ξ) dξ dt 17-1) 1 d Y T = l Rl ( ξ ) dξ dt 17-11) R ξ ) = ( T ) ( T ξ) / 17-1) l ( l l l R l () Y T η Y = R ( ξ ) dξ dη 17-13) l l one particle analsis

(5) 137 C C C Y Y C C

(5) 138 R l, R l 1 T R 1 dy K = = l T, dt ( T ) 17-14) Y = l T, ( T ) 17-15) T T Rl ( ξ ) dξ = const = T* 17-16) 1 dy K = = l T* ( = const), ( T >> T* ) dt 17-17) Y = l T T, ( T >> T ) 17-18) * * T * ( ξ ) = exp ξ / T 17-19) ( ) R l * 1 dy T K = = l T* 1 exp dt T* 17- ) T T Y = T l * 1 exp T* T* R l () T TT * T x Tx/ TT * xt * x l T * T *

(5) 139 5.. D=T 1. D.5..1.1..5 1.. 5. 1 T a b c

(5) 14 ( ) Re 9/4 = = = z w w v x w w z p F z w w w v x w t w z w v v x v v p F z v w v v x v t v z w v x x p F z w v x t z x ρ µ ρ ρ ρ µ ρ ρ ρ µ ρ ρ 18-1) τ ρv = d /d ρν v T /d d ρν ρ = (18- ) T ν T ν K ε ν µ K C T = (18-3) µ C T ν K K- µ C

(5) 141 LES(large edd simlation) LES DNS(direct nmerical simlation) DNS

(5) 14 present work;, R 8, R 65, R 39, R 5 slope -5/3 others;, R (Grant, et al., 196), R 1(, 1995), R 318(Karakin et al., 1991) NASA, R 15 (Saddoghi & Veeravalli, 1994), R 85 (Coantic & Favre, 1974), R 41 (Sanborn & Marshall, 1965), R 38 (beroi & Fremth, 1969), R 13 (Champagne, 197), R 54 (Kistler & Vrebalovich, 1966), R 7, R 37 (Comte-Bellot & Corrsin, 1971) Saddoghi & Veeravalli(1994) (Flohr, 1999)