○松本委員

Similar documents
デフォルト相関係数のインプライド推計( )

固定資産の減損会計へのリアル・オプション・アプローチ

IMES DISCUSSION PAPER SERIES Discussion Paper No. 99-J- 9 -J-19 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN

LIBORマーケット・モデルのインプリメンテーションについて―本邦の金利派生商品データを用いた具体例を基に―

財政赤字の経済分析:中長期的視点からの考察


1 Nelson-Siegel Nelson and Siegel(1987) 3 Nelson-Siegel 3 Nelson-Siegel 2 3 Nelson-Siegel 2 Nelson-Siegel Litterman and Scheinkman(199

土地税制の理論的・計量的分析

ACLI-EBC-CLHIA Interim Proposal _J_ June Final.PDF

IMES DISCUSSION PAPER SERIES LIBOR Discussion Paper No J- -J-2 INSTITUTE FOR MONETARY AND ECONOMIC STUDIES BANK OF JAPAN

「国債の金利推定モデルに関する研究会」報告書

all.dvi

SekineXu

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


銀行手数料ビジネスの動向と経営安定性

3

10:30 12:00 P.G. vs vs vs 2

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

Vol. 3 No (Mar. 2010) An Option Valuation Model Based on an Asset Pricing Model Incorporating Investors Beliefs Kentaro Tanaka, 1 Koich

モンテカルロ・フィルタを用いた金融時系列分析

202

23_02.dvi

1 Jensen et al.[6] GRT S&P500 GRT RT GRT Kiriu and Hibiki[8] Jensen et al.[6] GRT 3 GRT Generalized Recovery Theorem (Jensen et al.[6])

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

LLG-R8.Nisus.pdf

text.dvi

わが国企業による資金調達方法の選択問題

財政赤字の経済分析:中長期的視点からの考察

mf.dvi

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

合併後の交付税について

福岡大学人文論叢47-3

液晶の物理1:連続体理論(弾性,粘性)

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

LCR e ix LC AM m k x m x x > 0 x < 0 F x > 0 x < 0 F = k x (k > 0) k x = x(t)

カルマンフィルターによるベータ推定( )

SO(2)

s = 1.15 (s = 1.07), R = 0.786, R = 0.679, DW =.03 5 Y = 0.3 (0.095) (.708) X, R = 0.786, R = 0.679, s = 1.07, DW =.03, t û Y = 0.3 (3.163) + 0

ALM

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

(2004 ) 2 (A) (B) (C) 3 (1987) (1988) Shimono and Tachibanaki(1985) (2008) , % 2 (1999) (2005) 3 (2005) (2006) (2008)

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

Microsoft Word - 11問題表紙(選択).docx

fiúŁÄ”s‘ê‡ÌŁª”U…−…X…N…v…„…~…A…•‡Ì ”s‘ê™´›ß…−…^†[…fiŠ‚ª›Âfl’«

Auerbach and Kotlikoff(1987) (1987) (1988) 4 (2004) 5 Diamond(1965) Auerbach and Kotlikoff(1987) 1 ( ) ,

ρ ( ) sgv + ρwgv γ sv + γ wv γ s + γ w e e γ ρ g s s γ s ( ) + γ w( ) Vs + V Vs + V + e + e + e γ γ sa γ e e n( ) + e γ γ s ( n) + γ wn γ s, γ w γ γ +

変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

IPSJ SIG Technical Report Pitman-Yor 1 1 Pitman-Yor n-gram A proposal of the melody generation method using hierarchical pitman-yor language model Aki

shuron.dvi

1. 2. (Rowthorn, 2014) / 39 1


Part () () Γ Part ,

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

untitled

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T


meiji_resume_1.PDF

早稲田大学現代政治経済研究所 ダブルトラック オークションの実験研究 宇都伸之早稲田大学上條良夫高知工科大学船木由喜彦早稲田大学 No.J1401 Working Paper Series Institute for Research in Contemporary Political and Ec

Transcription:

CIRJE-J-100 2003 11 CIRJE hp://www.e.u-okyo.ac.jp/cirje/research/03research02dp_j.hml

Credi Risk Modeling Approaches 2003 11 17

Absrac This aricle originaes from a speech given by he auhor in he seminar organized by he Securiy Analyss Associaion of Japan (SAAJ) on Sepember fifh of 2003 o commemorae he founding of he Cerified Inernaional Invesmen Analys (CIIA) qualificaion. In he firs half, I give a fairly comprehensive, non-quaniaive summary of he recen developmens of credi risk modeling approaches and echniques. In he laer half, I illusrae a new converible-bond (CB) pricing model ha we developed using he reduced-form approach o handle he credi-risk componen embedded in converible bonds. I also presen some resuls of applying our model and, for comparison, a srucural model, o Japanese CB markes. 1

2003 9 5 2

CIIA 2 Journal of Fixed Income CIIA 1 1. (1) Srucural Approach 1974 Meron [1974] 1980 KMV Moody s KMV 1 3

4 T T Meron [1974] T 1 T T 1 (2) KMV

1 T (3) KMV D T 1 T D A T D µ γ γ γ σ A T survival probabiliy (1) pt (, ) 5

A T A T D 2 (1) () ( ut ) pt (, ) = (, ) (1) X + m( T ) ut (, ) = T log( A D) X = σ 2 σ m = µ γ σ 2 2 0 ut (, ) u σ X disance o defaul 2 A D σ σ A T 6

T (4) D defaul boundary D A D T (2)D (2) { τ τ } pt (, ) = Pr > T > X + m( T ) 2mX X ( ) + m T = e T T (2) (Forward Defaul Rae) f(, T) T T + (3) 0 f(, T ) (3) pt (, ) T { τ τ } Pr < T + T (, ) p(, T + ) p T = pt (, ) pt (, ) pt (, ) f(, T) T (3) 3 3 6 7 9 Duffie-Singleon[2003] 7

3 3 A A Zhou [2001] Duffie and Lando [2001] 8

(5) 4 A T D D 4 D D 0 D 0 D 0 D (4) ( d 1 ) D ( ) ( ) ( ) ( ) γ T r T = Ae d De d (4) 1 2 2 1 γ ( T ) r( T ) log Ae De 1 d1 = + σ T σ T 2 d = d σ T (5) = A (5) 9

(1) pt (, ) (4) ( d 1 ) T (4)d 1 (1) ut (, ) (1) µ (4) r µ (4) µ r 2 10

2 (Capial Asse Pricing Model) 11

λ λ * 2 λ λ * λ λ * λ Moody s-kmv R&I λ * CDS Credi Defaul Swap λ λ * λ λ * 2 λ * λ λ * λ λ * λ Moody s-kmv λ * λ * 12

2. (1) Reduced Form Approach Defaul Inensiy Modeling Approach (2) N () N(0) 0 N () 0 1 2 3 couning process N () 3 1 (independen incremens) 2 (saionary incremens) 3 Pr ( N( ) = 1 ) = λ + o( ), Pr( N( ) > 1) = o( ) (6) 2 0 1 λ 1 13

Pr( N( ) = 0) = 1 λ + o( ) (7) λ inensiydefaul inensiy (1) (3) 5 5 λ Defaul 1 λ λ Defaul 1 λ λ Defaul 1 λ 2 3 λ N () τ 1 n τ n (3) N () = 1τ 1 τ 1 g() λexp ( λ), for 0 = > (8) negaive exponenial disribuion 14

λ λ λe d = e (9) λ 1 ( λe ) d = (10) 0 λ (9) exp( λ) τ 1 1 λ λ λ = 0.04 1 λ = 25 25 1 exp( 0.04) = 0. 0392 3.92 λ { λ(): } T pt (, ) pt (, ) = E e T λ() sds (11) (4) { λ(): } Affine Inensiy (12) ( ) dλ() = k θ λ() d+ JdN() (12) Mean-Revering Inensiy 6 λ() 15

6 2 CIR Cox, Ingersoll, and Ross λ() ( ) dλ() = k θ λ() d+ σ λ() dw() (13) Cox-Ingersoll-Ross[1985] CIR 7 16

7 ( = 200bp, =0.25, (0)= ) θ κ λ θ (5) 3 8 λ() λ 5 8 1, 2, 3 17

8 1 e λ 1 Defaul e λ 1 1 e λ 2 Defaul e λ 2 1 e λ 3 Defaul e λ 3 1 2 3 exp( λ ) T i λ() λ *( ) { λ *( ): 0} { r (): 0} T d 0 (, T) d0(, T) = E e [ ( ) *( )] T r s +λ s ds (14) δ (, T) δ (, T) = E e T r( s) ds (15) 18

T 1 1 (15) (14)(15) risk-adjused discoun rae R () (14) R () = r () + λ *() (16) d0(, T) = E e T R( s) ds (17) { r (): 0} { λ *( ): 0} (14) d (, T 0 ) T T r( s) ds λ*( s ) ds = E e E e = δ (, T) p*(, T) (18) p*(, T) face value (14)d 0 (, T) 19

100 (17) R () L*( ) R () = r () + λ *() L*() (19) 2 2 (6) 9 20

9 3. (1) Takahashi-Kobayashi-Nakagawa[2001] 21

1 (equiy risk) λ *( ) λ *( ) 2 1 10 22

0 0 10 * λ 0 S (16) L*( ) = 1 23

{ [ ] λ [ ]} ds() = r() d S(), + * S(), S() d + σs() dw () (20) () S [ (),] r () σ d S (20) λ *[ S ( ), ] (2) (20) F 1 a X { } X = max as( ), F (21) (19) R () R () R () S () V[ S(), ] V[ S ] (), as() (22) 24

cp() [ (),] max { cp(), as() } V S (23) (23) pp() [ ] V S(), pp() (24) σ 6 LIBOR r () 11 (calibrae) 25

0.25 0.2 11 Implied inensiy funcion (credi spread sensiiviy) 0.15 Inensiy 0.1 100 bps 200 bps 400 bps (credi spread) 0.05 50 bps 0 0 500 1000 1500 2000 2500 3000 3500 Sock price (3) 12 100 13 26

12 120 Credi spread sensiiviy 115 110 105 CB price 100 95 90 85 80 From he upper line, credi spreads are 50 bps 100 bps 150 bps 200 bps 250 bps 300 bps 75 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 Sock price 13 200 180 160 140 CB price 120 100 80 60 40 1year 3 year 4 year 5 year 20 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Sock price (4) defaul boundary) D 14 27

14 Implied defaul boundary (credi spread sensiiviy) 500 400 sock price 300 200 100 0 10 50 100 200 400 credi spread 15(a)15(b) 1,940 98.2 15(a) 110 Inensiy m odel 105 100 CB pri 95 90 85 50 bps 100 bps 200 bps 400 bps 80 500 1000 2000 3000 5000 sock price 28

15(b) 110 Firs-passage model 90 CB price 70 50 30 50 bps 100 bps 200 bps 400 bps 10 500 1000 2000 3000 5000 sock price 16 3 16 CB price Volailiy sensiiviy (HV=0.4969) 160 150 140 130 120 110 100 0.2 0.3 0.4 0.4969 0.6 0.7 0.8 0.9 volailiy Inensiy model Firs-passage model Marke price 29

Black F., and M. Scholes [1973], The Pricing of Opions and Corporae Liabiliies, Journal of Poliical Economy, 81, 637-654. Cox, J.C., J. Ingersoll, and S. Ross [1985], A Theory of he Term Srucure of Ineres Raes, Economerica, 53, 385-407. Duffie, D., and D. Lando [2001], Term Srucures of Credi Spreads wih Incomplee Accouning Informaion, Economerica, 69, 633-664. Duffie, D, and K. J. Singleon [2003], Credi Risk: Pricing, Measuremen and Managemen, Princeon Universiy Press. Meron, R. [1974], On he Pricing of Corporae Deb: The Risk Srucure of Ineres Raes, Journal of Finance, 29, 449-470. Takahashi, A., T. Kobayashi, and N. Nakagawa [2001], Pricing Converible Bonds wih Defaul Risk, Journal of Fixed Income, 11, 20-29. Zhou, C., [2001], The Term Srucure of Credi Spreads wih Jump Risk, Journal of Banking and Finance, 25, 2015-2040. 30