数理解析研究所講究録 第1921巻

Similar documents
数理解析研究所講究録 第1908巻

α : G X (s, A) α s (A) X α s (c 1 A 1 + c 2 A 2 ) = c 1 α s (A 1 )+c 2 α s (A 2 ), α st (A) = α s (α t (A)) G X α 1.1 G α X (IO) 5W1H A A B A B 1.2!?


一般演題(ポスター)

日本内科学会雑誌第98巻第3号

第85 回日本感染症学会総会学術集会後抄録(I)

CAPELLI (T\^o $\mathrm{r}\mathrm{u}$ UMEDA) MATHEMATICS, KYOTO UNIVERSITY DEPARTMENT $\mathrm{o}\mathrm{p}$ $0$:, Cape i,.,.,,,,.,,,.

\mathrm{m}_{\text{ }}$ ( ) 1. :? $\dagger_{\vee}\mathrm{a}$ (Escherichia $(E.)$ co $l\mathrm{i}$) (Bacillus $(B.)$ subtilis) $0\mu

カルマン渦列の発生の物理と数理 (オイラー方程式の数理 : カルマン渦列と非定常渦運動100年)

診療ガイドライン外来編2014(A4)/FUJGG2014‐01(大扉)

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

2013 年 12 月 日 神戸大学大学院理学研究科にて特別講義 素粒子理論特論 A 現代数学と量子論 谷村省吾名古屋大学大学院情報科学研究科 1 いまどきの観測理論 : シュレーディンガーの猫 は真の問題ではない最近の学生さんは量子力学の観測問題 (measurement proble

1980年代半ば,米国中西部のモデル 理論,そして未来-モデル理論賛歌

44 $d^{k}$ $\alpha^{k}$ $k,$ $k+1$ k $k+1$ dk $d^{k}=- \frac{1}{h^{k}}\nabla f(x)k$ (2) $H^{k}$ Hesse k $\nabla^{2}f(x^{k})$ $ff^{k+1}=h^{k}+\triangle

第85 回日本感染症学会総会学術集会後抄録(III)

Chern-Simons Jones 3 Chern-Simons 1 - Chern-Simons - Jones J(K; q) [1] Jones q 1 J (K + ; q) qj (K ; q) = (q 1/2 q

放射線専門医認定試験(2009・20回)/HOHS‐01(基礎一次)

(Masatake MORI) 1., $I= \int_{-1}^{1}\frac{dx}{\mathrm{r}_{2-x})(1-\mathcal{i}1}.$ (1.1) $\overline{(2-x)(1-\mathcal{i})^{1}/4(1

可約概均質ベクトル空間の$b$-関数と一般Verma加群


. Mac Lane [ML98]. 1 2 (strict monoidal category) S 1 R 3 A S 1 [0, 1] C 2 C End C (1) C 4 1 U q (sl 2 ) Drinfeld double. 6 2

確率論と統計学の資料

ばらつき抑制のための確率最適制御

数理解析研究所講究録 第1977巻

Abstract Although physicalism is usually understood as an ontological thesis, it is not clear that what implications this position has on th

第5章 偏微分方程式の境界値問題

日本糖尿病学会誌第58巻第2号

1.2 (Kleppe, cf. [6]). C S 3 P 3 3 S 3. χ(p 3, I C (3)) 1 C, C P 3 ( ) 3 S 3( S 3 S 3 ). V 3 del Pezzo (cf. 2.1), S V, del Pezzo 1.1, V 3 del Pe

1. R n Ω ε G ε 0 Ω ε B n 2 Ωε = with Bu = 0 on Ω ε i=1 x 2 i ε +0 B Bu = u (Dirichlet, D Ω ε ), Bu = u ν (Neumann, N Ω ε ), Ω ε G ( ) / 25

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

sakigake1.dvi

第89回日本感染症学会学術講演会後抄録(I)

204 / CHEMISTRY & CHEMICAL INDUSTRY Vol.69-1 January

橡同居選択における所得の影響(DP原稿).PDF


Huawei G6-L22 QSG-V100R001_02

(a) (b) (c) Canny (d) 1 ( x α, y α ) 3 (x α, y α ) (a) A 2 + B 2 + C 2 + D 2 + E 2 + F 2 = 1 (3) u ξ α u (A, B, C, D, E, F ) (4) ξ α (x 2 α, 2x α y α,

40 $\mathrm{e}\mathrm{p}\mathrm{r}$ 45

Stepwise Chow Test * Chow Test Chow Test Stepwise Chow Test Stepwise Chow Test Stepwise Chow Test Riddell Riddell first step second step sub-step Step

0.,,., m Euclid m m. 2.., M., M R 2 ψ. ψ,, R 2 M.,, (x 1 (),, x m ()) R m. 2 M, R f. M (x 1,, x m ), f (x 1,, x m ) f(x 1,, x m ). f ( ). x i : M R.,,

Transcription:

1921 2014 108-121 108 Local state, sector theory and measurement in AQFT 1 1 () $($local state) (quantum operation) ( RIMS ) () [25] ( [22] ) [5, 35, 36] 2 : $c*$ - $E_{\mathcal{X}}$ $\omega(a^{*}a)\geq 0$ (1 ) $=1$ $)$ $($ $(\mathcal{x}, \omega)$ $c*$ - 1 $($ $[$26,25 - $c*$ - $E_{\mathcal{X}}$ $A_{i}\in \mathcal{x},$ $\epsilon_{i}>0(i=1,2, \cdots, n)$ $c*$ - : $O_{\omega}(\{A_{i}, \epsilon_{i}\}_{i=1}^{n})=\{\omega \in E_{\mathcal{X}} \omega(a_{i})-\omega (A_{i}) <\epsilon_{i}, i=1, 2, \cdots, n\}.$ $\omega\in E_{\mathcal{X}}$ $\mathcal{h}_{\omega}$ $\Omega_{\omega}\in \mathcal{h}_{\omega}$ Hilbert, ( $B(\mathcal{H}_{\omega})$ 1 okamura@math cm is.nagoya-u.ac.jp

) (A) ) 109 ) $\pi_{\omega}$ $\{\pi_{\omega}, \mathcal{h}_{\omega}, \Omega_{\omega}\}$ $=\langle\omega_{\omega} \pi_{\omega}(a)\omega_{\omega}\rangle$ $\mathcal{h}\omega$ $=\overline{\pi_{\omega}(\mathcal{x})\omega_{\omega}}$ 3 GNS (GNS ) GNS $S\subset B(\mathcal{H})$ $S =\{A\in B(\mathcal{H}) AB =BA, B\in S\}$ (1) $S$ $S :=(S ) $ $S$ $B(\mathcal{H})$ $\mathcal{m}$ $*$- $\mathcal{m}"=\mathcal{m}$ ( $\mathcal{h}$ ( $\mathcal{h}_{\omega}$ $\pi_{\omega}(\mathcal{x}\rangle"$ von Neumann von Neumann $F_{\mathcal{X}}/\approx$ 1( [19]). $\omega\in E_{\mathcal{X}}$ von Neumann $\pi_{\omega}(\mathcal{x})"$ $\mathfrak{z}_{\omega}(\mathcal{x})$ $:=\pi_{\omega}(\mathcal{x})"\cap\pi_{\omega}(\mathcal{x}) =\mathbb{c}1$ $F_{\mathcal{X}}$ 2 $\pi_{1},$ $\pi_{2}$ $\pi_{1}$- 2 $\pi_{2}$- $\pi_{1}\approx\pi_{2}$ 2 $\pi_{1},$ $\pi_{2}$ $\pi_{1}d\pi_{2}$ $\pi_{1}$- $\pi_{2}$- GNS 2. 2 : $\Rightarrow$ $\Rightarrow$ $E_{\mathcal{X}}$ Choquet $\omega\in$ $(E_{\mathcal{X}}, \mathcal{b}(e_{\mathcal{x}}))$ E Borel 3 : 3( ). $=$ $(E_{\mathcal{X}}, \mathcal{b}(e_{\mathcal{x}}))$ Borel $\mu$ $\triangle\in \mathcal{b}(e_{\mathcal{x}})$ : $\int_{\triangle}d\mu(\rho)\rho d \int_{e_{\mathcal{x}\backslash \triangle}}d\mu(\rho)\rho$. (2) 2 (1) von Neumann $\mathcal{m}$ $\mathcal{m}$ $\mathcal{m}_{*,1}$ (2) $c*$ - $\pi$ $\omega\in $A_{\alpha}\nearrow A$ $\lim_{\alpha}\omega(a_{\alpha})=\omega(a)$ E_{\mathcal{X}}$ $\pi$- $\pi(\mathcal{x})"$ $\rho$ $\omega(x)=\rho(\pi(x))$ $X\in \mathcal{x}$, 3 5 [5, 24, 25]

: $\mathfrak{b}$ ( ) 110 : 4( [5, Theorem 4.1.25] ). (1) $\mathfrak{b}$ von Neumann $\mu,$ $L^{\infty}(E_{\mathcal{X}}, \mu)$ $\kappa_{\mu}$ $L^{\infty}(\mu)arrow \mathfrak{b}$ $\mathfrak{b}$ $\mu$ $\mathfrak{z}_{\omega}(\mathcal{x})$ $L^{\infty}(\mu):=$ $*$ - : $\langle\omega_{\omega} \kappa_{\mu}(f)\pi_{\omega}(x)\omega_{\omega}\rangle=\int d\mu(\rho)f(\rho)\rho(x)$. (3) (2) $\mathfrak{z}\omega$ $(\mathcal{x}$ $)$ $\mu_{\omega}$ $F_{\mathcal{X}}$ $\mu_{\omega}$ $F_{\mathcal{X}}$ von Neumann $F_{\mathcal{X}}$ $(\mathcal{x}$ $)$ $)$ $\mathfrak{z}\omega$ $(\pi_{\omega}(\mathcal{x})"$ ( GNS ) () 2( [26,25 $\omega\in E_{\mathcal{X}}$ $\triangle\in \mathcal{b}(e_{\mathcal{x}})$ $\mu_{\omega}(\triangle)$ () [25, 26] [23, 24, 27] 3 [1, 16] ( ) von Neumann (von Neumann ), Haag-Kastler $\{\mathcal{a}(\mathcal{o}) \mathcal{o}\in \mathcal{k}\}$ Minkowski $M_{4}$ $\mathcal{k}=\{\mathcal{o}=(a+$ $V_{+})\cap(b-V+) a,$ $b\in M_{4}\}$ $(V+= \{x\in M_{4} x^{2}=x_{0}^{2}-\sum_{j}^{3_{=1}}x_{i}^{2}>0, x_{0}>0\}$ 1 $M_{4}$ ) $c*$ - () $\mathcal{o}\mapsto 3 : \mathcal{a}(\mathcal{o})$

$\mathcal{o}_{1}$ 111 1) $\mathcal{o}_{1}\subset \mathcal{o}_{2}$ $\mathcal{a}(\mathcal{o}_{1})\subset \mathcal{a}(\mathcal{o}_{2})$ ; 2) $\mathcal{k}$ $\mathcal{o}_{1}$ $\mathcal{o}_{2}$ $\mathcal{a}(\mathcal{o}_{1})$ 2 $\mathcal{o}_{1}$ $\mathcal{a}(\mathcal{o}_{2})$ $\mathcal{o}_{1} =\{x\in M_{4} (x-y)^{2}<0, y\in \mathcal{o}_{1}\}$ $\mathcal{o}_{1} \supset ; $\mathcal{o}_{2}$ \mathcal{o}_{2}$ $\mathcal{a}:=\overline{\bigcup_{\mathcal{o}\in \mathcal{k}}\mathcal{a}(\mathcal{o})}$ $*$ $c*$ - $Aut(\mathcal{A})$ - 3) Poincar\ e $\mathcal{p}_{+}^{\uparrow}$ $(^{*}$-) $\alpha_{9}$ : $\alpha_{9}(\mathcal{a}(\mathcal{o}))=\mathcal{a}(g\mathcal{o})$ $\mathcal{o}\in $\mathcal{p}_{+}^{\uparrow}arrow Aut(\mathcal{A})$, \mathcal{k}$ $g\in $g\in \mathcal{p}_{+}^{\uparrow}$, \mathcal{p}_{+}^{\uparrow}$ () $\omega_{0}$ $\omega_{0}$ 3 : A) $\omega_{0}$ $\mathcal{p}_{+}^{\uparrow}$- $A\in \mathcal{a}$ $g\in \mathcal{p}_{+}^{\uparrow}$ $\omega_{0}(\alpha_{9}(a))=\omega_{0}(a)$ ; (4) $\omega_{0}$ A $\in GNS $(\pi_{0}, \mathcal{h}_{0}, \Omega_{0})$ $\alpha_{9}$ : \mathcal{a}$ $g\in \mathcal{p}_{+}^{\uparrow}$ $\pi_{0}(\alpha_{g}(a))=u_{g}\pi_{0}(a)u_{g}^{*}$. (5) $U_{g}\Omega=\Omega$ $U_{g}$ : $\mathcal{p}_{+}^{\uparrow}$ $\mathbb{r}^{4}$ B) Poincar\ e $\overline{v_{+}}=\{x\in M_{4} x^{2}=x_{0}^{2}-\sum_{j}^{3_{=1}}x_{i}^{2}\geq 0, x0\geq 0\}$ ; $U_{g}$ $P=(P_{\mu})_{\mu=0,1,2,3}$ C) $\mathcal{o}\in \mathcal{k}$ $\Omega_{0}$ $\pi_{0}(\mathcal{a}(\mathcal{o}))$ ; A) B) C) Reeh-Schlieder

$\{\mathcal{a}(\mathcal{o}) \mathcal{o}\in \mathcal{k}\}$ $\mathcal{k}\}$ \mathcal{o}_{2}$ \mathcal{o}_{2}$ $\tilde{\mathcal{o}}$ \mathcal{k}}\mathcal{a}(\mathcal{o})}$ 112 DHR(Doplicher- Haag-Roberts) $\mathcal{h}_{0}$ $\omega_{0}$ GNS Hilbert $\{0\})$ 2 : 1(Haag ). $\mathcal{o}$ 2 $\{\mathcal{a}(\mathcal{o}) \mathcal{o}\in \mathcal{k}\}$ 2( B). $\mathcal{o}_{1}$ $\mathcal{o}$2 $\mathcal{a}(\tilde{\mathcal{o}})=\overline{\bigcup_{\mathcal{o}\subset\tilde{\mathcal{o}},\mathcal{o}\in $(ker(\pi_{0})=$ $\pi_{0}(\mathcal{a}(\mathcal{o}))"=\pi_{0}(\mathcal{a}(\mathcal{o} )) $ Haag $E\in $W^{*}W=E,$ $WW^{*}=1$ $W\in \mathcal{a}(\mathcal{o}_{2})$ \mathcal{a}(\mathcal{o}_{1})$ Haag (causal partially ordered set) (causally complete) I $w*$- $B$ Borchers Poincar\ e $B$ 4 $\overline{\mathcal{o}_{1}}\subsetneq $\Subset $\mathcal{o}_{1},$ $\mathcal{o}_{2}\in \mathcal{k}$ \mathcal{o}$2 : $\mathcal{o}$ 1 $\mathcal{k}_{\subset}=\{\lambda=(\mathcal{o}_{1}^{\lambda}, \mathcal{o}_{2}^{\lambda})\in \mathcal{k}\cross \mathcal{k} \mathcal{o}_{1}\subset \mathcal{o}_{2}\}$, (6) $\mathcal{k}_{\subset}^{dc}=\{\lambda=(\mathcal{o}_{1}^{\lambda}, \mathcal{o}_{2}^{\lambda})\in \mathcal{k}_{\subset} \mathcal{o}_{1}^{\lambda}$ $\mathcal{o}_{2}^{\lambda}$ $2$ $\}$. (7) 4 $\mathcal{o}\in \mathcal{k}$ $\{\mathcal{a}(\mathcal{o}) \mathcal{o}\in \mathcal{k}\}$ $\mathcal{a}(\mathcal{o})$ $\mathcal{a}(\mathcal{o})_{*,1}$ $\mathcal{a}(\mathcal{o})_{*}$ $\{\mathcal{a}(\mathcal{o})_{*} \mathcal{o}\in$ [14, 17] \mathcal{k}$ $\mathcal{a}(\mathcal{o})_{*,1}$ 4 $\mathcal{o}\in $E_{\mathcal{A}}$ (locally normal) $\{\mathcal{a}(\mathcal{o})_{*} \mathcal{o}\in \mathcal{k}\}$ : $\{\mathcal{a}(\mathcal{o})\}_{0\in $\{\mathcal{a}(\mathcal{o})\}_{0\in \mathcal{k}}$ 5(). $\mathcal{n}$ $\overline{\mathcal{o}_{1}}\subsetneq I (split property). \mathcal{k}}$ $\mathcal{o}_{1},$ $\mathcal{a}(\mathcal{o}_{1})\subset \mathcal{n}\subset \mathcal{a}(\mathcal{o}_{2})$ $\mathcal{o}_{2}\in \mathcal{k}$ 4 1 $x\in M_{4}$ (germ) [17][17] (operator product expansion, OPE) Bostelmann[4] () 1 OPE Buchholz-Ojima-Roos[3] ( ) 1 ()

$\mathcal{k}_{\subset}$ $\mathcal{b}$ 113 [6]. $B$ : $\pi_{0}$ 6 (Werner $[38]+D Antoni$-Longo[7]). 3 : $\{\pi_{0}(\mathcal{a}(\mathcal{o}))"\}_{\mathcal{o}\in \mathcal{k}}$ (1) ; (2) $\pi$o $\varphi\in\pi_{0}(\mathcal{a}(\mathcal{o}))_{*,1}"$ $(\mathcal{a}$ $)$ $)$ $T$ $T(X)=$ / $=$ B $(\mathcal{h}$ $\sum_{j}c_{j}^{*}xc_{j)}c_{j}\in\pi_{0}(\mathcal{a}(\mathcal{o}_{2}))"$ $T(X)=\varphi(X)1,$ $X\in\pi_{0}(\mathcal{A}(\mathcal{O}_{1}))"$ ; (3) $\mathcal{o}_{3}$ $\mathcal{o}_{4}$ $\pi_{0}(\mathcal{a}(\mathcal{o}_{3}))"\vee\pi_{0}(\mathcal{a}(\mathcal{o}_{4}))"\cong\pi_{0}(\mathcal{a}(\mathcal{o}_{3}))"\otimes\pi_{0}(\mathcal{a}(\mathcal{o}_{4}))"$. (8) $\mathcal{o}_{2}$ $\mathcal{a}(\mathcal{o}_{1})$ (2) (2) $\varphi\in\pi_{0}(\mathcal{a}(\mathcal{o}))_{*,1}"$ $\mathcal{o}_{2}$ (local) : 7(). $T$ \mathcal{o}_{2}^{\lambda})\in$ $\Lambda=(\mathcal{O}_{1}^{\Lambda}, : (1) $A\in \mathcal{a},$ $B\in \mathcal{a}((\mathcal{o}_{2}^{\lambda}) )$ $T(AB)=T(A)B$. (9) (2) $\varphi\in \mathcal{a}(\mathcal{o}_{1}^{\lambda})_{*,1}$ $X\in \mathcal{a}(\mathcal{o}_{1}^{\lambda})$ $T(X)=\varphi(X)1$, (10) $E_{\mathcal{A}}^{L}(A)$ $\Lambda$ $\pi_{0}$ () $\{\mathcal{a}(\mathcal{o})\}_{\mathcal{o}\in \mathcal{k}}$ 6 $B$ $\{\mathcal{a}(\mathcal{o})\}_{\mathcal{o}\in \mathcal{k}}$ $\Lambda\in \mathcal{k}_{\subset}$ $\Lambda=(\mathcal{O}_{1}^{\Lambda}, \mathcal{o}_{2}^{\lambda})$ $T$ $E_{\mathcal{A}}^{L}(\Lambda)$ ( 6 ) $\pi$ $\pi ot$ $\pi(\mathcal{a})"$ : $(\pi\circ T)(A):=\pi(T(A)), A\in \mathcal{a}$. (11) $\pi\circ T\in CP(\mathcal{A}, \pi(\mathcal{a})")$ $c*$ - $\mathcal{a},$ GNS Stinespring $\mathcal{b}$ : $CP(\mathcal{A}, \mathcal{b})$

$\tilde{c}$ $\mathcal{k}$ 114 8(). $T\in CP(\mathcal{A}, \pi(\mathcal{a})")$ $\Lambda\in : $\pi(\mathcal{a})"$ (1) $T(AB)=T(A)\pi(B)$. $A\in \mathcal{a},$ $B\in \mathcal{a}((\mathcal{o}_{2}^{\lambda}) )$ (2) $\varphi\in \mathcal{a}(\mathcal{o}_{1}^{\lambda})_{*,1}$ $E_{\mathcal{A},\pi(\mathcal{A}) }^{L},(A)$ $\Lambda\in $T(X)=\varphi(X)1,$ $\forall X\in \mathcal{a}(\mathcal{o}_{1}^{\lambda})$ \mathcal{k}\subset$ $\pi$ \mathcal{k}_{\subset}$ ( ) / GNS Stinespring Hilbert Hilbert 2 ilbert $\mathcal{m}$- $c*$ - $\mathcal{m}$ Hilbert $\mathcal{h}$ $\mathcal{m}$- $\mathcal{m}$- 9 $(GNS [31,33 T\in CP(\mathcal{A}, \mathcal{m})$ Hilbert $\mathcal{m}$ $\pi$t: von Neumann $*$ - - $E\tau,$ $\mathcal{a}arrow \mathcal{b}^{a}(e_{t})(\mathcal{b}^{a}(e_{t})$ $E_{T}$ () $C^{*}-$ ) $\xi$t $\in$ ET $T(A)=\langle\xi_{T} \pi_{t}(a)\xi_{t}\rangle, A\in \mathcal{a}$ (12) $E_{T}=\overline{span}(\pi_{T}(\mathcal{A})\xi_{T}\mathcal{M})$ 3 $(\pi_{t}, E_{T}, \xi_{t})$ $T$ GNS Hilbert $\mathcal{m}$- $E$ E $E$ $\mathcal{m}$- $\mathcal{m}$- $E^{*}=$ $\{\xi^{*}\in E \xi^{*}\eta=\langle\xi \eta\rangle, \eta\in E\}$ $E =E^{*}$ Hilbert $\mathcal{m}-7$] $j$ $E$ (Riesz Hilbert $\mathcal{m}$-) Hilbert $\mathcal{m}$- $E$ E Hilbert $\mathcal{m}$- $\mathcal{m}$- $\eta(\xi)=\langle\eta \xi^{*}\rangle, \eta\in E, \xi\in E$. (13) $\mathcal{m}$ E $(\eta\cdot M)(\xi):=M^{*}\eta(\xi)$, $\xi\in E$, $\eta\in$ E Hilbert $\mathcal{m}-$ $\mathcal{b}^{a}(e)$ $w*$ - $E\ni\xi\mapsto$ $\xi*\in$ E $\mathcal{b}^{a}(e)$ $C$ ( $\mathcal{b}^{a}(e )$ $*$-) $T$ GNS $\overline{\pi_{t}}(a):=\pi_{t}(a)$ $T(A)=\langle\xi_{T}^{*} \overline{\pi_{t}}(a)\xi_{t}^{*}\rangle, A\in \mathcal{a}$ (14) $E_{T}^{*}$ $E_{T}$ $\overline{\pi_{t}},$ $E_{T}^{*},$ $\xi_{t}^{*}$ $\pi_{t},$ $E_{T},$ $\xi_{t}$ $(\pi_{t}, E_{T}, \xi_{t})=(\overline{\pi_{t}}, E_{T}^{*}, \xi_{t}^{*})$ $T$ GNS $\mathcal{k},$ 10 $($Stinespring $ [34,2,32 T\in CP(\mathcal{A}, \mathcal{m})$ Hilbert $\pi$ Stinespring 3 $V\in B(\mathcal{H}, \mathcal{k})$ $(\pi, \mathcal{k}, V)$ : $T(A)=V^{*}\pi(A)V, A\in \mathcal{a}$. (15) $\mathcal{k}=\overline{span}(\pi(\mathcal{a})v\mathcal{h})$ $T$ Stinespring $T$ Stinespring $(\pi_{t)}^{s}\mathcal{k}\tau, V_{T})$ $T$ Stinespring 5

115 DHR(-DR) [9, 10, 11, 12, 13] $=$ (16) ( $)$ : DHR $\mathcal{o} $ $\pi_{0}$ $\mathcal{o}\in () : \mathcal{k}$ $\pi _{\mathcal{a}(\mathcal{o} )}\cong\pi_{0} _{\mathcal{a}(\mathcal{o} )}$. (17) DHR $B$ $\pi$ $\pi$- DHR $\mathcal{o}$ 11. $\pi$ DHR $\rho$ : (1) $\pi=\pi_{0}0\rho,$ (2) $\rho(a)=a,$ $A\in \mathcal{a}(\mathcal{o} )$ - $*$ $*\fbox{error::0x0000}$ 1(Haag ). $DR(\mathcal{A}):=\{\rho\in End(\mathcal{A}) \exists \mathcal{o}\in \mathcal{k} s.t. \rho(a)=a, A\in \mathcal{a}(\mathcal{o} )\}$ (18) $\{\mathcal{a}(\mathcal{o}) \mathcal{o}\in \mathcal{k}\}$ $DR(\mathcal{A})$ $DR(\mathcal{A})$ $DR(\mathcal{A})$ $c*$ - Doplicher-Roberts [12] $DR(\mathcal{A})$ $G$ Rep (G) $G$ $\gamma$ () $G$ DHR ()Haag Haag (essential duality) DHR DHR [19, 20] DHR

116 12 $( DHR[10, I, pp.228, (A.4)])$. $\pi$ $\Lambda\in \mathcal{k}_{\subset}^{dc}$ $E\in\pi^{d}(\mathcal{O}_{1}^{\Lambda})$ $:=\pi(\mathcal{a}((\mathcal{o}_{1}^{\lambda}) )) $ $WW^{*}=E$ $W\in\pi^{d}(\mathcal{O}_{2}^{\Lambda})$ $W^{*}W=1$ DHR 13 ([10, I, A.1. Proposition GNS $\pi_{\omega}$ 2 $\{\mathcal{o}_{n}\}$ $\lim_{narrow\infty}\vert(\omega-\omega_{0}) _{\mathcal{a}(\mathcal{o}_{n} )}\Vert=0$ (19) DHR 2 $\mathcal{o}$ $\pi_{\omega} _{\mathcal{a}(\mathcal{o} )}\cong\pi_{0} _{\mathcal{a}(\mathcal{o} )}$ (20) $\rho$ $\pi\omega$ $=\pi_{0}\circ\rho$ $T\in E_{\mathcal{A}}^{L}(\Lambda)$ $(\pi_{\tau,0}, \mathcal{k}_{\tau,0}, V_{\tau,0})$ $\pi_{0}\circ T$ Stinespring : $(\omega_{0}\circ T)(X)=\omega_{0}(T(X))=\langle\Omega (\pi_{0}\circ T)(X)\Omega\rangle$ $=\langle\omega V_{T,0}^{*}\pi_{T,0}(X)V_{T,0}\Omega\rangle$ $=\langle V_{T,0}\Omega \pi_{t,0}(x)v_{t,0}\omega\rangle, X\in \mathcal{a},$ $\Vert(\omega_{0}\circ T-\omega_{0}) _{\mathcal{a}((\mathcal{o}_{2}^{\lambda}) )}\Vert$ $=$ 0 : 14. $T$ $\Lambda$ $\mathcal{o}_{2}^{\lambda}$ $\pi_{t,0}$ DHR $\rho_{t}$ $(\pi_{0}\circ T)(X)=V_{T}^{*}\pi_{0}(\rho_{T}(X))V_{T}, X\in \mathcal{a}$. (21) $B(\mathcal{H}_{0})$ DHR DHR DHR $\omega_{0}$ $\beta$-kms $\omega_{\beta},$ $\beta>0$ [19, 20] $\pi$ von Neumann () 2 [15, 29] $\mathcal{m}$ $\mathcal{h}$ Hilbert von Neumann Paschke[31] Radon-Nikodym $T_{1},$ : $T_{1}\leq$ $-T_{1}\in CP(\mathcal{A}, \mathcal{m})$ $c*$ - $T_{2}\in CP(\mathcal{A}, \mathcal{m})$

117 $CP(\mathcal{A}, \mathcal{m})$ 15 (Paschke[31]). 2 $T_{1}$ $T_{1}\leq$ $R\in\pi\tau_{2}(\mathcal{A}) $ $0\leq R\leq 1$ $T_{1}(A)=\langle\xi_{T_{2}} R\pi_{T_{2}}(A)\xi_{T_{2}}\rangle, A\in \mathcal{a}$. (22) $\pi$t2 ( ) T2 ( ) $\pi$ $\mathcal{b}^{a}(e_{t} )$ 16 (Paschke[31]). $T\in CP(\mathcal{A}, \mathcal{m})$ $[0, T]=\{T \in CP(\mathcal{A}, \mathcal{m}) 0\leq T \leq T\}$ $\{R\in\pi_{T}(\mathcal{A}) 0\leq R\leq 1\}$ Paschke Arveson [2] : $(\mathcal{a}, B(\mathcal{H}))$ 17 (Arveson[2]). CP 2 $T_{1}\leq$ ( ) $0\leq R\leq 1$ $R\in\pi_{T_{2}}^{s}$ $T_{1}(A)=V_{T_{2}}^{*}R\pi_{T_{2}}^{\mathcal{S}}(A)V_{T_{2}}, A\in \mathcal{a}$. (23) 18 (Arveson[2]). $T\in CP(\mathcal{A}, B(\mathcal{H}))$ $(\pi_{t}^{s}, \mathcal{k}_{t}, V_{T})$ $T$ Stinespring $[0, T]=\{T \in CP(\mathcal{A}, B(\mathcal{H})) 0\leq T \leq T\}$ $\{R\in\pi_{T}^{s}(\mathcal{A}) 0\leq R\leq 1\}$ $\mathcal{m}\subset B(\mathcal{H})$ CP $(\mathcal{a}, \mathcal{m})\subset CP(\mathcal{A}, B(\mathcal{H}))$ $T\in CP(\mathcal{A}, \mathcal{m})$ Stinespring $(\pi_{t}^{s}, \mathcal{k}\tau, V_{T})$ $R\in\{R\in\pi_{T}^{8}(\mathcal{A}) 0\leq$ $R\leq 1\}$ $T_{R}(A)$ $:=V_{T}^{*}R\pi_{T}^{s}(A)V_{T},$ $A\in \mathcal{a}$, CP $(\mathcal{a}, B(\mathcal{H}))$ CP $(\mathcal{a}, \mathcal{m})$ $\{R\in\pi_{T}^{s}(\mathcal{A}) 0\leq R\leq 1, T_{R}\in CP(\mathcal{A}, \mathcal{m})\}$ (24) 16 $\pi_{t}^{s}(\mathcal{a})^{c}$ Neumann $\{R\in\pi_{T}(\mathcal{A}) 0\leq R\leq 1\}$ $\{R\in\pi_{T}^{s}(\mathcal{A}) 0\leq R\leq 1, T_{R}\in CP(\mathcal{A}, \mathcal{m})\}$ von 19. $T_{1},$ $T_{2}\in CP(\mathcal{A}, B(\mathcal{H}))$ $T=T_{1}+T_{2}$ $T_{1}$ $T_{1}$ : $(\pi_{t}^{s}, \mathcal{k}_{t}, V_{T})=(\pi_{T_{1}}^{s}, \mathcal{k}_{t_{1}}, V_{T_{1}})\oplus(\pi_{T_{2}}^{s}, \mathcal{k}_{t_{2}}, V_{T_{2}})$ (1) ; (2) P $\in\pi$ T ( ) $T_{1}(A)=V_{T}^{*}P\pi_{T}^{s}(A)V_{T}, T_{2}(A)=V_{T}^{*}(1-P)\pi_{T}^{s}(A)V_{T}, A\in \mathcal{a}$ ; (25) (3) $T \in CP(\mathcal{A}, B(\mathcal{H}))$ $T \leq T_{1}$ $T \leq T_{2}$ $T =0$ GNS : $T_{1},$ 20. $T_{2}\in CP(\mathcal{A}, \mathcal{m})$ $T=T_{1}+T_{2}$ $\perp$ : $(\pi_{t}, E_{T}, \xi_{t})=(\pi_{t_{1}}, E_{T_{1}}, \xi_{t_{1}})\oplus(\pi_{t_{2}}, E_{T_{2}}, \xi_{t_{2}})$ (1) ; (2) P $\in\pi$ T ( ) $T_{1}(A)=\langle\xi_{T} P\pi_{T}(A)\xi_{T}\rangle, T_{2}(A)=\langle\xi_{T} (1-P)\pi_{T}(A)\xi_{T}\rangle, A\in \mathcal{a}$. (26) (1) (2) : (3) $T \in CP(\mathcal{A}, \mathcal{m})$ $T \leq$ $T \leq$ $T =0$ $E_{T}$ (3) (1) (2)

: 118 21. 3 CP- $(S, \mathcal{b}(s), \mu)$ $T\in CP(\mathcal{A}, \mathcal{m})$ : (1) Hausdorff $(S, \mathcal{b}(s))$ $S$ Borel ; (2) $\mu$ (S, $\mathcal{b}$(s)) $\rho\in \mathcal{m}$ $A\in \mathcal{a}$ $CP(\mathcal{A}, \mathcal{m})$ -$\mathcal{b}(s)$ $\{\triangle_{i}\}_{i\in N},$ $\rho(\mu(\bigcup_{i}\triangle_{i}, A))=\sum_{i}\rho(\mu(\triangle_{i}, A$ (27) $A\in \mathcal{a}$ $T(A)=\mu(S, A)$, 22. 3 CP- $(S, \mathcal{b}(s), \mu)$ $\Delta\in \mathcal{b}(s)$ $\perp\mu(\triangle^{c}, \cdot)$ CP- $T$ $\mu(\delta, \cdot)$ 23. (1) $(S_{1}, \mathcal{b}(s_{1}), \mu_{1})$ $(S_{2}, \mathcal{b}(s_{2}), \mu_{2})$ $T$ CP- $(S_{1}, \mathcal{b}(s_{1}), \mu_{1})$ $(S_{2}, \mathcal{b}(s_{2}), \mu_{2})$ $)$ $((S_{1}, \mathcal{b}(s_{1}),$ $\mu_{1})\prec(s_{2}, \mathcal{b}(s_{2}),$ $\mu_{2})$ $\{\mu_{1}(\delta_{1}, \cdot)\in CP(\mathcal{A}, \mathcal{m}) \triangle_{1}\in \mathcal{b}(s_{1})\}\subseteq\{\mu_{2}(\triangle_{2}, \cdot)\in CP(\mathcal{A}, \mathcal{m}) \triangle_{2}\in \mathcal{b}(s_{2})\}$, (28) $\mathcal{m}$ $\rho\in \mathcal{m}_{*,1}$ ( ) $(L^{\infty}(S_{1}, \rho\circ\mu_{1}), L^{2}(S_{1}, \rho\circ\mu_{1}))\cong(pl^{\infty}(s_{2}, \rho 0\mu_{2})P, PL^{2}(S_{2}, \rho\circ\mu_{2}$ $\frac{\underline{(s}}{\equiv}_{}0^{\mathcal{b}(s_{1}),\mu_{1})\prec}1(s_{2},\mathcal{b}(s_{2}), \mu_{2})$ $(S2, \mathcal{b}(s2), \mu_{2})\prec(s_{1}, \mathcal{b}(s_{1}), \mu_{1})$ $P\in L^{\infty}(S_{2}, \rho\circ\mu_{2})$ $1$ $(\rho\circ\mu_{j})():=\rho(\mu_{j}(\cdot,$ $j=1,2$ $(S_{1}, \mathcal{b}(s_{1}), \mu_{1})$ (2) $(S_{2}, \mathcal{b}(s_{2}), \mu_{2})$ $(S_{1}, \mathcal{b}(s_{1}), \mu_{1})\approx(s_{2}, \mathcal{b}(s_{2}), \mu_{2})$ $T$ CP- $\approx$- $\pi_{t}^{s}(\mathcal{a})^{c}$ $\mathcal{o}_{t}$ - $w*$- $W^{*}$ $W^{*}(\pi_{T}^{s})$ : 24 (). $T\in CP(\mathcal{A}, \mathcal{m})$ $\mathcal{o}_{t}$ $W^{*}(\pi_{T}^{s})$ $[(S, \mathcal{b}(s),$ $\mu)]\in Ob(\mathcal{O}_{T})$ $\mathcal{b}\in Ob(W^{*}(\pi_{T}^{s}))$ $(S, \mathcal{b}(s), \mu)$ $[(S,\mathcal{B}(S),$ $\mu)]$ : $*$ - $\kappa_{\mu}$ $L^{\infty}(S, v)arrow \mathcal{b}$ $V_{T}^{*} \kappa_{\mu}(f)\pi_{t}^{s}(a)v_{t}=\int f(s)d\mu(s, A), f\in L^{\infty}(S, v), A\in \mathcal{a}$. (29) $\nu$ $\mu$ ( $\nu$ ) 25. $T_{1},$ $T_{2}\in CP(\mathcal{A}, \mathcal{m})$ $\approx$ (1) $\pi_{t_{1}}$ $T_{1}$ (2) 16 $\pi_{t_{1}}$ $\pi_{t_{2}}$ $\pi_{t_{2}}$

119 26. $T_{1},$ $T_{2}\in CP(\mathcal{A}, B(\mathcal{H}))$, $T=T_{1}+T_{2}$ : (1) $T_{1}$ ; (2) $P\in \mathfrak{z}_{t}^{s}(\mathcal{a})=\pi_{t}^{s}(\mathcal{a})"\cap\pi_{t}^{s}(\mathcal{a})$ $T_{1}(A)=V_{T}^{*}P\pi_{T}^{s}(A)V_{T}, T_{2}(A)=V_{T}^{*}(1-P)\pi_{T}^{s}(A)V_{T}, A\in \mathcal{a},$ GNS : 27. $T_{1},$ $T_{2}\in CP(\mathcal{A}, \mathcal{m})$ $T=T_{1}+$ : (1) ; $T_{1}AT_{2}$ / $\in $(\mathcal{a}$ $)$ $(\mathcal{a}$ $)$ (2) P $\cap\pi$t \mathfrak{z}$t ( ) $=\pi$ T $T_{1}(A)=\langle\xi_{T} P\pi_{T}(A)\xi_{T}\rangle, T_{2}(A)=\langle\xi_{T} (1-P)\pi_{T}(A)\xi_{T}\rangle, A\in \mathcal{a},$ 28. $(S, \mathcal{b}(s), \mu)$ - $\mathfrak{z}_{t}^{s}(\mathcal{a})$ CP- CP- 6 $(S, \mathcal{b}(s), \mu)$ $W^{*}$ - $W^{*}$ - $\mathfrak{z}_{t}^{s}(\mathcal{a})$ $\mathfrak{z}_{t}(\mathcal{a})$ $T$ $E_{\mathcal{A},\pi(\mathcal{A})"}^{L}(A)$ $(\pi_{t}, E_{T}, \xi_{t})$ $T$ $\mathcal{b}$ GNS $w*$- $P:\mathcal{B}(S)arrow \mathcal{b}$ PVM $\mathcal{i}_{t}:\mathcal{b}(s)\cross\pi_{t}(\mathcal{a})"arrow\pi(\mathcal{a})"$ : $\mathcal{i}_{t}(\triangle;a)=\langle P(\triangle)\xi_{T} A\xi_{T}\rangle, \triangle\in \mathcal{b}(s), A\in\pi_{T}(\mathcal{A})"$. (30) [29, 30] [1] H. Araki, Mathematical theory of quantum fields, Oxford Univ. Press, (1999). [2] W. Arveson, Subalgebras of $C^{*}$-algebras, Acta Math. 123, 141-224 (1969). [3] D. Buchholz, I. Ojima and H. Roos, Thermodynamic properties of non-equilibrium states in quantum field theory, Ann. Phys. (N.y.) 297, 219-242 (2002). [4] H. Bostelmann, Lokale Algebren und Operatorprodukte am Punkt Ph.D. Thesis, Universit\"at G\"ottingen, 2000; electronic version available at http://webdoc.sub.gwdg.de/diss/2000/boste1mann/. [5] O. Bratteli and D.W. Robinson, Operator Algebras and Quantum Statistical Mechanics (vol.1) (2nd printing of 2nd ed (Springer, 2002). [6] D. Buchholz, Product states for local algebras, Comm. Math. Phys. 36, 287-304 (1974).

120 [7] C. D Antoni and R. Longo, Interpolation by type I factors and the flip automorphism, J. Funct. Anal. 51, 361-371 (1983). [8] E.B. Davies and J.T. Lewis, An operational approach to quantum probability, Comm. Math. Phys. 17, 239-260 (1970). [9] S. Doplicher, R. Haag and J.E. Roberts, Fields, observables and gauge transformations I & II, Comm. Math. Phys. 13, 1-23 (1969); ibid. 15, 173-200 (1969). [10] S. Doplicher, R. Haag and J.E. Roberts, Local observables and particle statistics, I & II, Comm. Math. Phys. 23, 199-230 (1971); ibid. 35, 49-85 (1974). [11] S. Doplicher and J.E. Roberts, Endomorphism of $C^{*}$ -algebras, cross products and duality for compact groups, Ann. Math. 130, 75-119 (1989). [12] S. Doplicher and J.E. Roberts, A new duality theory for compact groups, Invent. Math. 98, 157-218 (1989). [13] S. Doplicher and J.E. Roberts, Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics, Comm. Math. Phys. 131, 51-107 (1990). [14] K. Fredenhagen and R. Haag, Generally covariant quantum field theory and scaling limits, Comm. Math. Phys. 108, 91 (1987). [15] I. Fujimoto, Decomposition of completely positive maps, J. Operator Theory 32, 273-297 (1994). [16] R. Haag, Local Quantum Physics -Fields, Particles, Algebras-(2nd ed Springer-Verlag, (1996). [17] R. Haag and I. Ojima, On the problem of defining a specific theory within the frame of local quantum physics, Ann. Inst. Henri Poincar\ e 64, 385-393 (1996). [18] R. Harada and I. Ojima, A unified scheme of measurement and amplification processes based on Micro-Macro Duality -Stern-Gerlach experiment as a typical example-, Open Sys. $Inf$. Dyn. 16, 55-74 (2009). [19] I. Ojima, A unified scheme for generalized sectors based on selection criteria Order parameters of symmetries and of thermality and physical meanings of adjunctions-, Open Sys. $Inf$. Dyn. 10, 235-279 (2003). [20] I. Ojima, Temperature as order parameter of broken scale invariance, Publ. RIMS 40, 731-756 (2004). [21] I. Ojima, Micro-Macro Duality in Quantum Physics, pp. 143-161 in Proc. Intern. Conf. on Stochastic Analysis, Classical and Quantum (World Scientific, 2005), arxiv:math-ph/0502038. [22] (2013). [23] I. Ojima and K. Okamura, Large deviation strategy for inverse problem I, Open Sys. $Inf$. Dyn. 19, (2012), 1250021. [24] I. Ojima and K. Okamura, Large deviation strategy for inverse problem II, Open Sys. $Inf$. Dyn. 19, (2012), 1250022. [25] (2013). [26] I. Ojima, K. Okamura and H. Saigo, Derivation of Born Rule from Algebraic and Statistical Axioms (2013), $arxiv:1304.6618.$ [27] K. Okamura, The quantum relative entropy as a rate function and information criteria, Quant. $Inf.$ Process. 12, 2551-2575, (2013). [28] M. Ohya and D. Petz, Qunatum Entropy and Its Use, (Springer, Berlin, 1993). [29] M. Ozawa, Quantum measuring processes of continuous obsevables, J. Math. Phys. 25, 79-87 (1984). [30] M. Ozawa, Conditional probability and a posteriori states in quantum mechanics, Publ. RIMS 21, 279-295 (1985). [31] W.L. Paschke, Inner product modules over $B^{*}$-algebras, Trans. Amer. Math. Soc. 182, 443-468 (1973).

121 [32] V. Paulsen, Completely bounded maps and operator algebras, Cambridge Univ. Press, Cambridge, UK, (2002). [33] M. Skeide. Generalized matrix $C^{*}$ -algebras and representations of Hilbert modules, Math. Proc. Royal Irish Academy, $100A11-38$, (2000). [34] W.F. Stinespring, Positive functions on $C^{*}$-algebras, Proc. Amer. Math. Soc. 6, 211-216 (1955). [35] M. Takesaki, Theory of Operator Algebras $I$, (Springer, 1979). [36] M. Takesaki, Theory of Operator Algebras II, (Springer, 2002). [37] $(1983, 1984)$. [38] R. Werner, Local preparability of states and the split property in quantum field theory, Lett. Math. Phys. 13, 325-329 (1987).