Myers, Montgomery & Anderson-Cook (2009) Response Surface Methodology

Similar documents
tnbp59-21_Web:P2/ky132379509610002944

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i


ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75% ) (25% ) =9 7, =9 8 (. ). 1.,, (). 3.,. 1. ( ).,.,.,.,.,. ( ) (1 2 )., ( ), 0. 2., 1., 0,.

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

all.dvi

( )/2 hara/lectures/lectures-j.html 2, {H} {T } S = {H, T } {(H, H), (H, T )} {(H, T ), (T, T )} {(H, H), (T, T )} {1

1 (1) () (3) I 0 3 I I d θ = L () dt θ L L θ I d θ = L = κθ (3) dt κ T I T = π κ (4) T I κ κ κ L l a θ L r δr δl L θ ϕ ϕ = rθ (5) l

Part () () Γ Part ,

量子力学 問題

³ÎΨÏÀ

all.dvi


基礎数学I

koji07-01.dvi

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.


II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ


5 Armitage x 1,, x n y i = 10x i + 3 y i = log x i {x i } {y i } 1.2 n i i x ij i j y ij, z ij i j 2 1 y = a x + b ( cm) x ij (i j )

chap10.dvi

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

2 2 1?? 2 1 1, 2 1, 2 1, 2, 3,... 1, 2 1, 3? , 2 2, 3? k, l m, n k, l m, n kn > ml...? 2 m, n n m

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

(1) (2) (1) (2) 2 3 {a n } a 2 + a 4 + a a n S n S n = n = S n

1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

2016.

第121回関東連合産科婦人科学会総会・学術集会 プログラム・抄録

L P y P y + ɛ, ɛ y P y I P y,, y P y + I P y, 3 ŷ β 0 β y β 0 β y β β 0, β y x x, x,, x, y y, y,, y x x y y x x, y y, x x y y {}}{,,, / / L P / / y, P

6.1 (P (P (P (P (P (P (, P (, P.

QMII_10.dvi

(iii) x, x N(µ, ) z = x µ () N(0, ) () 0 (y,, y 0 ) (σ = 6) *3 0 y y 2 y 3 y 4 y 5 y 6 y 7 y 8 y 9 y ( ) *4 H 0 : µ

10:30 12:00 P.G. vs vs vs 2

?


Microsoft Word - 表紙.docx

f(x) = f(x ) + α(x)(x x ) α(x) x = x. x = f (y), x = f (y ) y = f f (y) = f f (y ) + α(f (y))(f (y) f (y )) f (y) = f (y ) + α(f (y)) (y y ) ( (2) ) f

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

December 28, 2018

加速度センサを用いた図形入力

ii

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

TOP URL 1

II III I ~ 2 ~

中堅中小企業向け秘密保持マニュアル


PR映画-1

- 2 -



m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

6.1 (P (P (P (P (P (P (, P (, P.101

1 (1) (2)

all.dvi

統計学のポイント整理

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.


( 23 )

/ n (M1) M (M2) n Λ A = {ϕ λ : U λ R n } λ Λ M (atlas) A (a) {U λ } λ Λ M (open covering) U λ M λ Λ U λ = M (b) λ Λ ϕ λ : U λ ϕ λ (U λ ) R n ϕ

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ

meiji_resume_1.PDF

The Physics of Atmospheres CAPTER :

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

x y x-y σ x + τ xy + X σ y B = + τ xy + Y B = S x = σ x l + τ xy m S y = σ y m + τ xy l σ x σ y τ xy X B Y B S x S y l m δu δv [ ( σx δu + τ )

²�ËÜËܤǻþ·ÏÎó²òÀÏÊÙ¶¯²ñ - Â裱¾Ï¤ÈÂ裲¾ÏÁ°È¾

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

II 2 3.,, A(B + C) = AB + AC, (A + B)C = AC + BC. 4. m m A, m m B,, m m B, AB = BA, A,, I. 5. m m A, m n B, AB = B, A I E, 4 4 I, J, K

ad bc A A A = ad bc ( d ) b c a n A n A n A A det A A ( ) a b A = c d det A = ad bc σ {,,,, n} {,,, } {,,, } {,,, } ( ) σ = σ() = σ() = n sign σ sign(

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

α β *2 α α β β α = α 1 β = 1 β 2.2 α 0 β *3 2.3 * *2 *3 *4 (µ A ) (µ P ) (µ A > µ P ) 10 (µ A = µ P + 10) 15 (µ A = µ P +

TOP URL 1

201711grade1ouyou.pdf

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

(1) 3 A B E e AE = e AB OE = OA + e AB = (1 35 e ) e OE z 1 1 e E xy e = 0 e = 5 OE = ( 2 0 0) E ( 2 0 0) (2) 3 E P Q k EQ = k EP E y 0

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

(1) (2) (3) (4) 1

untitled

°ÌÁê¿ô³ØII

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google


.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

.1 A cos 2π 3 sin 2π 3 sin 2π 3 cos 2π 3 T ra 2 deta T ra 2 deta T ra 2 deta a + d 2 ad bc a 2 + d 2 + ad + bc A 3 a b a 2 + bc ba + d c d ca + d bc +

( ) ( ) 1729 (, 2016:17) = = (1) 1 1

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

Transcription:

Myers, R.H., Montgomery, D.C. & Anderson-Cook, C.M. (2009) Response Surface Methodology, Third Edition. Chapter 7. Experimantal Designs for Fitting Response Surfaces - I. (response surface methodology) ( ) ( ) ( ) ( ) 1 2 3 Myers-Montgomery 7... 2013/04/09 RSM ( ). : ( ) 1

1 : 1. 2. 3. 4. 5. ( ) 6. 7. 8. * 1 9. 10. V ar[ŷ(x)]/σ 2 * 2 *1 4.10 *2 3.4 2

2 6 y x 1, x 2,..., x k E(y) = f(x, θ) f R(x) R (region of interest) R O(x) (region of operability) R O Figure 7.1 R current best guess ŷ(x) f(x, θ) 2.1 E(y) = X 1 β 1 E(y) = X 1 β 1 + X 2 β 2 β 1 b 1 : E(b 1 ) = β 1 + Aβ 2 A = (X 1X 1 ) 1 X 1X 2 A (alias matrix) E(ŷ) E(y) = Rβ 2 3

R = X 1 A X 2 s 2 6 (lack-of-fit test) E(s 2 ) = σ 2 + β 2R Rβ 2 p 1 s 2 Rβ 2 β 2 y j E[ŷ j f(x j, β)] 2 E[ŷ j f(x j, β)] 2 = V ar(ŷ j ) [Bias(ŷ j )] 2 V ar(ŷ j ) [Bias(ŷ j )] 2 β 2R Rβ 2 = [Bias(ŷ j )] 2 p 1 j=1 V ar(ŷ j ) [Bias(ŷ j )] 2 4

3 x 1, x 2,..., x k y N 1 +1 : ŷ i = b 0 + b 1 x i1 + b 2 x i2 + + b k x ik V ar(b i ) 3.1 X X X *3 : N j = 1, 2,..., k X j [ 1, +1] j = 1, 2,..., k V ar(b i )/σ 2 x i i = 1, 2,..., k ±1. 3 8 2 3 1 ( III) *4 X X = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ±1 ŷ = b 0 + b 1 x 1 + b 2 x 2 + b 3 x 3 2 3 3.2 *3 X 2 0 *4 2 3 (2 3 ) 2 3 2 3 1 5

. 5 *5 : 5 y i = β 0 + β i x i + 5 β ij x i x j + ϵ i=1 i<j=2 2 5 2 5 1 ( V) X : 16 16 (saturated) R 2 100% *6 ( 0 ) *5 y i = β 0 + β 1 x 1 + (3 ) + β 5 x 5 + β 12 x 1 x 2 + (8 ) + β 45 x 4 + x 5 + ϵ X *6 1 6

? 3 : y i = β 0 + β 1 x i1 + β 2 x i2 + β 3 x i3 + ϵ i (i = 1, 2,..., 8) Figure 7.2 3 1 3 σ 2 /8 2 σ 2 /8, σ 2 /4 1 2 1 3 3 3.3 - k N = k + 1 k 2 θ cosθ = 1 k k = 2, N = 3 Figure 7.3 k = 3, N = 4 Figure 7.4 2 3 1 ( III) k 7

3.4 - : P V (x) = V ar[ŷ(x)] = σ 2 x (m) (X X) 1 x (m) x (m) x (1) = [1, x 1, x 2,..., x k ] k = 2 x (1) = [1, x 1, x 2, x 1 x 2 ] P V (x) 8

SP V (x) = N V ar[ŷ(x)] σ 2 x ρ x = Nx (m) (X X) 1 x (m) SP V (x) = 1 + ρ 2 x SPV 9

4 (1 ) 2 (fractions) *7 *8 k k y = β 0 + β i x i + β ii x 2 i + k β ij x i x j + ϵ i=1 i=1 i<j=2 1 + 2k + k(k 1)/2 6 : 1. 3 2. k 1 + 2k + k(k 1)/2 *9 10 8 y ŷ(x) 4.1 (central composite designs; CCDs) 3 k 2 V * 10 2 2k α α 0 *7 5 *8 2 y i = β 0 + β 1 x 1 + β 2 x 2 + β 11 x 2 1 + +β 22x 2 2 + β 12x 1 x 2 + ϵ *9 2 6, 3 10 *10 V 2 k = 2 k = 3 10

n c pure error * 11 Figure 7.5 k = 2, α = 2 Figure 7.6 k = 3, α = 3 α n c 4.2 (design moments) X = 1 x 11 x 21... x k1 1 x 12 x 22... x k1....... 1 x 1N x 2N... x kn *11 2 11

* 12 : (first moments): [i] = 1 N N u=1 x iu (second pure moments): [ii] = 1 N N u=1 x2 iu (second mixed moments): [ij] = 1 N N u=1 x iux ju i j (odd moments) (even moments) (moment matrix) M = X X N 2 k : 1 0... 0 M = X X N = 0 1.... = I k 0 1 2 k M M ( ) *12 12

3.4 : SP V (x) = Nx (m) (X X) 1 x (m) ( X ) 1 X SP V (x) = x (m) x (m) = x (m) M 1 x (m) N (design rotatability) 2 N V ar[ŷ(x)]/σ 2 N V ar[ŷ(x)]/σ 2 ( α n c ) ( ) Appendix 1. 0 [i] = 0 (i = 1, 2,..., k) [ij] = 0 (i j, i, j = 1, 2,..., k) [ii] = λ 2 (i = 1, 2,..., k) λ 2 III 2 ±1 λ 2 = 1 x ρ x SP V (x) = 1 + ρ 2 x 13

0 [iiii]/[iijj] (i j) 3 4.3 0 [iiii]/[iijj] F ( F = 2 k ) [iiii] [iijj] = F + 2α4 F 3 α = 4 F k = 2 α = 2 2/4 = 2 = 1.414, k = 3 α = 2 3/4 = 1.682 * 13 k = 4 ( ) Figure 7.8, Figure 7.9 k = 2 n c = 1 n c = 5 N N V ar[ŷ(x)]/σ 2 3.5 k 8 ( ) 3 5 α = k, 3 5 8 *13 k = 3, α = 3... k = 3, α = 3 12 6 24 24 12... 14

4.4 3.4 : P V (x) = V ar[ŷ(x)] = σ 2 x (m) (X X) 1 x (m) σ 2 SP V (x) = Nx (m) (X X) 1 x (m) 15

4.2 SPV M = X X N ( ) N N SPV UP V (x) = V ar[ŷ(x)]/σ 2 = x (m) (X X) 1 x (m) SPV UPV σ 2 (MSE) UPV MSE EP V = MSE x (m) (X X) 1 x (m) 4.5 (cuboidal design region) α = 1 (face-centered cube, FCD) Figure 7.11 16

1 2 Figure 7.12 0 Figure 7.13 1 Figure 7.14 3 SPV pure error 4.6 α α 4.7 2 (α = k) 5 ( ) 3 5 (α = 1) 3 1 2 3 k k = 2 k = 3 27 k > 3 4.8 Box & Behnken (1960) 3 (bakanced incomplete block design, BIBD) 3, 3 BIBD 1 2 ( 1) 3 17

18

x 1 x 2 2 2 ( ±1 ) x 3 (0) x 1 x 2 x 2 x 3 k = 3 (Box-Behnken design) ( ) k = 4 k = 2 k = 3, k = 4 12 + n c, 24 + n c 14 + n c, 24 + n c (k=4,7 ) Figure 7.17 3 5 19

4.9 2 (equiradial designs)... Figure 7.20 2 20

2 4 4.10 2 2 I = AB 2 1/2 * 14 y i = β 0 + β 1 x i1 + β 2 x i2 + δ 1 z i1 + δ 2 z i2 + ϵ i δ 1, δ 2 z i1, z i2 y i 1 z i1 = 1, z i1 = 0 X z 2 z 1 y i = β 0 + β 1 x i1 + β 2 x i2 + δ 1 (z i1 z 1 ) + ϵ i X *14 4 2 +1 1 2 21

4 (z u1 z 1 )x u1 = 0 u=1 4 (z u1 z 1 )x u2 = 0 u=1 * 15 k b k k y u = β 0 + β i x ui + β ii x 2 ui + k b β ij x ui x uj + δ m (z um z m ), i=1 i=1 i<j=2 m=1 u = 1, 2,..., N z mu u m 1 N x ui (z um z m ) = 0, i = 1, 2,..., k, m = 1, 2,..., b u=1 N x ui x uj (z um z m ) = 0, i j, m = 1, 2,..., b u=1 N x 2 ui(z um z m ) = 0, i = 1, 2,..., k, m = 1, 2,..., b u=1 [i] = 0, [ij] = 0 ( 2 ) x ui = 0 x ui x uj = 0(i j) 3 m N u=1 x2 ui z um = ẑ m N u=1 x2 ui *15 x x 1u, x 2u 22

k = 2 2 2 (α = 2) k = 3 3 α = 3 2 2 3 2 ( ) 1 2, 3, 5, 9, 17,... k = 2 2, k = 3 3 k = 2 (α = 1) 23

k = 3 k = 4 k = 4, k = 5 1 3 5, 2 4 6 24

* 16 *16 25