all.dvi

Similar documents
all.dvi

all.dvi

all.dvi

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

PSCHG000.PS

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

meiji_resume_1.PDF

2.2 h h l L h L = l cot h (1) (1) L l L l l = L tan h (2) (2) L l 2 l 3 h 2.3 a h a h (a, h)



変 位 変位とは 物体中のある点が変形後に 別の点に異動したときの位置の変化で あり ベクトル量である 変位には 物体の変形の他に剛体運動 剛体変位 が含まれている 剛体変位 P(x, y, z) 平行移動と回転 P! (x + u, y + v, z + w) Q(x + d x, y + dy,

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

Gmech08.dvi

Gmech08.dvi

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

高等学校学習指導要領

高等学校学習指導要領

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0


SO(2)

70 : 20 : A B (20 ) (30 ) 50 1

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

Gmech08.dvi

応力とひずみ.ppt

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

1. 2 P 2 (x, y) 2 x y (0, 0) R 2 = {(x, y) x, y R} x, y R P = (x, y) O = (0, 0) OP ( ) OP x x, y y ( ) x v = y ( ) x 2 1 v = P = (x, y) y ( x y ) 2 (x

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

さくらの個別指導 ( さくら教育研究所 ) A 2 2 Q ABC 2 1 BC AB, AC AB, BC AC 1 B BC AB = QR PQ = 1 2 AC AB = PR 3 PQ = 2 BC AC = QR PR = 1

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

PSCHG000.PS

1.500 m X Y m m m m m m m m m m m m N/ N/ ( ) qa N/ N/ 2 2

TOP URL 1

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

untitled

Part () () Γ Part ,

48 * *2

重力方向に基づくコントローラの向き決定方法

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x


IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

DVIOUT-HYOU

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

TOP URL 1

y = x x R = 0. 9, R = σ $ = y x w = x y x x w = x y α ε = + β + x x x y α ε = + β + γ x + x x x x' = / x y' = y/ x y' =

29

2000年度『数学展望 I』講義録


1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

f (x) x y f(x+dx) f(x) Df 関数 接線 x Dx x 1 x x y f f x (1) x x 0 f (x + x) f (x) f (2) f (x + x) f (x) + f = f (x) + f x (3) x f


W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

untitled

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

The Physics of Atmospheres CAPTER :

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)


II 2 II


A(6, 13) B(1, 1) 65 y C 2 A(2, 1) B( 3, 2) C 66 x + 2y 1 = 0 2 A(1, 1) B(3, 0) P 67 3 A(3, 3) B(1, 2) C(4, 0) (1) ABC G (2) 3 A B C P 6

1 θ i (1) A B θ ( ) A = B = sin 3θ = sin θ (A B sin 2 θ) ( ) 1 2 π 3 < = θ < = 2 π 3 Ax Bx3 = 1 2 θ = π sin θ (2) a b c θ sin 5θ = sin θ f(sin 2 θ) 2

1. 4cm 16 cm 4cm 20cm 18 cm L λ(x)=ax [kg/m] A x 4cm A 4cm 12 cm h h Y 0 a G 0.38h a b x r(x) x y = 1 h 0.38h G b h X x r(x) 1 S(x) = πr(x) 2 a,b, h,π

untitled

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

untitled

TOP URL 1

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

A

TOP URL 1

( 4) ( ) (Poincaré) (Poincaré disk) 1 2 (hyperboloid) [1] [2, 3, 4] 1 [1] 1 y = 0 L (hyperboloid) K (Klein disk) J (hemisphere) I (P

K E N Z OU

QMII_10.dvi

1 8, : 8.1 1, 2 z = ax + by + c ax by + z c = a b +1 x y z c = 0, (0, 0, c), n = ( a, b, 1). f = n i=1 a ii x 2 i + i<j 2a ij x i x j = ( x, A x), f =

第5章 偏微分方程式の境界値問題

( ) e + e ( ) ( ) e + e () ( ) e e Τ ( ) e e ( ) ( ) () () ( ) ( ) ( ) ( )

.3. (x, x = (, u = = 4 (, x x = 4 x, x 0 x = 0 x = 4 x.4. ( z + z = 8 z, z 0 (z, z = (0, 8, (,, (8, 0 3 (0, 8, (,, (8, 0 z = z 4 z (g f(x = g(

( ) ( )

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

熊本県数学問題正解

II 1 II 2012 II Gauss-Bonnet II

高校生の就職への数学II

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

行列代数2010A

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

Z: Q: R: C: 3. Green Cauchy

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

A

Transcription:

38 5 Cauchy.,,,,., σ.,, 3,,. 5.1 Cauchy (a) (b) (a) (b) 5.1:

5.1. Cauchy 39 F Q Newton F F F Q F Q 5.2: n n ds df n ( 5.1). df n n df(n) df n, t n. t n = df n (5.1) ds

40 5 Cauchy t l n mds df n 5.3: t n n x 1 x 2 x 3 x 1 e 1 t 1 = F /A x 1 x 2 x 3 e 3 t 3 =0 x 3 x 2 F A x 1 n t 1 = F /A n t 3 =0 5.4: n e 1, e 2, e 3 t 1, t 2, t 3 t 1, t 2, t 3 T ij t 1 = T 11 e 1 + T 12 e 2 + T 13 e 3 (5.2) t 2 = T 21 e 1 + T 22 e 2 + T 23 e 3 (5.3) t 3 = T 31 e 1 + T 32 e 2 + T 33 e 3 (5.4)

5.2. Cauchy 4 Cauchy 41 t i = T ij e j (5.5) T ij T 11,T 22,T 33 T 12,T 21,T 23,T 32,T 31,T 13 e i e j T = T ij e i e j (5.6) Cauchy Cauchy Cauchy 2 5.2 Cauchy 4 Cauchy Cauchy t n = T T n (5.7) (5.7) T t i = T ij e j (5.8) (5.8) (5.7) 4 (Cauchy 4 ) ABC n t n t n ABC Δs t n ds = t n Δs (5.9) ABC e 1, e 2, e 3 ABC t 1, t 2, t 3 OCB, OAC, OBA

42 5 Cauchy OCB, OAC, OBA Δs 1, Δs 2, Δs 3 t 1 ds = t 1 Δs 1, t 2 ds = t 2 Δs 2, t 3 ds = t 3 Δs 3 (5.10) OCB OAC OBA x 3 x 2 C B t n t 1 Δs Δs 1 O Δs 3 Δs 2 A x 1 t 2 t 3 ρ, Δv, a, g Cauchy 4 ρ(a g)δv = t n Δs t 1 Δs 1 t 2 Δs 2 t 3 Δs 3 (5.11) 4 4 Δs Δv/Δs 0 4.1 Δs i /Δs = n i (5.12) n = n i e i Δs 1 t n = t 1 Δs + t Δs 2 2 Δs + t Δs 3 3 Δs = t i n i = T ij e j n i = T ij (e j e i )n k e k = T T n (5.13)

5.3. 43 Cauchy T T n t n Cauchy 5.1 A, B, C {a, 0, 0}, {0,b,0},{0, 0,c} CA = a, CB = b n a, b a 0 bc a b = 0 b = ca, n = 1 bc ca (5.14) c c ab b3 c 2 + c 2 a 2 + a 2 b 2 ab Δs 1 = 1 2 bc, Δs 2 = 1 2 ca, Δs 3 = 1 2 ab Δs = 1 2 a b Δs = 1 2 b3 c 2 + c 2 a 2 + a 2 b 2 (5.15) n 1 = ΔS 1 ΔS, n 2 = ΔS 2 ΔS, n 3 = ΔS 3 ΔS (5.16) n a, b 2 ΔS a, b θ a b sin θ 5.1 ΔS = a b sin θ = a b 1 cos 2 θ (5.17) { } 2 a b = a b 1 = a a b 2 b 2 (a b) 2 (5.18) = (a 2 + c 2 )(b 2 + c 2 ) c 4 = a 2 b 2 + c 2 a 2 + b 2 c 2 (5.19) 5.3 T 11 T 12 T 13 T 21 T 22 T 23 (5.20) T 31 T 32 T 33 e i e j

44 5 Cauchy T 1, T 2, T 3 ē i T 11 T 12 T 13 T 1 0 0 T 21 T 22 T 23 = 0 T2 0 (5.21) T 31 T 32 T 33 0 0 T3 T ij e i e j = T i ē i ē i (5.22) = T 1 ē 1 ē 1 + T 2 ē 2 ē 2 + T 3 ē 3 ē 3 (5.23) T 11 ε x ε 11 T 22 ε y = ε 22 T 12 γ xy 2ε 12 (5.24) {ε x,ε y,γ xy } 5.4 9 σ y σ y σ = ( ) 1 3 2 σ ijσ ij 2 (5.25)

5.4. 45 σ ij σ ij = σ ij 1 3 σ kkδ ij (5.26) = σ ij 1 3 (σ 11 + σ 22 + σ 33 )δ ij (5.27)

46 6 Cauchy Cauchy 3 2 6.1 2 3 e 1, ē 1, θ [ [ T ]=[P][T ][P ] T = sin θ ][ sin θ T 11 T 11 T 12 T 21 T 22 ][ sin θ ] sin θ (6.1) T 11 = T 11 cos 2 θ + T 12 sin θ + T 21 sin θ + T 22 sin 2 θ (6.2) 1 = T 11 2 (cos 2θ +1)+T 1 22 2 (1 cos 2θ)+T 12 sin 2θ (6.3) = 1 2 (T 11 + T 22 )+ 1 2 (T 11 T 22 )cos2θ + T 12 sin 2θ (6.4) T 12 = T 21, T12 = T 21 (6.5)

6.1. 47 cos 2θ =cos 2 θ sin 2 θ =2cos 2 θ 1= 2sinθ +1 (6.6) sin 2θ =2cosθsin θ (6.7) T 12, T 22 T 12 = T 11 sin θ T 21 sin 2 θ + T 12 cos 2 θ + T 22 sin θ (6.8) 1 = T 11 2 sin 2θ + T 12(cos 2 θ sin 2 1 θ)+t 22 sin 2θ 2 (6.9) = 1 2 (T 11 T 22 )sin2θ + T 12 cos 2θ (6.10) T 21 = T 12 (6.11) T 22 = T 11 sin 2 θ T 21 sin θ T 21 sin θ + T 22 cos 2 θ (6.12) = 1 2 (T 11 + T 22 ) 1 2 (T 11 T 22 )cos2θ T 12 sin 2θ (6.13) Cauchy 4 θ A C B Cauchy 4 ABC AB t n n = ē 1 t n = T 11 ē 1 (6.14) BC e 1 t 1 = t 1 t 1 = (T 11 e 1 + T 12 e 2 ) (6.15)

48 6 Cauchy AC e 2 t 2 = t 2 t 2 = (T 21 e 1 + T 22 e 2 ) (6.16) AB 1 BC sin θ, AC e 1, e 2 T 11 = T 11 + T 21 sin θ (6.17) T 11 sin θ = T 12 + T 22 sin θ (6.18) (6.17), (6.18) sin θ T 11 = T 11 cos 2 θ + T 21 sin θt 12 sin θ + T 22 sin 2 θ (6.19) 6.2 2 T 22 = T 12 = T 21 =0 T 11 = 1 2 T 11(1 + cos 2θ) (6.20) T 12 = 1 2 T 11 sin 2θ (6.21) T 12 θ = ±45 T 11 = 1 2 T 11, 1 2 T 11 (6.22) T 12 = 1 2 T 11, 1 2 T 11 (6.23)

6.2. 2 49 T 11 =1 e 2 ē 2 e 1 ē 1 T 11 =0.5 T 12 =0.5 T 21 =0.5 T 22 =0.5 T 11 = T 22 =0 θ = ±45, 0 T 11 = T 12 sin 2θ (6.24) T 12 = T 12 cos 2θ (6.25) (6.26) T 11 = T 12, T 12 (6.27) T 12 =0, 0 (6.28) T 21 =1 T 12 =1 e 2 e 1

50 6 Cauchy 2 T 11 = T 22 = T,T 12 =0 T<0 T 11 = T (6.29) T 12 = 0 (6.30) T 22 = T T 11 = T e 2 e 1 6.3 Cauchy 2 T φ = λφ (6.31) (6.4), (6.10), (6.13) =0 θ T 12 =0 tan 2θ = 2T 12 T 11 T 22 (T 11 T 22 ) (6.32) (6.4), (6.13) θ T 11 θ =2( 1 2 (T 11 T 22 )sin2θ + T 12 cos 2θ) (6.33) = T 12 = 0 (6.34)

6.3. 51 T 22 θ =2(1 2 (T 11 T 22 )sin2θ T 12 cos 2θ) (6.35) = T 12 = 0 (6.36) T 11, T 22 ẽ i T = T ij e i e j = T ij ē i ē j = T ij ẽ i ẽ j (6.37) T 12 =0 T 12 = 1 2 ( T 11 T 22 )sin2φ + T 12 (6.38) φ =45 T 12 T 12 T 12 = 1 2 ( T 11 T 22 ) (6.39) T 11, T 22 cos 2φ =0, T 12 =0 T 11 = 1 2 ( T 11 + T 22 )+ 1 2 ( T 11 T 22 )cos2φ + T 12 sin 2φ (6.40) = 1 2 ( T 11 + T 22 ) (6.41) T 22 = 1 2 ( T 11 + T 22 ) 1 2 ( T 11 T 22 )cos2φ T 12 sin 2φ (6.42) = 1 2 ( T 11 + T 22 ) (6.43) e 2 ē 2 ẽ 1 φ ẽ 2 ē 1 θ e 1

52 6 Cauchy 6.4 Cauchy θ θ 6.1 T 11 = T 11 cos 2 θ + T 21 sin θt 12 sin θ + T 22 sin 2 θ (6.44) [ T11 T12 T 21 T22 ] [ = sin θ ][ ][ sin θ T 11 T 12 T 21 T 22 sin θ [ T ]=[P][T ][P ] T ] (6.45) sin θ (6.46) T ij [ ] [ T 11 T 12 = T 21 T 22 sin θ sin θ ][ T11 T 21 T12 T22 ][ sin θ [T ]=[P] T [ T ][P ] ] (6.47) sin θ (6.48) e i T ij θ T ij θ T ij θ