.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Similar documents
TOP URL 1

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

TOP URL 1

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

TOP URL 1

gr09.dvi

TOP URL 1

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

meiji_resume_1.PDF

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

量子力学 問題

0406_total.pdf

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

液晶の物理1:連続体理論(弾性,粘性)

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

30

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

: , 2.0, 3.0, 2.0, (%) ( 2.

Note.tex 2008/09/19( )

Untitled

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

9 1. (Ti:Al 2 O 3 ) (DCM) (Cr:Al 2 O 3 ) (Cr:BeAl 2 O 4 ) Ĥ0 ψ n (r) ω n Schrödinger Ĥ 0 ψ n (r) = ω n ψ n (r), (1) ω i ψ (r, t) = [Ĥ0 + Ĥint (

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0


Gmech08.dvi

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h


基礎数学I

i 18 2H 2 + O 2 2H 2 + ( ) 3K

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

arxiv: v1(astro-ph.co)

『共形場理論』

量子力学A

( )

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx


1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

2011de.dvi

δ ij δ ij ˆx ˆx ŷ ŷ ẑ ẑ 0, ˆx ŷ ŷ ˆx ẑ, ŷ ẑ ẑ ŷ ẑ, ẑ ˆx ˆx ẑ ŷ, a b a x ˆx + a y ŷ + a z ẑ b x ˆx + b

本文/目次(裏白)

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

,,..,. 1

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

第86回日本感染症学会総会学術集会後抄録(I)

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo


A

IA

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

構造と連続体の力学基礎

chap9.dvi

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

PDF

第3章

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

プログラム

QMII_10.dvi

b3e2003.dvi

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

201711grade1ouyou.pdf

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

多体問題

Part () () Γ Part ,

( ) (ver )

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r


x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

all.dvi

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

( ) ( )

2000年度『数学展望 I』講義録

第1章 微分方程式と近似解法

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

Transcription:

NHK 204 2 0 203 2 24 ( ) 7 00 7 50 203 2 25 ( ) 7 00 7 50 203 2 26 ( ) 7 00 7 50 203 2 27 ( ) 7 00 7 50 I. ( ν R n 2 ) m 2 n m, R = e 2 8πε 0 hca B =.09737 0 7 m ( ν = ) λ a B = 4πε 0ħ 2 m e e 2 = 5.2977 0 m

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv Theory of Everything: 2 CERN L = ψi ψ g ψbψ 4 Bµν B µν g 2 ψwψ 4 Wµν W µν g 3 ψgψ 4 Gµν G µν + ψ i y ij ψ j ϕ + h.c. + D µ ϕ 2 V (ϕ) 2

2. ψı ψ e: ν: u: ( ) d: ( ) 2.. i t ψ = 2 2m x 2 ψ 2..2 x 2 + y 2 = r 2 2..3 y = px + nq, n Z (x a) 2 + (y b) 2 = x 2 + y 2 2ax 2by + a 2 + b 2 3

(t) (x 2 ) i t ψ = 2 2m x 2 ψ + v m x t ψ + 2..4 ħ =, c = iγ t ψ + i γ x ψ = mψ (iγ µ µ m) ψ (x) = 0, µ = 0,, 2, 3 µ x µ, ψ (x) = ψ (x) ψ 2 (x) ψ 3 (x). ψ 4 (x) ( ) γ µ 0 σ µ ) ) =, σ µ = (Î, ˆσj, σ µ = (Î, ˆσj σ µ 0 {γ µ, γ ν } γ µ γ ν + γ ν γ µ = 2η µν, η µν = g µν magnetic moment 4

L = ψi ψ ψmψ 2.2 g ψbψ 4 Bµν B µν g 2 ψwψ 4 Wµν W µν g 3 ψgψ 4 Gµν G µν + ψ i y ij ψ j ϕ + h.c. + D µ ϕ 2 V (ϕ) h.c.: there are additional terms which are the hermitian conjugate of the terms that have already been written 4 F µν F µν 5

2.2. L = ψi ψ ψmψ g ψaψ 4 F µν F µν (930) 948 (948) = 2.002393043 = 2.002393043 6

L = ψi ψ ψmψ g ψaψ 4 F µν F µν { } 950 P N +e 0 938.3MeV 939.6MeV P = (udd), N = (uud) u: d: (954) L = 4 f µν f µν ψγ µ ( µ iϵτ b µ )ψ m ψψ. 7

L = ψi ψ ψmψ g ψbψ 4 Bµν B µν g 2 ψwψ 4 Wµν W µν g 3 ψgψ 4 Gµν G µν 8

II 203 2 957 NY (957) β (e, ν, u, d) ψmψ e iβ ψl Mψ R + e iβ ψr Mψ L 9

960 (96) g 3 ψgψ g 3 (ūgu + dgd) u d m = 0 m = 0 m 0 0

u R u R + u L u L u R + u L dr + d L d R + d L g 2 ψwψ 960 W Z

W + W Z 979 (964) 203/0/8 CERN (967) 983 CERN W Z 2

3

III DAS WAHRE IST GOTTHNLICH U = M r ( J 2 R 2 3 cos 2 θ r 2 2 ) 3 ˆ Z = [DA] [Dψ] [Dϕ] [ ˆ [ exp i d 4 x 4 F µν F µν + ( i ψdψ + h.c. ) ]] + (ψ i y ij ψ j ϕ + h.c) + D µ ϕ 2 V (ϕ) 3. ˆ Z = ˆ [DA] [Dψ] [Dϕ] exp[i d 4 x 3.2 [ 4 F µν F µν + ( i ψdψ + h.c. ) ] + (ψ i y ij ψ j ϕ + h.c) + D µ ϕ 2 V (ϕ) 4

4 R µν 2 g µνr = κt µν }{{}}{{} µ, ν : R µν : g µν : R : κ : T µν : 4. ( ds 2 = 2GM ) rc 2 dt 2 + dr 2 2GM rc 2 2 + r ( dθ 2 + sin 2 θ dϕ 2) R αβγδ R αβγδ = 48G2 M 2 c 4 r 6 D istortion r 3 D : r : D istortion = 0 3 = 5

4.2 ˆ Z = [Dg] [DA] [Dψ] [Dϕ] [ ˆ exp i d 4 x [ g 2κ R 4 F µν F µν + ( i ψdψ + h.c. ) ]] + (ψ i y ij ψ j ϕ + h.c) + D µ ϕ 2 V (ϕ) ˆ i d 4 x [ g 2κ R 4 F µν F µν + ( i ψdψ + h.c. ) ] + (ψ i y ij ψ j ϕ + h.c) + D µ ϕ 2 V (ϕ) 0 = (936) 6

(974) ˆ d 2 σ h h αβ α X µ β X µ 2π M gravity r 2 0 r = 0 5 CALTEC ˆ Z = [ [Dg] [DA] [Dψ] [Dϕ] exp ˆ d 2 σ h [ h αβ α X µ β X µ i 2π ψ µ ρ α ] ] α ψ µ M ψ (σ, µ τ) = d µ ne in(τ σ) 2 n Z 7

L m = α µ 2 n mα µn + 4 n Z r G r = n Z α µ nψ µr n [L m, L n ] = (m n)l m+n + {G r, G s } = 2L r+s + c 2 (4r2 [L m, G r ] = m 2r G m+r 2 ˆ Z = { [Dg] [DX] [Dψ] exp ˆ d 2 σ h [ h αβ α X µ β X µ i 2π ψ µ ρ α ] } α ψ µ M 8

IV S = ˆ d 2 σ { α X µ α X µ i 2π ψ µ ρ α } α ψ µ M m = 0(const.) 4(dimension) 4 0 0 0 m = 0 0 4 = 0 (D = {t, x, y, z}) (D = 0) D = 9

δs = ˆ 2κ 2 d D x ( G) 2 e 2Φ 0 [ α ( δg µν β G µν + δb µν β B µν + 2δΦ ) (β 2 Gµν G δg ω µν ω 4β Φ)] ˆ Z = [Dg] [DA] [Dψ] [Dϕ] ˆ exp{i d 4 x g [ 2κ R + D µϕ 2 24κ e ϕ F µνρ F µνρ 4κ λγ µ D µ λ 4 F µνf µν 4 2κ χ µγ ν γ µ λ ν ϕ + 24 g 2 tr ( ψλ ρστ ψ ) 2 2g 2 e 2 ϕ tr 24κ χ µγ µνρ D ν χ ρ ( 2 ϕ + 8 ϕ2 48 ϕ3 + ) + ( i ψdψ + h.c. ) [ χ 96κ e 2 ϕ [µ γ µ γ ρστ γ ν γχ ν] ] 2 χ µ γ ρστ γ µ λ ) ( + 8 ϕ2 48 ϕ3 + F ρστ + (ψ i y ij ψ j ϕ + h.c) [( χ µ γ ρσ γ µ ψ ) ] λγ ρσ ψ F ρσ + ]} 2 F ρστ n = 496 (perfect number) 496 = + 2 + 4 + 8 + 6 + 3 + 62 + 24 + 248 + 2 + 2 2 + + 2 n S n S n 2 n 2 20

THE THEORY OF EVERYTHING (a Bohr 0 24 = 5.29 0 35 m) D ˆ d 2 σ h [ h αβ α X µ β X µ i 2π ψ µ ρ α ] α ψ µ M +iµ ρ ˆ ρ+ [ Tr exp (2πα F 2 + B 2 ) ] C 2

S = 4G A QH Q 2 F = 2π 2 M = K3 [ 2 Q 2 +] F S [ +] 2 Q2 F L 0 = 2 (H P ) = 0 c = 6k, L 0 = n, n d(n, l) exp ( 2π nc6 ) ( ) c = 6 2 Q2 F + n = Q H ( ) 2 S = ln d (Q F, Q H ) 2π Q H Q2F + QH Q 2 F 2π 2 2004 LIGO VLA CERN 22

M M Theory M 0 500 23