YITP50.dvi

Similar documents
D-brane K 1, 2 ( ) 1 K D-brane K K D-brane Witten [1] D-brane K K K K D-brane D-brane K RR BPS D-brane

kougiroku7_26.dvi

SUSY DWs

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

Introduction SFT Tachyon condensation in SFT SFT ( ) at 1 / 38

3 exotica

橡超弦理論はブラックホールの謎を解けるか?

TOP URL 1


TOP URL 1

Einstein 1905 Lorentz Maxwell c E p E 2 (pc) 2 = m 2 c 4 (7.1) m E ( ) E p µ =(p 0,p 1,p 2,p 3 )=(p 0, p )= c, p (7.2) x µ =(x 0,x 1,x 2,x

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo

中央大学セミナー.ppt

TOP URL 1

ssastro2016_shiromizu

CKY CKY CKY 4 Kerr CKY

0406_total.pdf

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

陦ィ邏・2

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

TOP URL 1

Dirac 38 5 Dirac 4 4 γ µ p µ p µ + m 2 = ( p µ γ µ + m)(p ν γ ν + m) (5.1) γ = p µ p ν γ µ γ ν p µ γ µ m + mp ν γ ν + m 2 = 1 2 p µp ν {γ µ, γ ν } + m

,,..,. 1

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

201711grade1ouyou.pdf

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

0. Intro ( K CohFT etc CohFT 5.IKKT 6.

gr09.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

Kaluza-Klein(KK) SO(11) KK 1 2 1

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

* n x 11,, x 1n N(µ 1, σ 2 ) x 21,, x 2n N(µ 2, σ 2 ) H 0 µ 1 = µ 2 (= µ ) H 1 µ 1 µ 2 H 0, H 1 *2 σ 2 σ 2 0, σ 2 1 *1 *2 H 0 H

main.dvi

( )

Einstein ( ) YITP

総研大恒星進化概要.dvi

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

5 Calabi-Yau web

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

arxiv: v1(astro-ph.co)

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

『共形場理論』



( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

2017 II 1 Schwinger Yang-Mills 5. Higgs 1

1. Introduction Palatini formalism vierbein e a µ spin connection ω ab µ Lgrav = e (R + Λ). 16πG R µνab µ ω νab ν ω µab ω µac ω νcb + ω νac ω µcb, e =

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

Macdonald, ,,, Macdonald. Macdonald,,,,,.,, Gauss,,.,, Lauricella A, B, C, D, Gelfand, A,., Heckman Opdam.,,,.,,., intersection,. Macdona

meiji_resume_1.PDF


本文/目次(裏白)

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

D.dvi

(τ τ ) τ, σ ( ) w = τ iσ, w = τ + iσ (w ) w, w ( ) τ, σ τ = (w + w), σ = i (w w) w, w w = τ w τ + σ w σ = τ + i σ w = τ w τ + σ w σ = τ i σ g ab w, w

keisoku01.dvi

II (No.2) 2 4,.. (1) (cm) (2) (cm) , (

Introduction 2 / 43

LLG-R8.Nisus.pdf

q quark L left-handed lepton. λ Gell-Mann SU(3), a = 8 σ Pauli, i =, 2, 3 U() T a T i 2 Ỹ = 60 traceless tr Ỹ 2 = 2 notation. 2 off-diagonal matrices



ADM-Hamiltonian Cheeger-Gromov 3. Penrose

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m


Microsoft Word - 11問題表紙(選択).docx

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

' , 24 :,,,,, ( ) Cech Index theorem 22 5 Stability 44 6 compact 49 7 Donaldson 58 8 Symplectic structure 63 9 Wall crossing 66 1

Confinement dual Meissener effect dual Meissener effect

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2


all.dvi

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

The Physics of Atmospheres CAPTER :

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

Untitled

QMII_10.dvi

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

untitled

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

概況

II No.01 [n/2] [1]H n (x) H n (x) = ( 1) r n! r!(n 2r)! (2x)n 2r. r=0 [2]H n (x) n,, H n ( x) = ( 1) n H n (x). [3] H n (x) = ( 1) n dn x2 e dx n e x2

·«¤ê¤³¤ß·²¤È¥ß¥ì¥Ë¥¢¥àÌäÂê

A

cm λ λ = h/p p ( ) λ = cm E pc [ev] 2.2 quark lepton u d c s t b e 1 3e electric charge e color charge red blue green qq

1 2 2 (Dielecrics) Maxwell ( ) D H

( 3) b 1 b : b b f : a b 1 b f = f (2.7) g : b c g 1 b = g (2.8) 1 b b (identity arrow) id b f a b g f 1 b b c g (2.9) 3 C C C a, b a b Hom C (a, b) h

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

Transcription:

1 70 80 90 50 2 3 3 84 first revolution 4 94 second revolution 5 6 2 1: 1

3 consistent 1-loop Feynman 1-loop Feynman loop loop loop Feynman 2 3 2: 1-loop Feynman loop 3 cycle 4 = 3: 4: 4 cycle loop Feynman Feynman consistent 4 Minkowski 5 Type I, Type IIA, Type 2

IIB, Heterotic SO(32), Heterotic E 8 E 8 1 open closed 5 Type I Type IIA Type IIB Het SO(32) Het E 8 E 8 O(32) U(1) SO(32) E 8 E 8 open + closed closed closed closed closed N = 1 N = 2 N = 2 N = 1 N = 1 10 10 10 10 10 1: open string closed string open string closed string 5: N = 1 N = 2 1 10 4 10 1 5 3 2 SU(3) SU(2) U(1) G W ± Z γ u, d e, ν e c, s µ, ν µ t, b τ, ν τ 2: SU(3) SU(2) U(1) 3

2 SU(3) SU(2) U(1) GUT 3 SU(5) SO(10) E 6 SU(5) GUT SO(10) GUT E 6 GUT SU(5) SO(10) E 6 (ψ 10,ψ 5,ψ 1 ) 3 ψ 16 3 ψ 27 3 3: 3 SO(10) GUT ψ 16 SO(10) 16 2 16 ψ 16 3 Heterotic E 8 E 8 4 10 6 M 6 6 M 6 4 4 4

N = 1 M 6 Calabi-Yau Calabi-Yau SU(3) 6 M 6 ψ SO(6) g gψ g SO(6) SU(3) 6 gψ ψ g SU(3) 6: SO(6) SU(4) SU(3) SO(6) SU(4) 4 SU(3) 4 N = 1 4 N = 1 6 M 6 Calabi- Yau E 6 GUT E 8 E 8 field strength F = 1F 2 µνdx µ dx ν 2 R = 1(R a 2 µν b )dxµ dx ν Σ tr(r R) = Σ tr(f F) (3.1) Σ M 6 4 M 6 R F minimal embedding M 6 SU(3) R M 6 SO(6) SU(3) F E 8 E 8 E 8 SU(3) E 8 SU(3) 1 N = 1, 2 10 10 N = 1 6 4 N = 0, 1, 2, 4 SO(6) Spin(6) Lie 5

E 8 SU(3) E 6 3 E 6 E 6 4 N = 1 6 SU(3) E 8 SU(3) E 6 minimal embedding Dirac E 6 27 ψ χ(m 6 )/2 χ(m 6 ) M 6 M 6 3 E 6 GUT Heterotic E 8 E 8 χ(m 6 )/2 3 consistent Heterotic 10 N = 1 consistent E 8 E 8 SO(32) consistent E 8 E 8 SO(32) GUT E 6 ψ 27 4 N = 1 GUT E 6 4 N = 1 E 6 4 GUT U(1) 496 E 8 U(1) 248 flat 6

10 4 Minkowski 6 M 6 6 M 6 6 Calabi-Yau M 6 Heterotic E 8 E 8 Hetero E 8 E 8 1 4 Second Revolution 94 D-brane M 7

4.1 (duality) (dual) T-duality Sduality T-duality Type IIA SR 1 ( R S1 ) Type IIB S1/R 1 ( 1/R S 1 ) Type IIA Type IIB 10 S 1 R 1/R 7 Type IIA SR 1 Type IIB S1/R 1 SR 1 1/R Type IIA on S 1 R R 7: T-duality Type IIB on S 1 1/R 1/R 1/R S1/R 1 2π/R ( 1/2π) 1/R R S-duality Type IIB Type IIB B µν, C µν µ, ν 0, 1,..., 9 µ ν B µν = B νµ g s g s 1/g s B µν C µν (4.1) C µν B µν g s 1/g s B µν C µν g s 1 1/g s 1 8

S-duality S-duality (4.1) Type IIA Type IIB Type I Heterotic 8 Type I Heterotic SO(32) S-dual Type IIA T Type IIB S Type I S Het SO(32) T Het E 8 E 8 8: Duality Web Type I Heterotic SO(32) 4.2 D-brane Type IIB Type IIB 2 B µν A µ 4.1 Type IIB S-duality C µν C µν D-string D1-brane T-duality Dp-brane (1 + p) ( 1 p ) p Type IIA Type IIB Dp-brane Dp-brane Polchinski 9 open string (1 + p) Dp-brane D-brane D open string Dirichlet boundary condition Dp-brane 9

open string (1 + p) 9: Dp-brane second revolution 4.3 M Type IIA Type IIA g µν φ C µ 2 B µν 3 C µνρ µ, ν, ρ 0, 1,..., 9 φ g 1010 C µ g µ10 B µν C µν10 11 3 g MN C MNP (M, N, P = 0, 1,..., 10) 10 11 11 x 10 10 Type IIA Witten 11 Type IIA 4.2 D-brane D0-brane 11 11 M Membrane M M 3 C MNP (1 + 2) M M2-brane (1 + 2) x 10 S 1 x 10 Type IIA M Membrane x 10 Type IIA D2-brane 10

Mother M M M 11 S 1 Type IIA 4 Type IIB M 11 M 0 M on S 1 Type IIA M on S 1 S 1 Type IIB M on I Het E 8 E 8 M on I S 1 Het SO(32) M on S 1 I Type I 4: M S 1 S 1 S 1 M S 1 S 1 9 Type IIA S 1 7 T-duality Type IIB S1/R 1 10 4 I (I = S 1 /Z 2 ) M x 10 I E 8 Heterotic E 8 E 8 Miracle, Magic, Mystery M M S-duality Type IIB 4 M S 1 S 1 S 1 Type IIB S-duality S 1 Type IIB g s S 1 g s 1/g s Heterotic SO(32) Type I S-duality 4 Heterotic SO(32) Type I M I S 1 S 1 I x 10 I S 1 Heterotic SO(32) Type I I S 1 M S 1 I I S 1 Matrix M M M(atrix)-theory 11

M looks like W. 1999 Strings 99 Townsend W Witten W M 1 M 10 5 M S T Type IIB Type I Type IIA 11 M T S Het SO(32) Het E 8 E 8 10: 1995 11 M 4.4 D-brane M D-brane D-brane Seiberg N = 1 Seiberg-Witten N = 2 9 D-brane open string Dp-brane (1 + p) 12

M M 4 Seiberg-Witten brane QCD D-brane D-brane Bekenstein-Hawking S = log W S = A/4 D-brane 11: D-brane D-brane Type IIA D0-brane D0-brane S m 1 (ẋ k ) 2 dt (4.2) 13

x k (t) (k = 1, 2,..., 9) D0-brane open string D0-brane N open string 12 D0-brane N N x k (t) open string t open string D0-brane 12: D0-brane N N N D0-brane x k (t) D0-brane D0-brane N x k N N N N 4.3 M x k D-brane Type IIA 1 Type IIA closed string open string (1 + 9) D-brane D9-brane open string 4.2 Dp-brane p Type IIA p D-brane non-bps D-brane non-bps D9-brane N open string N N U(N) 14

Type I Type IIB open string 1 5 N Type I Type IIA Type IIB O(N + 32) O(N) U(N) U(1) U(N) U(N) open + closed open + closed open + closed (, ) adjoint (, ) 5: N open string 13 V (T) T non-bps D-brane V (T) 13: Sen 13 T non-bps D-brane 1 13 T D-brane 4.2 open string 5 D-brane open string Type I Type II T 1 5 15 T

5 10 3 3 3 Heterotic E 8 E 8 5 4.3 M M 5 M 3 4 3 4 D-brane M 4 80 second revolution D-brane 3 second revolution 16

4 M 4 revolution 6 17

4.4 10 QCD QED 18