JAB RL504:201 JAB NOTE 4 2 January 25, A B

Similar documents
JIS Z 9001:1998JIS Z 9002:1998 ISO/IEC 17025ISO/IEC Guide 25

Taro12-認定-部門-ASG101-06

EURAMET EURAMET/cg-15/v.01 "Guidelines on the Calibration of Digital Multimeters" EURAMET e.v. "General Conditions for the translation of EURAMET publ

JAB NF01 REV JIS Q 17025: /

SI SI CIPM MRA

MRA CIPM-MRA Mutual Recognition Arrangement OIML-MAA Mutual Acceptance Arrangement ILAC-MRA 3 CIPM-MRA (Associate to CGPM)+2 (As o

ISO/IEC ISO/IEC 17020: 2012 JIS Q ILAC 2) ILAC P15:06/2014 Application of ISO/IEC 17020:2012 for the Accreditation of Inspection Bodies 20

008: GUM が JCGM 書として, インターネット上で無料公開 内容は同じ 現在 : 幾つかの GUM 補足 書 周辺 書が作成され,JCGM 書として順次インターネット上で公開 JCGM 101 ( モンテカルロ法 ),JCGM 10 ( 複数の出 量 ),JCGM 104 (

Japanese.PDF

試験データの信頼性の条件 - 国際的な枠組みと各国の技術インフラ -

Untitled


5005-toku3.indd

c 2009 i

all.dvi

Microsoft Word - 11問題表紙(選択).docx

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

Microsoft PowerPoint - 02_資料.ppt [互換モード]


Part () () Γ Part ,

DVIOUT-fujin

数学の基礎訓練I

TOP URL 1

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

untitled

LLG-R8.Nisus.pdf

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

Gmech08.dvi

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +


SO(2)

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

89865TVS_JA.fm

Microsoft PowerPoint JAIMA_ehara.pptx

0 s T (s) /CR () v 2 /v v 2 v = T (jω) = + jωcr (2) = + (ωcr) 2 ω v R=Ω C=F (b) db db( ) v 2 20 log 0 [db] (3) v R v C v 2 (a) ω (b) : v o v o =

* 2

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

2012 JAB JABLAS 4 JABLAS JABLAS JABLAS JABLAS JABLAS 1

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

JIS Z803: (substitution method) 3 LCR LCR GPIB

量子力学 問題

第5章 偏微分方程式の境界値問題


(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

pdf

n (1.6) i j=1 1 n a ij x j = b i (1.7) (1.7) (1.4) (1.5) (1.4) (1.7) u, v, w ε x, ε y, ε x, γ yz, γ zx, γ xy (1.8) ε x = u x ε y = v y ε z = w z γ yz

The Physics of Atmospheres CAPTER :

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

Łñ“’‘‚2004

プリント


PowerPoint プレゼンテーション


医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

(2018 2Q C) [ ] R 2 2 P = (a, b), Q = (c, d) Q P QP = ( ) a c b d (a c, b d) P = (a, b) O P ( ) a p = b P = (a, b) p = ( ) a b R 2 {( ) } R 2 x = x, y

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

2

2 Chapter 4 (f4a). 2. (f4cone) ( θ) () g M. 2. (f4b) T M L P a θ (f4eki) ρ H A a g. v ( ) 2. H(t) ( )

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

B's Recorderマニュアル_B's Recorderマニュアル

B's Recorderマニュアル

2000年度『数学展望 I』講義録

Note.tex 2008/09/19( )

. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

001†`032 (Page 1)

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

数値計算:有限要素法

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1



Transcription:

JAB RL504:201 JAB NOTE 4 JAB RL504:201 2201125 1200025 200-0-25-1/- 2 201-01-25

JAB RL504:201 JAB NOTE 4 2 January 25, 201............... 6 5.1... 6 5.2... 6 5. A... 7 5.4 B... 7 5.5... 8 5.6... 9 5.7... 10... 12 6.1... 12 6.2... 14 6.... 24 6.4... 25 6.5... 26 6.6... 27... 28 ISO/IEC 17025... 29... 1 200-0-25-2/- 2 201-01-25

JAB RL504:201 1 ISO/IEC 17025:2005, General requirements for the competence of testing and calibration laboratories 2 ISO/IEC Guide 2:2004, Standardization and related activitiesgeneral vocabulary International vocabulary of metrology-basic and general concepts and associated terms :2008, issued by BIPM, IEC, ISO, IFCC, IUPAC, IUPAP and OIML VIM 4 Guide to the Expression of Uncertainty in Measurement:1995, issued by BIPM, IEC, ISO, IFCC, IUPAC, IUPAP and OIML GUM 5 IEC 60060-1:2010, High-voltage test techniques. Part 1: General definitions and test requirements 6 IEC 60060-2:2010, High voltage test techniques. Part 2: Measuring systems 7 IEC 62475:2010, High-current test techniques Definitions and requirements for test currents and measuring systems 8 CIGRE -96 (WG 0):1996, Uncertainty of HV Measurements the Situation at IEC and CENELEC 9 STL GUIDE TO THE INTERPRETATION OF IEC 60060-2, 1999-11 10 11 JIS Z8101-1:1999, - measurandvim 2.6 - true valuevim 1.19 - errorvim.10 200-0-25 -/- 2 201-01-25

JAB RL504:201 - uncertainty of measurementvim.9 - testiso/iec Guide 2 - calibrationvim 6.11 - resolution 10 - normal distribution, Laplace-Gauss distributionjis Z8101-1, 1.25 2 1 1 x μ f ( x) = exp, < x < σ 2π 2 σ - uniform distribution, rectangular distributionjis Z8101-1, 1.24 a, b 0 - correlationiso 54 - standard deviation - experimental standard deviationvim.8 n 2 ( x x) x i i = i = 1 s = n 1 x = n = - level of confidence 10 95 - standard uncertaintygum 2..1 - combined standard uncertaintygum 2..4 - coverage factorgum 2..6 - expanded uncertaintygum 2..5 200-0-25-4/- 2 201-01-25

JAB RL504:201 - national standardvim 6. - reference standardvim 6.6 - traceabilityvim 6.10 () - measuring systemvim 4.5 - rss root sum square method root sum square 2 2 2 2 + + 6 = 7 - output quantity - input quantity(ies) 200-0-25-5/- 2 201-01-25

JAB RL504:201 5.1 u u c U y yu yu U 9595 2019 5.2 5.1 Y N X 1, X 2,, X N GUM Y = f (X 1, X 2,, X N ) (1) Y X 1, X 2,, X N u i A B u c 2 u c = u i U U=ku c k 5.1 200-0-25-6/- 2 201-01-25

JAB RL504:201 AB A B 5. A Q q n q i i = 1, 2,, n q q q 1 q = n n q i i= 1 (2) q 2 s 2 (q k ) n 2 1 2 s ( qk ) = ( qi q) () n 1 i= 1 s(q k ) n-1 q 2 2 σ σ ( q) = n 2 2 s qk s ( q) = ( ) (4) n s 2 ( q ) s (q) Q q q u (q) s (q) u ( q) = s( q) (5) 1 n t 952 5.4 B U 200-0-25-7/- 2 201-01-25

JAB RL504:201 5.2 a s b s 5.2 ab s x min x max 5.2(b) (6) a u ( x) = (6) x max x a = min (7) 2 a Bν ν 1 1 2 Δu( x) ( ) u x 2 (8) Δ u u 25 Δu( x) 1 = ν = 8 u( x) 4 5.5 rss 200-0-25-8/- 2 201-01-25

JAB RL504:201 n i= 1 [ ] 2 c u( x ) u c ( y) = i i (9) u(x i ) i X i c i Y X i f (1) X i =x i X i X i =x i x i Δ x i Y Δ y c i Δy = (10) Δx i 1(9) GUM 2(9) (9) (9)rss 6.2rss 5.6 U (9) u c (y) k U = k u c (y) (11) k p t k=2 p=95% k=2 p=95% ν 20 ν ν i (12) ν eff i= 1 4 c ( 4 ui u y) ν eff = (12) n ( y) ν i 200-0-25-9/- 2 201-01-25

JAB RL504:201 u i (y) = c i u(x i ) (1) 5.1 t n p% t p% n 68. 95.0 99.7 5 6 7 8 9 10 20 1.14 1.11 1.09 1.08 1.07 1.06 1.0 2.78 2.57 2.45 2.6 2.1 2.26 2.09 6.62 5.51 4.90 4.5 4.28 4.09.45 1.00 1.96.00 5 k=2 ν 20 k=2 p=95% U 52 42 1.04 51 58.49 5.7 (14) y UA (14) y U U 100 y (15) 200-0-25-10/- 2 201-01-25

JAB RL504:201 y110-2 A (15) 2yA 5 U y 6 k 2GUM 2 k (A) ν =50 t k=2 95 200-0-25-11/- 2 201-01-25

JAB RL504:201 6.1 6.1 6.1 6.1-1 -2-1 (E/O-O/E) -2 (E/O-O/E) D/C - A/D 200-0-25-12/- 2 201-01-25

JAB RL504:201 A/D E/O O/E 6.2 E/O O/E D/C A/D 6. D/C A/D 6.4 D/C A/D 6.5 200-0-25-1/- 2 201-01-25

JAB RL504:201 6.2 6.2 u 1 A (5) u 2 B /1 (5)/(6) -1 u B (6) u 4 B (6) u 5 B (6) u 6 A (5) u 7 B /1 (5)/(6) -2 u 8 B (6) u 9 B (6) u 10 B (6) -1 u 11 B (6) ( E/O-O/E) u 12 B (6) -2 u 1 B (6) ( E/O-O/E) u 14 B (6) - D/C u 15 B (6) u 16 B (6) u 17 B (6) A/D u 18 B (6) u 19 B (6) u 20 B (6) u 21 B (6) 200-0-25-14/- 2 201-01-25

JAB RL504:201 1 6.2-1 (a) u 1 6. m 1 0.971 2 0.968 10 0.969 4 0.970 6. 5 0.970 0.000126 6 0.970 = 0.017(%) 7 0.971 0.9704 8 0.971 9 0.972 10 0.972 0.9704 0.000126 0.017 u 2 (b) u 2510-6 040 20 20 2510-6 200.00050.05 200-0-25-15/- 2 201-01-25

JAB RL504:201 0.029 u 4 60 2510-6 600.00150.15 0.087 u 5 0.5 100kA 50A 50A/100kA=0.00050.05 0.029-1 u 1 0.017 (5) u 1 = = 0. 01(%) 10 u 2 k =2 0.05 () 0.05 u 2 = = 0.025 (%) 2 u 0.05 2510-6 200.00050.05 (6)u = = 0. 029 (%) u 4 2510-6 0.15 600.00150.15 (6) u 4 = = 0. 087 (%) u 5 0.05 50A/100kA=0.00050.05 (6)u 5 = = 0. 029 (%) -2 200-0-25-16/- 2 201-01-25

JAB RL504:201 2.5 0-Peak u 6 トレーサブルな交流分流器を用いて 同じ電流を n 6.4 6.4 比較用交流分流器 ( ) Im [ka] Ii [ka] (=Ii / Im) 5.05 52.6 0.9921 57.0 56.90 0.990 5.17 52.74 0.9919 57.9 56.97 0.9927 5.1 52.7 0.9925 57.24 56.82 0.9927 5.2 52.90 0.9921 57.49 57.06 0.9925 52.97 52.58 0.9926 57.40 56.95 0.9922 0.9924 0.00045 0.00045 = 0.048(%) 0.9924 u 7 u 8 u u 9 トレーサブルな交流分流器を用いて 6.5 200-0-25-17/- 2 201-01-25

JAB RL504:201 6.5 比較用 交流分流器 () (=Ii / Im) Im [ka] Ii [ka] 21.61 21.44 0.9921 29.5 29.4 0.996 6.11 5.91 0.9945 44.96 44.77 0.9958 55.88 55.45 0.992 0.997 0.9970.99580.0021 0.0021 = 0.211(%) 0.997 u 10 0.5 100kA 50A 50A/100kA=0.00050.05 0.029-2 u 6 0.048 (/) 0.048%n=10 u6 = = 0.011(%) 10 u 7 0.01 0.01% u 7 = 0.006 (%) u 8 0.05 2510-6 20=0.00050.05% u8 = = 0.029(%) u 9 (/) 0.211%a=0.211 0.211 u 9 = = 0.122(%) u 10 0.05 50A/100kA=0.00050.05 (6)u 10 = = 0. 029 (%) -1 E/O-O/E -2 E/O-O/E 200-0-25-18/- 2 201-01-25

JAB RL504:201 E/O O/E A/D E/OO/E A/D E/O O/E B -1 u 11 040 0.02/ 200.4% 0.4 u 11 = = 0.21(%) u 12 0.075% 0.075 u 12 = = 0.04(%) -2 u 1 5 0.16/0.8% 0.8 u 1 = = 0.462(%) u 14 2.0 2% u14 = = 1.155(%) 200-0-25-19/- 2 201-01-25

JAB RL504:201 D/C D/C D/C u 15 0.2 0.2 u 15 = = 0.115(%) u 16 0.05 0.05 u 16 = = 0.029(%) u 17 0.15 0.0 (/)5 u 17 = = 0.087(%) A/D A/D A/D A/D (a) A/D A/D 0 12 (b) A/D 200-0-25-20/- 2 201-01-25

JAB RL504:201 10kHz u 18 12 0% 1 1 0.08 100 = 0.08 (%) u 18 = = 0.046(%) 2048 0. 2 u 19 0.005 0.005 u 19 = = 0.00(%) STLShort-circuit Testing Liaison STL u 20 u 21 6.6 f(t) (t) 8 200-0-25-21/- 2 201-01-25

JAB RL504:201 0.5 0.5 u 20 = = 0.289(%) 6.6 t I( t) = I m sin( ω t + φ) sin( φ) exp( ) τ i(t) π φ = 2 6.7 6.8 100 ms 6.8 0.2 0.2 u 21 = = 0.115(%) 6.7 r m s 200-0-25-22/- 2 201-01-25

JAB RL504:201 () 6.8 () IEC 62475 9.4 5 IEC 62475 (JAB RL57 5.6.2.2.2 ) 155 1 6.6 6.9 200-0-25-2/- 2 201-01-25

JAB RL504:201 6. 6.6 u i (%) (n-1) u 1 0.01 % 1.0 1.0 0.01 9 u 2 0.05 % 2.0 1.0 0.0 (2) -1 u 20 2510-4 (% / ) 0.0 (2) u 4 60 2510-4 (% / ) 0.09 u 5 50A 1.0 0.0 (2) -1 u 11 20 E/O-O/E u12 0.075 % 210-2 (% / ) 0.2 1.0 0.04 (2) (2) u 20 0.5 % u 21 0.2 % 1.0 0.29 1.0 0.12 (2) (2) u c Uk=2 6.2 2 0.40 10 7 0.80 10 7 1 20.8 0.8 2 0.8 1.0 200-0-25-24/- 2 201-01-25

JAB RL504:201 6.4 6.7-1 u 1 u 2 u u 4 u 5-2 u 1 5 E/O-O/E u14 2.0 % 1.610-1 (% / ) u i (%) 0.46 1.0 1.15 (n-1) (2) (2) u 15 0.2 % 1.0 0.12 (2) D/C u 16 0.05 % 1.0 0.0 (2) u 17 5 10-2 (% / ) 0.09 (2) A/D u 18 0.08 % u 19 0.005 % 1.0 0.05 1.0 0.00 (2) (2) u 20 u 21 u c Uk=2 6.2 2 1.29 10 9 2.6 10 9 1 2.6 2.6 2 92.6 200-0-25-25/- 2 201-01-25

JAB RL504:201 6.5 6.8 u 1 u i (%) (n-1) u 2-1 u u 4 u 5 - u 15 D/C u 16 u 17 A/D u 18 u 19 u 20 u 21 u c Uk=2 6.2 0.7 10 7 0.74 10 7 1 20.74 0.74 2 0.74 1.0 200-0-25-26/- 2 201-01-25

JAB RL504:201 6.6 6.9 u i (%) (n-1) u 6 0.01 % 1.0 1.0 0.01 9-2 u 7 u 8 0.01 % 20 1.0 0.006 2510-4 (% / ) 0.0 () u 9 0.211 % 1.0 0.12 u 10 1.0 - u 15 D/C u 16 u 17 A/D u 18 u 19 u 20 u 21 u c 0.7 10 7 Uk=2 0.74 10 7 6.2 u 2 u 6 2 200-0-25-27/- 2 201-01-25

JAB RL504:201 ISO/IEC 17025 JAB NOTE4 50 JAB T&D 200-0-25-28/- 2 201-01-25

JAB RL504:201 ISO/IEC 17025 4.12 4.12.2 4.12.2.1 5.1 5.1.2 5.4 5.4.1 5.4.5 5.4.5. [ / (cross-sensitivity)] (cross-sensitivity) 5.4.6 5.4.6.1 5.4.6.2 5.10 5.4.6. 200-0-25-29/- 2 201-01-25

JAB RL504:201 JIS Z 8402 (GUM) 5.6 5.6.2 5.6.2.1 5.6.2.1.1 SI SI SI SI SI /(5.10.4.2 ) 5.6.2.2 5.6.2.2.1 5.6.2.1 5.6.2.1 5.10 5.10. 5.10..1 c) 5.10.4 5.10.4.1b) / 5.10.4.2 200-0-25-0/- 2 201-01-25

JAB RL504:201 X x μ a μ + a f (x) 1 f ( x) = μ a x μ + a 2a = 0 x μ a, μ + a x 2 σ = 2 = 1 2a 2 a = a a f ( x) ( x μ) dx x 2 dx 2 σ = a 200-0-25-1/- 2 201-01-25

JAB RL504:201 JAB NF18 REV.0 1 200-0-25 201-01-25 PM 200-0-25-2/- 2 201-01-25

JAB RL504:201 141-0022 1 22-1 AN F Tel.0-442-1217 Fax.0-5475-2780 200-0-25 -/- 2 201-01-25