(MHD) ( ) MHD 2

Similar documents
. ev=,604k m 3 Debye ɛ 0 kt e λ D = n e n e Ze 4 ln Λ ν ei = 5.6π / ɛ 0 m/ e kt e /3 ν ei v e H + +e H ev Saha x x = 3/ πme kt g i g e n

A

MHD) MHD MHD 1977 MHD ApJ MHD simulation Abstract/Keywords ADS simulation ApJ MHD simulation 1982

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

ohpr.dvi

Microsoft Word - 11問題表紙(選択).docx

GJG160842_O.QXD

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

Untitled

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

(5) 75 (a) (b) ( 1 ) v ( 1 ) E E 1 v (a) ( 1 ) x E E (b) (a) (b)

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

2015年1月21日CfCAユーザーズミーティング(和田) 非対称電流シートでの 磁気リコネクション XC-Trial, XC-B 和田 智秀1 新田 伸也1 淵田 泰介2 近藤 光志2 1:筑波技術大 2:愛媛大学

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

201711grade1ouyou.pdf


Formation process of regular satellites on the circumplanetary disk Hidetaka Okada Department of Earth Sciences, Undergraduate school of Scie

A

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

Title 混合体モデルに基づく圧縮性流体と移動する固体の熱連成計算手法 Author(s) 鳥生, 大祐 ; 牛島, 省 Citation 土木学会論文集 A2( 応用力学 ) = Journal of Japan Civil Engineers, Ser. A2 (2017), 73 Issue

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

V(x) m e V 0 cos x π x π V(x) = x < π, x > π V 0 (i) x = 0 (V(x) V 0 (1 x 2 /2)) n n d 2 f dξ 2ξ d f 2 dξ + 2n f = 0 H n (ξ) (ii) H

TOP URL 1

素粒子物理学2 素粒子物理学序論B 2010年度講義第2回

E 1/2 3/ () +3/2 +3/ () +1/2 +1/ / E [1] B (3.2) F E 4.1 y x E = (E x,, ) j y 4.1 E int = (, E y, ) j y = (Hall ef

C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

量子力学 問題

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )


H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

抄録/抄録1    (1)V

ms.dvi


ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

中央大学セミナー.ppt

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

Contents 1 Jeans (

m(ẍ + γẋ + ω 0 x) = ee (2.118) e iωt P(ω) = χ(ω)e = ex = e2 E(ω) m ω0 2 ω2 iωγ (2.119) Z N ϵ(ω) ϵ 0 = 1 + Ne2 m j f j ω 2 j ω2 iωγ j (2.120)

DVIOUT-fujin

pdf

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

meiji_resume_1.PDF

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α


,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

1 a b cc b * 1 Helioseismology * * r/r r/r a 1.3 FTD 9 11 Ω B ϕ α B p FTD 2 b Ω * 1 r, θ, ϕ ϕ * 2 *


ohpmain.dvi

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

Z: Q: R: C:

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

宇宙天気予報と磁気流体力学

第10章 アイソパラメトリック要素

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

<4D F736F F D B B BB2D834A836F815B82D082C88C602E646F63>

構造と連続体の力学基礎

KENZOU Karman) x

1 1.1 / Fik Γ= D n x / Newton Γ= µ vx y / Fouie Q = κ T x 1. fx, tdx t x x + dx f t = D f x 1 fx, t = 1 exp x 4πDt 4Dt lim fx, t =δx 3 t + dxfx, t = 1

arxiv: v1(astro-ph.co)

07_Shiota.pptx

QCD 1 QCD GeV 2014 QCD 2015 QCD SU(3) QCD A µ g µν QCD 1

1 Ricci V, V i, W f : V W f f(v ) = Imf W ( ) f : V 1 V k W 1

Microsoft PowerPoint - koidenao10.ppt

スケーリング理論とはなにか? - --尺度を変えて見えること--

2000年度『数学展望 I』講義録

QMII_10.dvi

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

7 π L int = gψ(x)ψ(x)φ(x) + (7.4) [ ] p ψ N = n (7.5) π (π +,π 0,π ) ψ (σ, σ, σ )ψ ( A) σ τ ( L int = gψψφ g N τ ) N π * ) (7.6) π π = (π, π, π ) π ±

note1.dvi

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

gr09.dvi

( )

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

Bethe-Bloch Bethe-Bloch (stopping range) Bethe-Bloch FNAL (Fermi National Accelerator Laboratory) - (SciBooNE ) SciBooNE Bethe-Bloch FNAL - (SciBooNE

30

19 σ = P/A o σ B Maximum tensile strength σ % 0.2% proof stress σ EL Elastic limit Work hardening coefficient failure necking σ PL Proportional

Microsoft PowerPoint - summer_school_for_web_ver2.pptx

keisoku01.dvi

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

0 ϕ ( ) (x) 0 ϕ (+) (x)ϕ d 3 ( ) (y) 0 pd 3 q (2π) 6 a p a qe ipx e iqy 0 2Ep 2Eq d 3 pd 3 q 0 (2π) 6 [a p, a q]e ipx e iqy 0 2Ep 2Eq d 3 pd 3 q (2π)

素粒子物理学2 素粒子物理学序論B 2010年度講義第4回

Microsoft Word - note02.doc

Transcription:

29 MHD B144853 30 2 17 1

(MHD) ( ) MHD 2

1 5 1.1................. 5 1.2 MHD...................... 6 1.3....................... 11 1.4 Sweet-Parkaer............ 13 1.5 Petschek............... 15 1.6............. 16 1.7......................... 17 2 18 2.1.......................... 18 2.2.......................... 19 2.3............... 21 3 25 4 36 4.1............. 36 4.2.......... 38 4.3.......................... 39 5 41 3

1 [1]................... 5 2 [2]................. 5 3 Sweet-Parker [11].......... 13 4 Petschek [13]............. 16 5 [9]................... 17 6................. 22 7 ( )... 22 8 y = tanh(x/a)( a = 2 )....... 23 9 η = 2.0 10 3 ν = 5.0 10 4 25 10 η = 2.0 10 3 ν = 1.0 10 3 26 11 η = 2.0 10 3 ν = 4.0 10 3 27 12 η = 2.0 10 3 0.. 28 13 η = 2.0 10 3 ν = 5.0 10 4 29 14 η = 2.0 10 3 ν = 1.0 10 3 30 15 η = 2.0 10 3 ν = 4.0 10 3 31 16 η = 2.0 10 3 0.. 32 17.................. 34 18......... 34 19......... 34 20 ηj z............... 35 21 A zmax.............. 35 22 η = 2.0 10 3 ν = 5.0 10 4, 1.0 10 3, 4.0 10 3 x = 0 v y y.............. 37 23 ν = 4.0 10 3 E zmax......... 38 4

1 1.1 序論 磁気リコネクションの重要性 磁気リコネクションとは 反平行磁場の系において磁力線がつなぎ変わ る現象であり つなぎ変わる前までに蓄積された磁気エネルギーがプラズ マの運動エネルギーや熱エネルギーに変換されることが知られている 近年 巨大な太陽フレアによる世界規模での電波障害などの脅威が認 識されてきたが その太陽フレアの原因も磁気リコネクションであると考 えられている (図 1) 他にも地球磁気圏と太陽風 (太陽から地球へ向かっ てくるプラズマの流れ) の相互作用の一つである オーロラ爆発の起きる プロセス (図 2) にも磁気リコネクションが関わっている 太陽風のエネル ギーが地球磁気圏の夜側へ集まっていき やがて溜め込まれたエネルギー が短時間で急速にプラズマのエネルギーに変換され 地球方向 その反対 方向へプラズマの塊が飛び出す このプラズマの塊をプラズモイド (磁気 島) といい 一連の物理過程をサブストームという 図 2: オーロラ発生のプロセス [2] 図 1: 太陽フレア発生の瞬間 [1] 上記の例のように磁気リコネクションは天体爆発現象のエネルギー源で あり このメカニズムを明らかにすることでプラズマと磁場が普遍的に存 在している宇宙の天体物理現象の理解につながることが期待される しか し 宇宙プラズマの観測データの磁気リコネクション率と 磁気流体力学 (MHD) 理論を用いたシミュレーション結果のそれが大きく異なっており 未だに高い磁気リコネクション率の原因を解明できていない 本章では 宇宙プラズマの MHD 方程式と磁場の誘導方程式の導出 磁 気リコネクション研究の歴史的背景を述べる 5

1.2 MHD MHD m i m e n i n e ρ mi ρ me V i V e p i p e ρ mi (r, t) [3] ρ mi (r, t) = m i n i (r, t) (1) x y z ( ) ( ) = ( ) { (ni V x ) + (n iv y ) + (n } iv z ) x y z = n i x y z (2) x y z n i (r, t) + {n i (r, t)v i (r, t)} = 0 (3) (1) (3) n e (r, t) + {n e (r, t)v e (r, t)} = 0 (4) (3) (4) (continuity equation) E B n i m i dv i dt n e m e dv e dt = p i + Zen i (E + V i B) R (5) = p e en e (E + V e B) + R (6) R ν ei R = n e m e (V e V i )ν ei (7) 6

[3] dv (r, t) dt = V (r, t) (5) (6) { } Vi n i m i + (V i )V i + {V (r, t) }V (r, t) (8) = p i +Zen i (E + V i B) R (9) { } Ve n e m e + (V e )V e = p e en e (E + V e B) + R (10) ρ m V ρ j (9) + (10) ρ m = n e m e + n i m i (11) V = n em e V e + n i m i V i ρ m (12) ρ = en e + Zen i (13) j = en e V e + Zen i V i (14) ρ m V + n em e (V e )V e + n i m i (V i )V i = (p e + p i ) + ρe + j B (15) A ( ) ( ) = 1836A m e m i 0 (16) ρ m V ( ρ m = n i m i 1 + m ) e Z n i m i (17) m i V = V i + m e m i Z(V e V i ) V i (18) 7

(15) ( ) = ρ m V + n im i { me V ρ m + n im i (V i )V i { } V ρ m + (V )V m i Z(V e )V e + (V i )V i } (19) p = p i + p e (15) { } V ρ m + (V )V = p + ρe + j B (20) [3] (18) (14) V e = V i n e e Zn i e j V j (21) en e en e (10) en e (21) m e m i p e + E + (V j ) B + R = 0 en e en e en e E + V B j B p e + R = 0 (22) en e en e en e (7) R = n e m e (V e V i )ν ei = n e e m eν ei n e e 2 ( en e)(v e V i ) = n e eηj (23) η def = m eν ei n e e 2 (24) (20) j B p e = ρ m dv (r, t) dt 8 + p i (25)

( ρ 0 ) ( ) (22) (25) (22) E + V B = ηj (26) (ohm) [3] B = µ 0 j (27) E = B (28) B = 0 (29) (27) 0 dv ρ m = p + j B + ν { 2 V + 13 } dt ( V ) (30) E + V B = ηj (31) B = µ 0 j (32) E = B (33) B = 0 (34) (41) ν { 2 V + 1 3 ( V )} MHD (34) (32) (33) B = (V B) (ηj) = (V B) η j = (V B) η µ 0 ( B) (35) ( B) = ( B) 2 B (36) (35) B = (V B) + η µ 0 2 B (37) 9

(37) (31) (33) ρ m dv dt = p + 1 µ 0 {( B) B} (38) ( B) B = B( B) ( B)B + (B )B (B )B (39) ρ m dv dt = p + 1 µ 0 {(B )B (B )B} = (p + B2 2µ 0 ) + 1 µ 0 (B )B (40) ρ m dv dt = (p + B2 ) + 1 (B )B 2µ 0 µ 0 + ν { 2 V + 13 } ( V ) (41) B = (V B) + η µ 0 2 B (42) ρ m + (ρ m V ) = 0 (43) B = 0 (44) p + (V ) + γp( V ) = 0 (45) (45) γ [3] 10

1.3 (37) ( ) ( ) = V B η µ 0 ( 2 B) V B/L (B/L 2 )(η/µ 0 ) = µ 0V L η def = R m (46) R m V B L R m ( )τ R τ H R m = τ R τ H = µ 0L 2 /η L/V A (47) V A V ( ) R m 1) R m 1 0 (37) 2) R m 1 0 (37) B = η µ 0 2 B (48) B = (V B) (49) (V B) = V ( B) ( B)V + (B )V (V )B (50) B + B( V ) (B )V = 0 (51) 11

S ϕ B z n ϕ = B n S = B x y (52) S d( x) dt = d(x + x x) dt = V x (x + x) V x (x) = V x x (53) x y ( S) = ( V x x + V y ) S (54) y S ϕ ( ϕ) = (B S) = B ( S) S + B { } B = + B( V ) (B )V S z = 0 (55) R m η 0 ( ) [4] MHD (41) (34) (32) j = B µ 0 L (56) 12

(41) p ρ m V A T = B2 µ 0 L V A L T = B2 µ 0 ρ m VA 2 = B2 µ 0 ρ m B V A = (57) µ0 ρ m B 2 /2µ 0 ρ m ( ) 1.4 Sweet-Parkaer Sweet(1958)[11] Parker(1957)[12] Sweet-Parker +x +z +y x = 0 Sweet-Parker ( 3 ) ±z ( ) ±x ( ) 3: Sweet-Parker [11] x z y B = E (58) 13

{ E = E y z, E z x E } x z, E y x = (0, 0, 0) (59) E y η η = 0 E + V B = ηj (60) (η = 0) E y = v out B z v in B x = const. v in B x + const. = v out B z (61) const. j B ( ) (60) B = µ 0 j (62) E = V B + η µ 0 B (63) j y [5] v in B x η µ 0 B x δ (64) 2δ [5] 2L Lv in = δv out (65) v in v in = η v out µ 0 L (66) 14

v out ( )v A M M = v in v out = M = v in v out (67) η µ 0 1 v A L = S 1/2 η (68) S 10 14, 10 7 Sweet-Parker [5] M (65) M = v in v out = δ L (69) L/δ 1.5 Petschek Sweet-Parker Petschek [13] Sweet-Parker L Sweet-Parker [5] 4 X ( ) v in L = v out δ (70) [8] Sweet-Parker Petschek 15

4: Petschek [13] Kulsrud(2001,2011)[14] Petschek 1.6 Sweet-Parker ( ) [5] Sweet-Parker 5 3 (X ) ( 5) Shibata,Tanuma(2001)[15] ( Bhattacharjee, et al., 2009[16], Samtaney, et al., 2009[17], Shibayama,et al., 2015[18] ) 16

5: [9] 1.7 Minoshima,Miyoshi,Imada(2016)[19] MHD (fully compressible visco-resistive MHD equations) L δ = L (v in ν )( v in ) (71) v out MHD ν Sweet-Parker Petschek MHD 17

2 2.1 MHD V + (V )V = j B + ν 2 V (72) B = (V B ηj) (73) j = B (74) MHD MHD p E m β = p E m (75) (72) 0 ν 2 V V = 0 (76) (72) ( ) (73) (31) (33) (74) (73) (74) B = (V B) + η 2 B (77) R m (72) η η 18

2.2 MHD (72) (73) (74) 4 f(x + k) x = k f(x + k) = f(x) + kf (1) (x) + k2 2! f (2) (x) + k3 3! f (3) (x) + k4 4! f (4) (x) + (78) f(x k) f(x + 2k) f(x 2k) f(x k) = f(x) kf (1) (x) + k2 2! f (2) (x) k3 3! f (3) (x) + k4 4! f (4) (x) + (79) f(x + 2k) = f(x) + 2kf (1) (x) + (2k)2 f (2) (x) 2! + (2k)3 3! f (3) (x) + (2k)4 f (4) (x) + (80) 4! f(x 2k) = f(x) 2kf (1) (x) + (2k)2 f (2) (x) 2! (2k)3 3! f(x + k) f(x k) 2k f(x + 2k) f(x 2k) 4k f (3) (x) + (2k)4 f (4) (x) + (81) 4! = f (1) (x) + k2 3! f (3) (82) = f (1) (x) + 4k2 3! f (3) (83) f (1) (x) = 1 {f(x 2k) 8f(x k) + 8f(x + k) f(x + 2k)} (84) 12k k = 1 f(x k) = u i k u x = u i+1 u i x = u i 2 8u i 1 + 8u i+1 u i+2 12 x (85) 2 u x 2 = u i 2 + 16u i 1 30u i + 16u i+1 u i+2 12 x (86) 19

Runge-Kutta-Gill [10] u n+1 = u n + t {k 1 + (2 2)k 2 + (2 + } 2)k 3 + k 4 6 du = 1 {k 1 + (2 2)k 2 + (2 + } 2)k 3 + k 4 (87) dt 6 k 1 = t g(t n, u n ) (88) k 2 = t g(t n + 1 2, un + 1 2 k 1) (89) k 3 = t g(t n + t 2 1 2 1 2, un k 1 + k 2 ) (90) 2 2 k 4 = t g(t n + t, u n 1 2 + 1 k 2 + k 3 ) (91) 2 2 g(t, u) = du dt t n Runge-Kutta-Gill 1) k 1 = t g(t n, u n ) (92) u 1 = u 0 + k 1 (93) 2 k 2 = t g(t n + t 2, u 1) (94) 3 u 1, k 1, k 2 2) u 2 = u 1 + 2 1 2 (k 2 k 1 ) (95) k 3 = t g(t n + t 2, u 2) (96) q 1 = (2 2)k 2 + ( 2 + 3 )k 1 (97) 2 u 2, q 1, k 3 3) u 3 = u 2 + 2 + 1 2 (k 3 q 1 ) (98) k 4 = t g(t n + t 2, u 3) (99) q 2 = (2 + 2)k 3 + ( 2 3 )q 1 (100) 2 20

u 3, q 2, k 4 4) u 3, q 2, k 4 3 u n+1 ( u 4 ) u 4 = u 3 + k 4 6 q 2 3 (101) (85) 4 u i+1 u i, u i 1, u i+2, u i 2 4 Runge-Kutta-Gill 2.3 6 7 7 2 x-y z 7 x, y x y ( 7 ) A z A z A z = ln{exp(y) + exp( y)} ln{exp(y max ) + exp( y max )} (102) B B x B y 2 z 0 B = A = ( A z y, A z x, B z) = (tanh(y), 0, B z ) (103) B z B z = 1 cosh(y) (104) 0 B z (x, y) = (0, 0) z 21

6: 7: ( ) B z A B V A z 0.1 exp ( x 2 y 2) 6 L x = 50 L y = 10 Sweet-Parker ( ) 22

(x, y) = (0, 0) (68) (69) δ η η L y L y = 50 η = 2.0 10 3 L y B B = (tanh(y), 0, 1 cosh(y) ) (105) B x a y = tanh(x/a) 8: y = tanh(x/a)( a = 2 ) 8 a a = 1 η 4.0 10 3 L x Sweet-Parker L δ δ/l 10 3 5 2L x = 100 x 1000 y 10000 0.01 η 4.0 10 3 23

η = 2.0 10 3 ν = 5.0 10 4, 1.0 10 3, 4.0 10 3 η 0 24

3 x y ( ) ( ) 9 ν = 5.0 10 4 10 ν = 1.0 10 3 11 ν = 4.0 10 3 12 0 η = 2.0 10 3 time=200 9: η = 2.0 10 3 ν = 5.0 10 4 ( ) 25

10: η = 2.0 10 3 ν = 1.0 10 3 ( ) 26

11: η = 2.0 10 3 ν = 4.0 10 3 ( ) 27

12: η = 2.0 10 3 0 ( ) 28

x y ( ) ( ) z Ω z Ω z = ( V ) z = v y x v x y = v j 2 8v j 1 + 8v j+1 v j+2 12 x v i 2 8v i 1 + 8v i+1 v i+2 12 y (106) 13: η = 2.0 10 3 ν = 5.0 10 4 ( ) 29

14: η = 2.0 10 3 ν = 1.0 10 3 ( ) 30

15: η = 2.0 10 3 ν = 4.0 10 3 ( ) 31

16: η = 2.0 10 3 0 ( ) 32

E k E m y = 0 z E zmax y = 0 z A zmax E zmax (74) ηj z = η( B y x B x y ) (107) (31) V B 0( V B ) y = 0 ηj z E zmax A zmax A z = ln{exp(y) + exp( y)} ln{exp(y max ) + exp( y max )} + 0.1 exp ( x 2 y 2) (108) y = 0 A zmax A zmax (103) B x = A z y (109) ψ 17 B x ψ = B x y = Ly A z (L y ) = 0 y A z y dy = A z (L y ) A z (0) (110) A z = ψ (111) 33

面積 ΔS を通過する磁場 B の束 直線 Δy を通過する B! の束 17: ν = 5.0 10!# ν = 1.0 10!" ν = 4.0 10!" 速度常時 0 18: ν = 5.0 10!# ν = 1.0 10!" ν = 4.0 10!" 速度常時 0 19: 34

ν = 5.0 10!# ν = 1.0 10!" ν = 4.0 10!" 速度常時 0 20: ηj z ν = 5.0 10!# ν = 1.0 10!" ν = 4.0 10!" 速度常時 0 21: A zmax 35

4 4.1 9 12 12( 0) 0 time=100 Sweet-Parker time=200 9 11 Sweet- Parker 10 13 16 12( 0) 0 9 11 time=200 9 11 11 time time=100 200 x = 0 v y y ν = 5.0 10 4 ν = 1.0 10 3 ν = 4.0 10 3 (η = 2.0 10 3 ) 22 (x, y) = (0, 0) +y ν = 5.0 10 4 ν = 4.0 10 3 ν = 4.0 10 3 ν = 1.0 10 3 time 36

ν = 5.0 10!# ν = 1.0 10!" ν = 4.0 10!" 22: η = 2.0 10 3 ν = 5.0 10 4, 1.0 10 3, 4.0 10 3 x = 0 v y y (time ) 37

4.2 18 21 E k E m y = 0 z E zmax z A zmax time=200 time=100 200 18 21 0 18 time=150 ν = 4.0 10 3 19 time=100 ν = 4.0 10 3 20 time=170 time=200 ν = 4.0 10 3 ( 23) E!"#$ はじめから存在する電流シート 分割されて生じた電流シート 実際に描かれたグラフ time 23: ν = 4.0 10 3 E zmax ( E z ) 38

21 A zmax (111) A zmax = ψ (112) A zmax 4.3 p η j η j 2 MHD V + (V )V = j B + ν 2 V (113) B = (V B ηj) (114) j = B (115) (113) V { } V V + (V )V = V (j B) + V (ν 2 V ) (116) (v2 ) = V {V ( V )} V + V (j B) 2 ] + ν [ 2 ( v2 2 ) V 2 V 2 + ν[ {( V )V (V )V }] (117) (114) (115) B = (V B) + η 2 B (118) 39

B B B = B { (V B)} + B η 2 B (119) { } (B2 2 ) = B 2 V (B V )B V (j B) + ηj 2 + η (j B) (120) (117) (120) ν = 5.0 10 4, 1.0 10 3, 4.0 10 3 3 ν = 5.0 10 4, 4.0 10 3 ν = 1.0 10 3 4 5 time=200 (20) ν = 5.0 10 4 time=200 time L x 50 100 40

5 MHD 41

[1] NASA s Goddard Space Flight Center/S. Wiessinger [2] GEOTILE (http://www.isas.jaxa. jp/j/forefront/2010/miyashita/02.shtml) [3] (2004) [4] (2001) MHD [5] (2015) [6] PROCEEDINGS OF THE ROYAL SOCIETY A MATHE- MATICAL,PHYSICAL AND ENGINEERING SCIENCES (http://rspa.royalsocietypublishing.org/content/472/ 2196/20160479.figures-only) Figure1 [7] Fast Magnetic Reconnection(https://farside.ph.utexas.edu/ teaching/plasma/lectures1/node78.html)figure 27 [8] (http://www-space. eps.s.u-tokyo.ac.jp/group/yokoyama-lab/thesis/2010ug_ matsui.pdf) [9] K. Shibata and S. Tanuma, Earth Planets Space 53, 473 (2001). [10] K s (Runge-Kutta-Gill method) (http: //kapapa.web.fc2.com/kadai26.htm) [11] P. A. Sweet The Neutral Point Theory of Solar Flares Electromagnetic Phenomena in Cosmical Physics (Cambridge University Press, 1958), Vol. 6, p. 123 [12] E.N.Parker Sweet s mechanism for merging magnetic fields in conducting fluids Journal of geophysical reserch Vol.62, p.509-520 [13] H.E.Petschek Magnetic Field Annihilation NASA Special Publication,p.425, 1964. [14] Kulsrud, Russell M. Intuitive approach to magnetic reconnection Physics of Plasmas, Vol.18, Issue 11, article id:111201 p.6 (2011) 42

[15] Shibata, Kazunari; Tanuma, Syuniti Plasmoid-inducedreconnection and fractal reconnection Earth, Planets and Space, Vol.53, p. 473-482.(2001) [16] A. Bhattacharjee1, Yi-Min Huang1, H. Yang2, and B. Rogers2 Fast reconnection in high-lundquist-number plasmas due to the plasmoid Instability Physics of Plasmas vol.16, 112102 (2009) [17] R. Samtaney, N. F. Loureiro, D. A. Uzdensky, A. A. Schekochihin, and S. C. Cowley Formation of Plasmoid Chains in Magnetic Reconnection Phys. Rev. Lett. vol.103, 105004(2009) [18] Takuya Shibayama, Kanya Kusano, Takahiro Miyoshi, Takashi Nakabou, and Grigory Vekstein Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks Physics of Plasmas vol.22, 100706 (2015); [19] Takashi Minoshima, Takahiro Miyoshi, and Shinsuke Imada Boosting magnetic reconnection by viscosity and thermal conduction Physics of Plasmas vol.23, 072122 (2016) 43

2017 2017 4 4 44