Microsoft PowerPoint - summer_school_for_web_ver2.pptx
|
|
|
- ゆきさ ちゅうか
- 6 years ago
- Views:
Transcription
1 スピン流で観る物理現象 大阪大学大学院理学研究科物理学専攻 新見康洋
2 スピントロニクスとは スピン エレクトロニクス メモリ産業と深くつなが ている メモリ産業と深くつながっている スピン ハードディスクドライブの読み取りヘッド N 電荷 -e スピンの流れ ピ の流れ スピン流 S 巨大磁気抵抗効果 ((GMR)) from M. N. M N Baibich, Baibich A. A Fert, Fert et al., al PRL 1988; G. Binasch, P. Grünberg, et al., PRB
3 スピン流 スピン流 : スピン角運動量の流れ 1. スピン偏極電流 F N F 2. 純スピン流 = Baibich et al., Phys. Rev. Lett. 61, 2472 (1988). スピンと電荷両方の流れ e - : 電荷 : スピン I : スピンアップ電流 e - I c ( = I + I ) 0 I s ( = I -I ) 0 スピンのみの流れ I : スピンダウン電流 強磁性体金属 巨大磁気抵抗効果 = I c ( = I + I ) ) = 0 I s ( = I -I ) 0 スピン軌道相互作用の強い非磁性体 トポロジカル絶縁体 3. スピン波スピン流 I s 磁性絶縁体 Y. Kajiwara et al., Nature 464, 262 (2010). 2
4 スピン流 純スピン流とスピン波スピン流は正味の電荷の流れを伴っていない!!! 1. 低消費電力素子への応用 ( 応用という観点で重要 ) 2. スピン構造に敏感なプローブとして利用 ( 基礎研究 特に複雑なスピン構造をもつ物性の解明に役立つ ) スピン流は 保存量ではない!! 観測するためには 保存量に変換する必要がある 3
5 スピンホール効果 ホール効果 B ローレンツ力 : F = ev F B e - e - e - e - e - e- 金属 ( 非磁性体 ) V 電流 : l C スピンホール効果 純スピン流 : I s I I 0 B = 0 V V H =0!! 金属 ( 非磁性体 ) 電流 : l C スピン軌道相互作用 によってアップスピンとダウンスピンの散乱方向が異なる 4
6 l c ls ls スピンホール効果の電気的検出 正スピンホール効果 逆スピンホール効果 (DSHE) (ISHE) I I S C S 非磁性体中では V H = 0 電圧として観測できる 変換効率 : スピンホール角 α J J S H = C ρ ρ SHE xx 5
7 金属中でのスピンホール効果の観測 逆スピンホール効果の電気的検出スピンポンピング法を用いた手法ピ V SH /I (mω) S. O. Valenzuela and M. Tinkham, Naure 442, 176 (2006). E. Saitoh et al., Appl. Phys. Lett. 88, (2006). 6
8 μ 非局所スピン流注入 μ ε F N N N N I c 強磁性体 μ 非磁性体 λ sf = Dτ sf 2 x 1 2 λ ( μ μ ) = ( μ μ ) λ sf x 7
9 スピン吸収法を用いた逆スピンホール効果の測定 逆スピンホール効果 Py (Ni 81 Fe 19 ) I S スピンホール物質 Y. Niimi et al., Phys. Rev. B 89, (2014). I c Cu V H 8
10 スピン吸収法を用いた正スピンホール効果の測定 正スピンホール効果 Py (Ni 81 Fe 19 ) I S スピンホール物質 Y. Niimi et al., Phys. Rev. B 89, (2014). Cu V H I c 電流端子と電圧端子を入れ替えるだけで 正スピンホール効果の測定も可能 9
11 逆スピンホール効果 CuBi I c Cu 外因性スピンホール効果 (Cu+Bi) Py Py 1 μm H R SHE (mω Ω) Cu 2ΔR SHE Cu 99.5 Bi 0.5 DSHE ISHE Y. Niimi et al., PRL Y. Niimi et al., PRL Y. Niimi et al., PRL V 正スピンホール効果 V (mω) -0.1 T = 10 K CuBi I c Cu Py 1 μm Py H R Py H (Oe) α H CuBi = 24(±9)% Bi ΔR = Δ ISHE R DSHE Onsager の相反定理 10
12 3 つの研究例 超伝導スピンホール効果 スピンホール効果で観るフラストレート磁性ト磁性 強磁性体転移温度近傍でのスピン揺らぎ 11
13 超伝導スピントロニクス e - 電荷 スピン スピン 1 重項状態 スピン流 クーパー対 s 波超伝導体 共存できる? 強磁性体やスピンデバイス 12
14 超伝導スピンホール効果 T. Wakamura, Y. N. et al., Nat. Mater
15 超伝導スピンホール効果 T. Wakamura, Y. N. et al., Nat. Mater Py に流す電流を小さくするだけで 2000 倍に! 14
16 準粒子流 超伝導スピンホール効果のメカニズム ~1~ Cu NbN λ Q 準粒子はλ Q (~1 μm) まで生き残れる λ Q よりも十分距離を離すと 信号が消滅! 準粒子の抵抗は ρ xx からρ qp = ρ xx /f 0 (Δ) = ρ xx (exp(δ/k B T)+1) に増大する 15
17 超伝導スピンホール効果のメカニズム ~2~ 非局所電流と電子温度 電荷不均衡 非局所電流 I と電子温度 T は等価 ジュール熱のエネルギー 電子比熱 T I 2 T 2 16
18 3 つの研究例 超伝導スピンホール効果 スピンホール効果で観るフラストレート磁性ト磁性 強磁性体転移温度近傍でのスピン揺らぎ 17
19 フラストレート系 ( スピングラス ) Cu 100-x Mn x S. Nagata et al., Phys. Rev. B 19, 1633 (1979). FC FC ZFC ZFC Mnの分布がランダム RKKY 相互作用がランダム 強磁性体と反強磁性体とが競合する系 Mn フラストレートした系に純スピン流を注入するとどうなるか? 18
20 Cu 97 Mn 3 のスピンホール効果 R SHE (m mω) T = 10 K ISHE DSHE H (Oe) スピンホール効果は観測されない! スピンホール効果を観測するためには スピンを散乱させる機構が必要 ピだからBiをスピン散乱体として加える! 19
21 CuMnBi の磁化測定 0.28 T g emu/cm m 3 ) M ( Cu 98Mn Bi FC ZFC T (K) Bi を添加しても T g = 10 K で典型的なスピングラス状態を示す g 20
22 Cu 98 Mn 1.5 Bi 0.5 のスピンホール効果 R SHE (mω Ω) Cu 99.5 Bi 0.5 DSHE ISHE R SHE (mω Ω) Cu 98 Mn 1.5 Bi 0.5 DSHE ISHE 0.05 Cu 99.5 Bi 0.5 DSHE ISHE Cu 98 Mn 1.5 Bi 0.5 DSHE ISHE 2ΔR SHE 0 T = 10 K 0 T = 30 K H (Oe) H (Oe) R SHE (mω) Cu 99.5 Bi 0.5 DSHE ISHE Cu 98 Mn 1.5 Bi 0.5 DSHE ISHE 0 T = 20 K H (Oe) CuBi の ΔR SHE は温度に対して一定 一方 CuMnBi の ΔR SHE は温度変化する 21
23 T T* T g ΔR SHE vs T ΔR R SHE (m mω) Cu 99.5 Bi DSHE ISHE Cu 98 Mn 1.5 Bi 0.5 DSHE ISHE T (K) T = 50 Kでは CuBiとCuMnBiに違いはない このことは Bi 不純物による外因性スピンホール効果を意味している T g よりも高い温度 T* から減衰はすでに始まっている!!! 22
24 Mn 濃度依存性 0.08 ΔR R SHE (m mω) Cu 99.5 Bi 0.5 Cu 99Mn 0.5Bi 0.5 Cu 98.5 Mn 1 Bi 0.5 Cu 98 Mn 1.5 Bi T (K) Mn 濃度を減らすと T* も低温側にシフトする スピンホール効果の減衰は 明らかに Mn 不純物の特性に起因している 23
25 スピンホール効果減衰のメカニズム z(τ sk,ν (T T)) G z t 0 = 0.5 t 0 = 1 t 0 = 2 スピン流から電流への変換は Bi 不純物で起こり 変換時 Mnモーメントは揺らいでいる T/T g 高温だと 揺らぎが激しいため 伝導電子とカップルしない T g に近づくにつれて 伝導電子は Mn モーメントの揺らぎを感じて スピンの向きがランダムになる 定性的に実験結果を再現できる r J C r J S r s 24
26 まとめ 純スピン流は スピン角運動量のみの流れ 特に基礎研究には スピン構造を探るプローブスピン構造を探るプローブとして利用できる 超伝導体にスピン流を注入すると 準粒子の抵抗が増大することが要因となり 指数関数的にスピンホール抵抗が増大する フラストレート磁性の典型例であるスピングラスにスピン流を注入すると 伝導電子と局在磁性の揺らぎのために スピンホール抵抗が減衰する 25
スピン流を用いて磁気の揺らぎを高感度に検出することに成功 スピン流を用いた高感度磁気センサへ道 1. 発表者 : 新見康洋 ( 大阪大学大学院理学研究科准教授 研究当時 : 東京大学物性研究所助教 ) 木俣基 ( 東京大学物性研究所助教 ) 大森康智 ( 東京大学新領域創成科学研究科物理学専攻博士課
スピン流を用いて磁気の揺らぎを高感度に検出することに成功 スピン流を用いた高感度磁気センサへ道 1. 発表者 : 新見康洋 ( 大阪大学大学院理学研究科准教授 研究当時 : 東京大学物性研究所助教 ) 木俣基 ( 東京大学物性研究所助教 ) 大森康智 ( 東京大学新領域創成科学研究科物理学専攻博士課程 1 年 ) 顧波 ( 日本原子力研究開発機構先端基礎研究センター研究員 ) Timothy Ziman
スライド 1
研究期間 : 平成 22 年度 絶縁体中のスピン流を用いた 超低電力量子情報伝送 演算機能デバイスの研究開発 安藤和也 東北大学金属材料研究所 総務省戦略的情報通信研究開発推進制度 (SCOPE) 若手 ICT 研究者育成型研究開発 Outline 1. 研究背景と研究開発のターゲット スピントロニクスとスピン流 2. 研究期間内 ( 平成 22 年度 ) の主要研究成果 1. あらゆる物質へ応用可能なスピン注入手法の確立
報道発表資料 2007 年 4 月 12 日 独立行政法人理化学研究所 電流の中の電子スピンの方向を選り分けるスピンホール効果の電気的検出に成功 - 次世代を担うスピントロニクス素子の物質探索が前進 - ポイント 室温でスピン流と電流の間の可逆的な相互変換( スピンホール効果 ) の実現に成功 電流
60 秒でわかるプレスリリース 2007 年 4 月 12 日 独立行政法人理化学研究所 電流の中の電子スピンの方向を選り分けるスピンホール効果の電気的検出に成功 - 次世代を担うスピントロニクス素子の物質探索が前進 - 携帯電話やインターネットが普及した情報化社会は さらに 大容量で高速に情報を処理する素子開発を求めています そのため エレクトロニクス分野では さらに便利な技術革新の必要性が日増しに高まっています
Microsoft PowerPoint _トポロジー理工学_海住2-upload用.pptx
平成 5 年度大学院共通授業 トポロジー理工学特別講義 Ⅱ 44 スピントロニクスの基礎とその応用 本日の講義内容 スピントロニクスとは? スピンの発見 ( 世紀前半 磁性の歴史 ( 世紀前半 世紀後半 電荷 S -ee N スピン 北海道大学電子科学研究所海住英生 4 スピントロニクスの誕生とその基礎と応用 巨大磁気抵抗 (GM 効果 トンネル磁気抵抗 (TM 効果 スピン注入磁化反転 磁壁の電流駆動
スライド 1
STRJ WS: March5, 2010, 特別講演 1 電子情報技術産業協会 (JEITA) 半導体技術ロードマップ専門委員会 (STRJ) ワークショップ 2010 年 3 月 5 日コクヨホール スピン流とスピントロニクス 高梨弘毅 東北大学 金属材料研究所 Research 発表構成 1. イントロダクションスピン流とは何かスピントロニクスとスピン流の関係 2. 歴史的経緯 GMR/TMR
講 座 熱電研究のための第一原理計算入門 第2回 バンド計算から得られる情報 桂 1 はじめに ゆかり 東京大学 が独立にふるまうようになる 結晶構造を定義する際に 前回は 第一原理バンド計算の計算原理に続いて 波 アップスピンの原子 ダウンスピンの原子をそれぞれ指 のように自由な電子が 元素の個性
講 座 熱電研究のための第一原理計算入門 第2回 バンド計算から得られる情報 桂 1 はじめに ゆかり 東京大学 が独立にふるまうようになる 結晶構造を定義する際に 前回は 第一原理バンド計算の計算原理に続いて 波 アップスピンの原子 ダウンスピンの原子をそれぞれ指 のように自由な電子が 元素の個性のない一様な周期的 定することで 強磁性体や反強磁性体など さまざまな ポテンシャルに置かれたときに
銅酸化物高温超伝導体の フェルミ面を二分する性質と 超伝導に対する上純物効果
トポロジー理工学特別講義 Ⅱ 2011 年 2 月 4 日 銅酸化物高温超伝導体の フェルミ面を二分する性質と 超伝導に対する丌純物効果 理学院量子理学専攻博士課程 3 年 黒澤徹 supervisors: 小田先生 伊土先生 アウトライン 走査トンネル顕微鏡 (STM: Scanning Tunneling Microscopy) 角度分解光電子分光 (ARPES: Angle-Resolved
体状態を保持したまま 電気伝導の獲得という電荷が担う性質の劇的な変化が起こる すなわ ち電荷とスピンが分離して振る舞うことを示しています そして このような状況で実現して いる金属が通常とは異なる特異な金属であることが 電気伝導度の温度依存性から明らかにされました もともと電子が持っていた電荷やスピ
4. 発表内容 : 電子は電荷とスピンを持っており 電荷は電気伝導の起源 スピンは磁性の起源になって います 電荷同士の反発力が強い物質中では 結晶の格子点上に二つの電荷が同時に存在する ことができません その結果 結晶の格子点の数と電子の数が等しい場合は 電子が一つずつ各格子点上に止まったモット絶縁体と呼ばれる状態になります ( 図 1) モット絶縁体の多く は 隣接する結晶格子点に存在する電子のスピン同士が逆向きになろうとする相互作用の効果
C-2 NiS A, NSRRC B, SL C, D, E, F A, B, Yen-Fa Liao B, Ku-Ding Tsuei B, C, C, D, D, E, F, A NiS 260 K V 2 O 3 MIT [1] MIT MIT NiS MIT NiS Ni 3 S 2 Ni
M (emu/g) C 2, 8, 9, 10 C-1 Fe 3 O 4 A, SL B, NSRRC C, D, E, F A, B, B, C, Yen-Fa Liao C, Ku-Ding Tsuei C, D, D, E, F, A Fe 3 O 4 120K MIT V 2 O 3 MIT Cu-doped Fe3O4 NCs MIT [1] Fe 3 O 4 MIT Cu V 2 O 3
PowerPoint プレゼンテーション
光が作る周期構造 : 光格子 λ/2 光格子の中を運動する原子 左図のように レーザー光を鏡で反射させると 光の強度が周期的に変化した 定在波 ができます 原子にとっては これは周期的なポテンシャルと感じます これが 光格子 です 固体 : 結晶格子の中を運動する電子 隣の格子へ 格子の中を運動する粒子集団 Quantum Simulation ( ハバードモデル ) J ( トンネル ) 移動粒子間の
C 3 C-1 Ru 2 x Fe x CrSi A A, A, A, A, A Ru 2 x Fe x CrSi 1) 0.3 x 1.8 2) Ru 2 x Fe x CrSi/Pb BTK P Z 3 x = 1.7 Pb BTK P = ) S.Mizutani, S.Ishid
C 3 C-1 Ru 2 x Fe x CrSi A A, A, A, A, A Ru 2 x Fe x CrSi 1).3 x 1.8 2) Ru 2 x Fe x CrSi/Pb BTK P Z 3 x = 1.7 Pb BTK P =.52 1) S.Mizutani, S.Ishida, S.Fujii and S.Asano, Mater. Tran. 47(26)25. 2) M.Hiroi,
氏 名 田 尻 恭 之 学 位 の 種 類 博 学 位 記 番 号 工博甲第240号 学位与の日付 平成18年3月23日 学位与の要件 学位規則第4条第1項該当 学 位 論 文 題 目 La1-x Sr x MnO 3 ナノスケール結晶における新奇な磁気サイズ 士 工学 効果の研究 論 文 審 査
九州工業大学学術機関リポジトリ Title La1-xSrxMnO3ナノスケール結晶における新奇な磁気サイズ効果の研究 Author(s) 田尻, 恭之 Issue Date 2006-06-30 URL http://hdl.handle.net/10228/815 Rights Kyushu Institute of Technology Academic Re 氏 名 田 尻 恭 之 学 位
磁性工学特論 第6回 磁気と電気伝導
磁性工学特論 050526 第 6 回磁気と電気伝導 佐藤勝昭 復習コーナー ( 第 5 回の問題 ) 反磁性体は磁界の変化を妨げるように逆向きの磁化を生じる それではなぜ強い静磁界のもとで反磁性体を浮かせることができるのか 単位質量あたりの反磁性磁化率を χ=-χ d とする 磁化 M が磁界 B の中にある時のポテンシャルエネルギーは E=-M B であるから 力は E の距離微分 F=-MdB/dz
Microsoft PowerPoint - 物構研シンポ
結晶 MgO トンネル障壁の 巨大トンネル磁気抵抗効果 湯浅新治 片山利一 共同研究者およびスポンサー 産総研 福島章雄長浜太郎久保田均 A. A. Tulapurkar 片山利一薬師寺啓安藤功兒 キヤノンアネルバ D. Djayaprawira 恒川孝二前原大樹長嶺佳紀長井基将山形伸二渡辺直樹 大阪大基礎工 鈴木義茂松本利映 A. Deac 東芝 與田グループの方々 新エネルギー 産業技術総合開発機構
配信先 : 東北大学 宮城県政記者会 東北電力記者クラブ科学技術振興機構 文部科学記者会 科学記者会配付日時 : 平成 30 年 5 月 25 日午後 2 時 ( 日本時間 ) 解禁日時 : 平成 30 年 5 月 29 日午前 0 時 ( 日本時間 ) 報道機関各位 平成 30 年 5 月 25
配信先 : 東北大学 宮城県政記者会 東北電力記者クラブ科学技術振興機構 文部科学記者会 科学記者会配付日時 : 平成 30 年 5 月 25 日午後 2 時 ( 日本時間 ) 解禁日時 : 平成 30 年 5 月 29 日午前 0 時 ( 日本時間 ) 報道機関各位 平成 30 年 5 月 25 日 東北大学材料科学高等研究所 (AIMR) 東北大学金属材料研究所科学技術振興機構 (JST) スピン流スイッチの動作原理を発見
共同研究グループ理化学研究所創発物性科学研究センター強相関量子伝導研究チームチームリーダー十倉好紀 ( とくらよしのり ) 基礎科学特別研究員吉見龍太郎 ( よしみりゅうたろう ) 強相関物性研究グループ客員研究員安田憲司 ( やすだけんじ ) ( 米国マサチューセッツ工科大学ポストドクトラルアソシ
PRESS RELEASE 2018 年 12 月 4 日理化学研究所東京大学東北大学科学技術振興機構 マルチフェロイクス材料における電流誘起磁化反転を実現 - 低消費電力エレクトロニクスへの新原理を構築 - 理化学研究所 ( 理研 ) 創発物性科学研究センター強相関量子伝導研究チームの吉見龍太郎基礎科学特別研究員 十倉好紀チームリーダー 安田憲司客員研究員( マサチューセッツ工科大学ポストドクトラルアソシエイト
: (a) ( ) A (b) B ( ) A B 11.: (a) x,y (b) r,θ (c) A (x) V A B (x + dx) ( ) ( 11.(a)) dv dt = 0 (11.6) r= θ =
1 11 11.1 ψ e iα ψ, ψ ψe iα (11.1) *1) L = ψ(x)(γ µ i µ m)ψ(x) ) ( ) ψ e iα(x) ψ(x), ψ(x) ψ(x)e iα(x) (11.3) µ µ + iqa µ (x) (11.4) A µ (x) A µ(x) = A µ (x) + 1 q µα(x) (11.5) 11.1.1 ( ) ( 11.1 ) * 1)
AlGaN/GaN HFETにおける 仮想ゲート型電流コラプスのSPICE回路モデル
AlGaN/GaN HFET 電流コラプスおよびサイドゲート効果に関する研究 徳島大学大学院先端技術科学教育部システム創生工学専攻電気電子創生工学コース大野 敖研究室木尾勇介 1 AlGaN/GaN HFET 研究背景 高絶縁破壊電界 高周波 高出力デバイス 基地局などで実用化 通信機器の発達 スマートフォン タブレットなど LTE LTE エンベロープトラッキング 低消費電力化 電源電圧を信号に応じて変更
共同研究グループ 理化学研究所創発物性科学研究センター 量子情報エレクトロニクス部門 量子ナノ磁性研究チーム 研究員 近藤浩太 ( こんどうこうた ) 客員研究員 福間康裕 ( ふくまやすひろ ) ( 九州工業大学大学院情報工学研究院電子情報工学研究系准教授 ) チームリーダー 大谷義近 ( おおた
PRESS RELEASE 2016 年 7 月 25 日理化学研究所東京大学東北大学金属材料研究所九州工業大学 トポロジカル絶縁体表面で高効率スピン流を生成 - 省電力スピントロニクスデバイス応用に期待 - 要旨理化学研究所 ( 理研 ) 創発物性科学研究センター量子ナノ磁性チームの近藤浩太研究員 福間康裕客員研究員 ( 九州工業大学准教授 ) 大谷義近チームリーダー ( 東京大学物性研究所教授
スライド 1
平成 24 年度大学院共通授業科目トポロジー理工学特別講義 Ⅱ 有機導体における密度波状態 応用物理学専攻トポロジー工学研究室 DC1 上遠野一広 目次 低次元導体, 有機導体の特徴について ゆらぎと次元性の関係と朝永 -Luttinger 液体 (g-gology) 私の研究について 目次 低次元導体, 有機導体の特徴について ゆらぎと次元性の関係と朝永 -Luttinger 液体 (g-gology)
Microsoft Word - note02.doc
年度 物理化学 Ⅱ 講義ノート. 二原子分子の振動. 調和振動子近似 モデル 分子 = 理想的なバネでつながった原子 r : 核間距離, r e : 平衡核間距離, : 変位 ( = r r e ), k f : 力の定数ポテンシャルエネルギー ( ) k V = f (.) 古典運動方程式 [ 振動数 ] 3.3 d kf (.) dt μ : 換算質量 (m, m : 原子, の質量 ) mm
スピンの世界へようこそ!
スピンの世界へようこそ! ~ スピントロニクスのための磁性の基礎からスピントロニクスの今後まで ~ 第 4 部 工博佐藤勝昭国立大学法人東京農工大学名誉教授 独立行政法人科学技術振興機構 (JST) さきがけ 次世代デバイス 研究総括 CONTENTS 1. 10:00-12:00 知っていると得をする磁性の基礎 2. 13:00-13:45 コイルなしに磁気を電気に変える 3. 13:50-14:20
マスコミへの訃報送信における注意事項
電子のスピンが量子液体状態にある特異な金属の発見 結晶中で独立に振る舞う電荷とスピン 1. 発表者 : 大池広志 ( 東京大学大学院工学系研究科物理工学専攻学術支援専門職員 : 研究当時 ) 鈴木悠司 ( 東京大学大学院工学系研究科物理工学専攻修士課程 1 年生 : 研究当時 ) 谷口弘三 ( 埼玉大学大学院理工学研究科物質科学部門准教授 ) 宮川和也 ( 東京大学大学院工学系研究科物理工学専攻助教
LLG-R8.Nisus.pdf
d M d t = γ M H + α M d M d t M γ [ 1/ ( Oe sec) ] α γ γ = gµ B h g g µ B h / π γ g = γ = 1.76 10 [ 7 1/ ( Oe sec) ] α α = λ γ λ λ λ α γ α α H α = γ H ω ω H α α H K K H K / M 1 1 > 0 α 1 M > 0 γ α γ =
有機4-有機分析03回配布用
NMR( 核磁気共鳴 ) の基本原理核スピンと磁気モーメント有機分析化学特論 + 有機化学 4 原子核は正の電荷を持ち その回転 ( スピン ) により磁石としての性質を持つ 外部磁場によって核スピンのエネルギー準位は変わる :Zeeman 分裂 核スピンのエネルギー準位 第 3 回 (2015/04/24) m : 磁気量子数 [+I,, I ] I: スピン量子数 ( 整数 or 半整数 )]
5. 磁性イオン間の相互作用
第 6 回. 量子スピン系の基礎 量子効果 (=/ の場合 ) =/ の つスピンが反強磁性的に相互作用している場合 最低エネルギー状態 H J 古典スピン /> -/> あるいは -/> /> H J J z z 量子スピン ( / / / / ) z z x x y H J J( Resonate することでエネルギーを得する J E=-J/4 y = + ) E=-3J/4 スピンの大きさ 0
マスコミへの訃報送信における注意事項
磁性体が乱れによって量子スピン液体に生まれ変わる 1. 発表者 : 古川哲也 ( 東京理科大学理学部第一部応用物理学科助教 / 東京大学大学院工学系研究科物理工学専攻学術支援専門職員 : 研究当時 ) 宮川和也 ( 東京大学大学院工学系研究科物理工学専攻助教 ) 伊藤哲明 ( 東京理科大学理学部第一部応用物理学科准教授 ) 伊藤美穂 ( 埼玉大学大学院理工学研究科物質科学部門大学院生 : 研究当時
<4D F736F F F696E74202D2088E B691CC8C7691AA F C82512E B8CDD8AB B83685D>
前回の復習 医用生体計測磁気共鳴イメージング :2 回目 数理物質科学研究科電子 物理工学専攻巨瀬勝美 203-7-8 NMRとMRI:( 強い ) 静磁場と高周波 ( 磁場 ) を必要とする NMRとMRIの歴史 :952 年と2003 年にノーベル賞 ( 他に2 回 ) 数学的準備 : フーリエ変換 ( 信号の中に, どのような周波数成分が, どれだけ含まれているか ( スペクトル ) を求める方法
2018/6/12 表面の電子状態 表面に局在する電子状態 表面電子状態表面準位 1. ショックレー状態 ( 準位 ) 2. タム状態 ( 準位 ) 3. 鏡像状態 ( 準位 ) 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテン
表面の電子状態 表面に局在する電子状態 表面電子状態表面準位. ショックレー状態 ( 準位. タム状態 ( 準位 3. 鏡像状態 ( 準位 4. 表面バンドのナローイング 5. 吸着子の状態密度 鏡像力によるポテンシャル 表面からzの位置の電子に働く力とポテンシャル e F z ( z z e V ( z ( Fz dz 4z e V ( z 4z ( z > ( z < のときの電子の運動を考える
物性物理学I_2.pptx
The University of Tokyo, Komaba Graduate School of Arts and Sciences I 凝縮系 固体 をデザインする 銅()面上の鉄原子の 量子珊瑚礁 IBM Almaden 許可を得て掲載 www.almaden.ibm.com/vis/stm/imagesstm5.jpg&imgrefurl=http://www.almaden.ibm.com/vis/
1-x x µ (+) +z µ ( ) Co 2p 3d µ = µ (+) µ ( ) W. Grange et al., PRB 58, 6298 (1998). 1.0 0.5 0.0 2 1 XMCD 0-1 -2-3x10-3 7.1 7.2 7.7 7.8 8.3 8.4 up E down ρ + (E) ρ (E) H, M µ f + f E F f + f f + f X L
量子臨界現象におけるトポロジー
大学院共通授業科目 トポロジー理工学特別講義 量子臨界現象におけるトポロジー 理学研究院物理学部門網塚浩 1. 重い電子状態の現象論と微視的機構. 量子相転移と非フェルミ液体異常 3. 量子臨界異常の観測例 4. 量子相転移とトポロジー 1. 重い電子状態の現象論と微視的機構 弱 局在性 強 s,p 4d 3d 5f 4f 通常 属 ransition Heavy electron metal Valence
トポロジカル絶縁体ヘテロ接合による量子技術の基盤創成 ( 研究代表者 : 川﨑雅司 ) の事業の一環として行われました 共同研究グループ理化学研究所創発物性科学研究センター強相関物理部門強相関物性研究グループ研修生安田憲司 ( やすだけんじ ) ( 東京大学大学院工学系研究科博士課程 2 年 ) 研
PRESS RELEASE 2017 年 12 月 6 日理化学研究所東京大学東北大学金属材料研究所科学技術振興機構 磁壁におけるトポロジカル電流を観測 - 省エネルギースピントロニクスデバイスの基礎原理を実証 - 要旨理化学研究所 ( 理研 ) 創発物性科学研究センター強相関物性研究グループの安田憲司研修生 ( 東京大学大学院工学系研究科博士課程 2 年 ) 十倉好紀グループディレクター ( 同教授
PowerPoint プレゼンテーション
1 2011.9.30 マルチスケールモデリングによる材料科学 研究会 Fe-Ni-S 鋼の粒界脆化機構 の第一原理計算 新日本製鐵 ( 株 ) 先端技術研究所 澤田英明 2 鉄鋼において粒界偏析が係わる事象 割れ スラブ表面割れ耐熱鋼再熱脆化 IF 鋼二次加工脆性 変態制御 Solute drag 効果 ( 粒成長抑制 ) 変態核生成抑制 ( 変態抑制 ) 強度 靭性 焼入れ性 3 粒界偏析に対する当社の取り組み
Microsoft PowerPoint EM2_15.ppt
( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 導体表面の電界強度 () 外部電界があっても導体内部の電界は ( ゼロ ) になる () 導体の電位は一定 () 導体表面は等電位面 (3) 導体表面の電界は導体に垂直 導体表面と平行な成分があると, 導体表面の電子が移動 導体表面の電界は不連続
スピントロニクスにおける新原理「磁気スピンホール効果」の発見
スピントロニクスにおける新原理 磁気スピンホール効果 の発見 - 磁化で制御するスピン流 電流相互変換を確立 - 1. 発表者 : 木俣基 ( 研究当時 : 東京大学物性研究所助教 現 : 東北大学金属材料研究所准教授 ) Hua Chen( 研究当時 : テキサス大学オースティン校博士研究員 現 : コロラド大学 Assistant Professor) 近藤浩太 ( 理化学研究所創発物性科学研究センター研究員
1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)
1 9 v..1 c (216/1/7) Minoru Suzuki 1 1 9.1 9.1.1 T µ 1 (7.18) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1) E E µ = E f(e ) E µ (9.1) µ (9.2) µ 1 e β(e µ) 1 f(e )
トランジスタ回路の解析 ( 直流電源 + 交流電源 ) 交流回路 ( 小 ) 信号 直流回路 ( バイアス計算 ) 動作点 ( 増幅度の計算 ) 直流等価回路 ダイオードモデル (pnp/npn) 交流 ( 小信号 ) 等価回路 T 形等価回路 トランジスタには直流等価回路と交流等価回路がある
トランジスタ回路の解析 ( 直流電源 + 交流電源 ) 交流回路 ( 小 ) 信号 直流回路 ( バイアス計算 ) 動作点 ( 増幅度の計算 ) 直流等価回路 ダイオードモデル (pnp/npn) 交流 ( 小信号 ) 等価回路 T 形等価回路 トランジスタには直流等価回路と交流等価回路がある 2.6 トランジスタの等価回路 2.6.1 トランジスタの直流等価回路 V I I D 1 D 2 α 0
a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i
解説 4 matsuo.mamoru jaea.go.jp 4 eizi imr.tohoku.ac.jp 4 maekawa.sadamichi jaea.go.jp i ii iii i Gd Tb Dy g khz Pt ii iii Keywords vierbein 3 dreibein 4 vielbein torsion JST-ERATO 1 017 1. 1..1 a L = Ψ
素粒子物理学2 素粒子物理学序論B 2010年度講義第4回
素粒子物理学 素粒子物理学序論B 010年度講義第4回 レプトン数の保存 崩壊モード 寿命(sec) n e ν 890 崩壊比 100% Λ π.6 x 10-10 64% π + µ+ νµ.6 x 10-8 100% π + e+ νe 同上 1. x 10-4 Le +1 for νe, elμ +1 for νμ, μlτ +1 for ντ, τレプトン数はそれぞれの香りで独立に保存
Microsoft PowerPoint EM2_15.ppt
( 第 5 回 ) 鹿間信介摂南大学理工学部電気電子工学科 後半部 (4~5 章 ) のまとめ 4. 導体 4.3 誘電体 5. 磁性体 5. 電気抵抗 演習 静電誘導電界とその重ね合わせ 導体内部の電荷 : 外部電界 誘導電界の重ね合わせ電界を感じる () 内部電荷自身が移動することで作り出した電界にも反応 () さらに移動場所を変える (3) 上記 ()~() の繰り返し 最終的に落ち着く状態
Microsoft PowerPoint - qchem3-9
008 年度冬学期 量子化学 Ⅲ 章量子化学の応用 4.4. 相対論的効果 009 年 月 8 日 担当 : 常田貴夫准教授 相対性理論 A. Einstein 特殊相対論 (905 年 ) 相対性原理: ローレンツ変換に対して物理法則の形は不変 光速度不変 : 互いに等速運動する座標系で光速度は常に一定 ミンコフスキーの4 次元空間座標系 ( 等速系のみ ) 一般相対論 (96 年 ) 等価原理
C el = 3 2 Nk B (2.14) c el = 3k B C el = 3 2 Nk B
I [email protected] 217 11 14 4 4.1 2 2.4 C el = 3 2 Nk B (2.14) c el = 3k B 2 3 3.15 C el = 3 2 Nk B 3.15 39 2 1925 (Wolfgang Pauli) (Pauli exclusion principle) T E = p2 2m p T N 4 Pauli Sommerfeld
( 全体 ) 年 1 月 8 日,2017/1/8 戸田昭彦 ( 参考 1G) 温度計の種類 1 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k B T を
( 全体 htt://home.hiroshima-u.ac.j/atoda/thermodnamics/ 9 年 月 8 日,7//8 戸田昭彦 ( 参考 G 温度計の種類 次温度計 : 熱力学温度そのものの測定が可能な温度計 どれも熱エネルギー k T を単位として決められている 9 年 月 日 ( 世界計量記念日 から, 熱力学温度 T/K の定義も熱エネルギー k T/J に基づく. 定積気体温度計
τ-→K-π-π+ν τ崩壊における CP対称性の破れの探索
τ - K - π - π + ν τ 崩壊における CP 対称性の破れの探索 奈良女子大学大学院人間文化研究科 物理科学専攻高エネルギー物理学研究室 近藤麻由 1 目次 はじめに - τ 粒子の概要 - τ - K - π - π + ν τ 崩壊における CP 対称性の破れ 実験装置 事象選別 τ - K - π - π + ν τ 崩壊の不変質量分布 CP 非対称度の解析 - モンテカルロシミュレーションによるテスト
素粒子物理学2 素粒子物理学序論B 2010年度講義第2回
素粒子物理学2 素粒子物理学序論B 2010年度講義第2回 =1.055 10 34 J sec =6.582 10 22 MeV sec c = 197.33 10 15 MeV m = c = c =1 1 m p = c(mev m) 938M ev = 197 10 15 (m) 938 =0.2 10 13 (cm) 1 m p = (MeV sec) 938M ev = 6.58
Microsoft PowerPoint 修論発表_細田.ppt
0.0.0 ( 月 ) 修士論文発表 Carrier trasort modelig i diamods ( ダイヤモンドにおけるキャリヤ輸送モデリング ) 物理電子システム創造専攻岩井研究室 M688 細田倫央 Tokyo Istitute of Techology パワーデバイス基板としてのダイヤモンド Proerty (relative to Si) Si GaAs SiC Ga Diamod
論文の内容の要旨
論文の内容の要旨 2 次元陽電子消滅 2 光子角相関の低温そのまま測定による 絶縁性結晶および Si 中の欠陥の研究 武内伴照 絶縁性結晶に陽電子を入射すると 多くの場合 電子との束縛状態であるポジトロニウム (Ps) を生成する Ps は 電子と正孔の束縛状態である励起子の正孔を陽電子で置き換えたものにあたり いわば励起子の 同位体 である Ps は 陽電子消滅 2 光子角相関 (Angular
研究成果東京工業大学理学院の那須譲治助教と東京大学大学院工学系研究科の求幸年教授は 英国ケンブリッジ大学の Johannes Knolle 研究員 Dmitry Kovrizhin 研究員 ドイツマックスプランク研究所の Roderich Moessner 教授と共同で 絶対零度で量子スピン液体を示
平成 28 年 7 月 1 日 報道機関各位 東京工業大学東京大学 幻の マヨラナ粒子 の創発を磁性絶縁体中で捉える - 電子スピンの分数化が室温まで生じていることを国際共同研究で実証 - 要点 量子スピン液体を示す理論模型を大規模数値計算によって解析 磁気ラマン散乱強度の温度変化を調べた結果 広い温度範囲において幻の マヨラナ粒子 の創発を発見 本研究で得られた計算結果が実験結果と非常に良い一致
スピンの世界へようこそ!
スピンの世界へようこそ! ~ スピントロニクスのための磁性の基礎からスピントロニクスの今後まで ~ 第 2 部 第 3 部 工博佐藤勝昭国立大学法人東京農工大学名誉教授 独立行政法人科学技術振興機構 (JST) さきがけ 次世代デバイス 研究総括 CONTENTS 1. 10:00-12:00 知っていると得をする磁性の基礎 2. 13:00-13:45 コイルなしに磁気を電気に変える 3. 13:50-14:20
Microsoft PowerPoint - siryo7
. 化学反応と溶液 - 遷移状態理論と溶液論 -.. 遷移状態理論 と溶液論 7 年 5 月 5 日 衝突論と遷移状態理論の比較 + 生成物 原子どうしの反応 活性錯体 ( 遷移状態 ) は 3つの並進 つの回転の自由度をもつ (1つの振動モードは分解に相当 ) 3/ [ ( m m) T] 8 IT q q π + π tansqot 3 h h との並進分配関数 [ πmt] 3/ [ ] 3/
QOBU1011_40.pdf
印字データ名 QOBU1 0 1 1 (1165) コメント 研究紹介 片山 作成日時 07.10.04 19:33 図 2 (a )センサー素子の外観 (b )センサー基板 色の濃い部分が Pt 形電極 幅 50μm, 間隔 50μm (c ),(d )単層ナノ チューブ薄膜の SEM 像 (c )Al O 基板上, (d )Pt 電極との境 界 熱 CVD 条件 触媒金属 Fe(0.5nm)/Al(5nm)
Microsoft PowerPoint _量子力学短大.pptx
. エネルギーギャップとrllouゾーン ブリルアン領域,t_8.. 周期ポテンシャル中の電子とエネルギーギャップ 簡単のため 次元に間隔 で原子が並んでいる結晶を考える 右方向に進行している電子の波は 間隔 で規則正しく並んでいる原子が作る格子によって散乱され 左向きに進行する波となる 波長 λ が の時 r の反射条件 式を満たし 両者の波が互いに強め合い 定在波を作る つまり 式 式を満たす波は
Microsoft PowerPoint - 基礎電気理論 07回目 11月30日
基礎電気理論 7 回目 月 30 日 ( 月 ) 時限 次回授業 時間 : 月 30 日 ( 月 )( 本日 )4 時限 場所 : B-3 L,, インピーダンス教科書 58 ページから 64 ページ http://ir.cs.yamanashi.ac.jp/~ysuzuki/kisodenki/ 授業評価アンケート ( 中間期評価 ) NS の授業のコミュニティに以下の項目について記入してください
電気基礎
電気基礎 Ⅰ 1. 電流 電圧 電力 2. オームの法則 直流回路 3. 抵抗の性質 4. キルヒホッフの法則 5. 電力 6. 磁気の性質 7. 電流の磁気作用 8. 鉄の磁化 9. 磁気と電流の間に働く力 10. 電磁誘導作用とインダクタンス 11. 静電気の性質 12. 静電容量とコンデンサ 参考文献 : 新編電気理論 Ⅰ [ 東京電機大学出版局 ] 1. 電流 電圧 電力. 電荷の電気量電荷の持っている電気の量を電荷量といい
Microsoft PowerPoint - meta_tomita.ppt
メタマテリアルの光応答 量子物性科学講座 冨田知志 メタマテリアルとは meta-: higher, beyond Oxford ALD Pendry, Contemporary Phys. (004) メタマテリアル (meta-material): 波長 λ に対して十分小さい要素を組み合わせて 自然界には無い物性を実現した人工物質 ( 材料 ) 通常の物質 :, は構成原子に起因 メタ物質 :
線形弾性体 線形弾性体 応力テンソル とひずみテンソルソル の各成分が線形関係を有する固体. kl 応力テンソル O kl ひずみテンソル
Constitutive equation of elasti solid Hooke s law λδ μ kk Lame s onstant λ μ ( )( ) ( ) linear elasti solid kl kl Copyright is reserved. No part of this doument may be reprodued for profit. 線形弾性体 線形弾性体
Microsoft PowerPoint EM2_3.ppt
( 第 3 回 ) 鹿間信介摂南大学工学部電気電子工学科 4.3 オームの法則 4.4 金属の電気抵抗 4.5 ジュール熱 演習 4.3 オームの法則 E 電池 電圧 V 抵抗 電流 I 可変抵抗 抵抗両端の電圧 V [V] と電流 I [A] には比例関係がある V =I (: 電気抵抗 ; 比例定数 ) 大 電流が流れにくい 抵抗の単位 : オーム [Ω] 1[Ω]=1[V/A] 1V の電圧を加えたときに
SPring-8ワークショップ_リガク伊藤
GI SAXS. X X X X GI-SAXS : Grazing-incidence smallangle X-ray scattering. GI-SAXS GI-SAXS GI-SAXS X X X X X GI-SAXS Q Y : Q Z : Q Y - Q Z CCD Charge-coupled device X X APD Avalanche photo diode - cps 8
<4D F736F F F696E74202D2094BC93B191CC82CC D B322E >
半導体の数理モデル 龍谷大学理工学部数理情報学科 T070059 田中元基 T070117 吉田朱里 指導教授 飯田晋司 目次第 5 章半導体に流れる電流 5-1: ドリフト電流 5-: 拡散電流 5-3: ホール効果第 1 章はじめに第 6 章接合の物理第 章数理モデルとは? 6-1: 接合第 3 章半導体の性質 6-: ショットキー接合とオーミック接触 3-1: 半導体とは第 7 章ダイオードとトランジスタ
[Ver. 0.2] 1 2 3 4 5 6 7 1 1.1 1.2 1.3 1.4 1.5 1 1.1 1 1.2 1. (elasticity) 2. (plasticity) 3. (strength) 4. 5. (toughness) 6. 1 1.2 1. (elasticity) } 1 1.2 2. (plasticity), 1 1.2 3. (strength) a < b F
19年度一次基礎科目計算問題略解
9 年度機械科目 ( 計算問題主体 ) 略解 基礎科目の解析の延長としてわかる範囲でトライしてみたものです Coprigh (c) 7 宮田明則技術士事務所 Coprigh (c) 7 宮田明則技術士事務所 Ⅳ- よってから は許容荷重として は直径をロ - プの断面積 Ⅳ- cr E E E I, から Ⅳ- Ⅳ- : q q q q q q q q q で絶対値が最大 で絶対値が最大モーメントはいずれも中央で最大となる
IntroTIOhtsuki
はじめに 講義資料 : 大槻東巳のホームページ, 講義資料からダウンロードする 今日の授業と資料を基に 1 月 29 日までに A4 用紙 1 枚でレポートを作成 課題はトポロジカル絶縁体とは何か? 提出先 :4-389A トポロジカル絶縁体入門 物理学序論 上智大学物理領域 大槻東巳 2016 年のノーベル物理学賞 サウレス ハルデイン コスタリッツ ½ ¼ ¼ for theoretical discoveries
第 5 章復調回路 古橋武 5.1 組み立て 5.2 理論 ダイオードの特性と復調波形 バイアス回路と復調波形 復調回路 (II) 5.3 倍電圧検波回路 倍電圧検波回路 (I) バイアス回路付き倍電圧検波回路 本稿の Web ページ ht
第 章復調回路 古橋武.1 組み立て.2 理論.2.1 ダイオードの特性と復調波形.2.2 バイアス回路と復調波形.2.3 復調回路 (II).3 倍電圧検波回路.3.1 倍電圧検波回路 (I).3.2 バイアス回路付き倍電圧検波回路 本稿の Web ページ http://mybook-pub-site.sakura.ne.jp/radio_note/index.html 1 C 4 C 4 C 6
高校電磁気学 ~ 電磁誘導編 ~ 問題演習
高校電磁気学 ~ 電磁誘導編 ~ 問題演習 問 1 磁場中を動く導体棒に関する問題 滑車 導体棒の間隔 L m a θ (1) おもりの落下速度が のとき 導体棒 a に生じる誘導起電力の 大きさを求めよ 滑車 導体棒の間隔 L m a θ 導体棒の速度 水平方向の速度 cosθ Δt の時間に回路を貫く磁束の変化 ΔΦ は ΔΦ = ΔS = LcosθΔt ΔΦ ファラデーの法則 V = N より
スライド 1
分子性物質 ー磁性体ー ( 物性研究所 新物質科学研究部門 ) 森初果 磁化率と磁気モーメント * 磁化率 χ M (emu mol - ) M: mol あたりの磁化 常磁性と反磁性の寄与 : 磁場 * 電子の磁気モーメントスピン電子の自転 スピン角運動量 ħs/ħ (s; スピン量子数 /) スピンの磁気モーメント µ s -µ s (s/ µ s -µ ) 上向き 下向きスピン状態の占有数の差に由来
第1章 様々な運動
自己誘導と相互誘導 自己誘導 自己誘導起電力 ( 逆起電力 ) 図のように起電力 V V の電池, 抵抗値 R Ω の抵抗, スイッチS, コイルを直列につないだ回路を考える. コイルに電流が流れると, コイル自身が作る磁場による磁束がコイルを貫く. コイルに流れる電流が変化すると, コイルを貫く磁束も変化するのでコイルにはこの変化を妨げる方向に誘導起電力が生じる. この現象を自己誘導という. 自己誘導による起電力は電流変化を妨げる方向に生じるので逆起電力とも呼ばれる.
カイラル秩序をもつ磁性体のスピンダイナミクス
発表の流れ カイラル秩序をもつ磁性体 LiCuVO4 本研究の目的 一次元モデル 三次元モデル スピン フロップ転移の発現機構 三方向印加磁場に対するスピンの振る舞い LiCuVO4 の豊かな物性 1 スピンフラストレート鎖 Cu 2+ CuO2 chin J 1 =-1.6meV( 強磁性 ) J 2 =3.8meV( 反強磁性 ) LiCuVO4 結晶構造 [1] カイラル秩序 90 低磁場 (
Microsoft PowerPoint - 集積デバイス工学7.ppt
集積デバイス工学 (7 問題 追加課題 下のトランジスタが O する電圧範囲を求めよただし T, T - とする >6 問題 P 型 MOS トランジスタについて 正孔の実効移動度 μ.7[m/ s], ゲート長.[μm], ゲート幅 [μm] しきい値電圧 -., 単位面積あたりの酸化膜容量
