main.dvi

Similar documents
i Version 1.1, (2012/02/22 24),.,..,.,,. R-space,, ( R- space),, Kahler (Kähler C-space)., R-space,., R-space, Hermite,.

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.





24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.


untitled

all.dvi

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

2.1 H f 3, SL(2, Z) Γ k (1) f H (2) γ Γ f k γ = f (3) f Γ \H cusp γ SL(2, Z) f k γ Fourier f k γ = a γ (n)e 2πinz/N n=0 (3) γ SL(2, Z) a γ (0) = 0 f c

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

ver.1 / c /(13)

³ÎΨÏÀ

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

Exercise in Mathematics IIB IIB (Seiji HIRABA) 0.1, =,,,. n R n, B(a; δ) = B δ (a) or U δ (a) = U(a;, δ) δ-. R n,,,, ;,,, ;,,. (S, O),,,,,,,, 1 C I 2

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

all.dvi

tomocci ,. :,,,, Lie,,,, Einstein, Newton. 1 M n C. s, M p. M f, p d ds f = dxµ p ds µ f p, X p = X µ µ p = dxµ ds µ p. µ, X µ.,. p,. T M p.

1 M = (M, g) m Riemann N = (N, h) n Riemann M N C f : M N f df : T M T N M T M f N T N M f 1 T N T M f 1 T N C X, Y Γ(T M) M C T M f 1 T N M Levi-Civi

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

meiji_resume_1.PDF

II (Percolation) ( 3-4 ) 1. [ ],,,,,,,. 2. [ ],.. 3. [ ],. 4. [ ] [ ] G. Grimmett Percolation Springer-Verlag New-York [ ] 3

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

Dynkin Serre Weyl

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

eng10june10.dvi

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ

compact compact Hermann compact Hermite ( - ) Hermann Hermann ( ) compact Hermite Lagrange compact Hermite ( ) a, Σ a {0} a 3 1

i 18 2H 2 + O 2 2H 2 + ( ) 3K

重力方向に基づくコントローラの向き決定方法

SO(2)

/ 2 ( ) ( ) ( ) = R ( ) ( ) 1 1 1/ 3 = 3 2 2/ R :. (topology)


λ n numbering Num(λ) Young numbering T i j T ij Young T (content) cont T (row word) word T µ n S n µ C(µ) 0.2. Young λ, µ n Kostka K µλ K µλ def = #{T

I

等質空間の幾何学入門

July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

Untitled

, CH n. CH n, CP n,,,., CH n,,. RH n ( Cartan )., CH n., RH n CH n,,., RH n, CH n., RH n ( ), CH n ( 1.1 (v), (vi) )., RH n,, CH n,., CH n,. 1.2, CH n

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

III 1 (X, d) d U d X (X, d). 1. (X, d).. (i) d(x, y) d(z, y) d(x, z) (ii) d(x, y) d(z, w) d(x, z) + d(y, w) 2. (X, d). F X.. (1), X F, (2) F 1, F 2 F

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

D 24 D D D

0. I II I II (1) linear type: GL( ), Sp( ), O( ), (2) loop type: loop current Kac-Moody affine, hyperbolic (3) diffeo t

ii 3.,. 4. F. ( ), ,,. 8.,. 1. (75% ) (25% ) =7 24, =7 25, =7 26 (. ). 1.,, ( ). 3.,...,.,.,.,.,. ( ) (1 2 )., ( ), 0., 1., 0,.

量子力学 問題

2 G(k) e ikx = (ik) n x n n! n=0 (k ) ( ) X n = ( i) n n k n G(k) k=0 F (k) ln G(k) = ln e ikx n κ n F (k) = F (k) (ik) n n= n! κ n κ n = ( i) n n k n

数学の基礎訓練I

( ) ( 40 )+( 60 ) Schrödinger 3. (a) (b) (c) yoshioka/education-09.html pdf 1

( ) ( )

201711grade1ouyou.pdf

ADM-Hamiltonian Cheeger-Gromov 3. Penrose

1 4 1 ( ) ( ) ( ) ( ) () 1 4 2

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4


all.dvi

IA September 25, 2017 ( ) I = [a, b], f (x) I = (a 0 = a < a 1 < < a m = b) I ( ) (partition) S (, f (x)) = w (I k ) I k a k a k 1 S (, f (x)) = I k 2

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

(2 X Poisso P (λ ϕ X (t = E[e itx ] = k= itk λk e k! e λ = (e it λ k e λ = e eitλ e λ = e λ(eit 1. k! k= 6.7 X N(, 1 ϕ X (t = e 1 2 t2 : Cauchy ϕ X (t

Mathematical Logic I 12 Contents I Zorn

Note.tex 2008/09/19( )

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

TOP URL 1

untitled

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

waseda2010a-jukaiki1-main.dvi

t χ 2 F Q t χ 2 F 1 2 µ, σ 2 N(µ, σ 2 ) f(x µ, σ 2 ) = 1 ( exp (x ) µ)2 2πσ 2 2σ 2 0, N(0, 1) (100 α) z(α) t χ 2 *1 2.1 t (i)x N(µ, σ 2 ) x µ σ N(0, 1

1 a b = max{a, b}, a b = mi{a, b} a 1 a 2 a a 1 a = max{a 1,... a }, a 1 a = mi{a 1,... a }. A sup A, if A A A A A sup A sup A = + A if A = ± y = arct

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1 1, 2016 D B. 1.1,.,,. (1). (2). (3) Milnor., (1) (2)., (3). 1.2,.,, ( )..,.,,. 1.3, webpage,.,,.

Gmech08.dvi

inkiso.dvi

chap9.dvi

Euler, Yang-Mills Clebsch variable Helicity ( Tosiaki Kori ) School of Sciences and Technology, Waseda Uiversity (i) Yang-Mills 3 A T (T A) Poisson Ha

4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

( ) Loewner SLE 13 February

2 1 1 α = a + bi(a, b R) α (conjugate) α = a bi α (absolute value) α = a 2 + b 2 α (norm) N(α) = a 2 + b 2 = αα = α 2 α (spure) (trace) 1 1. a R aα =

K 2 X = 4 MWG(f), X P 2 F, υ 0 : X P 2 2,, {f λ : X λ P 1 } λ Λ NS(X λ ), (υ 0 ) λ : X λ P 2 ( 1) X 6, f λ K X + F, f ( 1), n, n 1 (cf [10]) X, f : X

(Basic of Proability Theory). (Probability Spacees ad Radom Variables , (Expectatios, Meas) (Weak Law

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

TOP URL 1

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

(Maldacena) ads/cft

TOP URL 1

73

Transcription:

SGC - 70

2, 3 23 ɛ-δ 2.12.8 3 2.92.13 4 2 3 1 2.1 2.102.12 [8][14] [1],[2] [4][7] 2 [4] 1 2009 8

1 1 1.1... 1 1.2... 4 1.3 1... 8 1.4 2... 9 1.5... 12 1.6 1... 16 1.7... 18 1.8... 21 1.9... 23 2 27 2.1 R n... 27 2.2... 35 2.3... 37 2.4... 44 2.5... 52 2.6... 56 2.7... 61 2.8... 66 2.9... 73 2.10... 75 2.11... 77 2.12... 82 2.13... 84 3 86 3.1... 86 3.2 1... 90 3.3... 93 3.4... 98 3.5 1...102 3.6...104

3.7...107 3.8...115 3.9...120 4 125 4.1...125 4.2...133 4.3...139 4.4...143 4.5...146 4.6 1...149 4.7...154 4.8...160 4.9...163 4.10...170 4.11...174 4.12 2...177 4.13...180 5 185 5.1...185 5.2...188 5.3...189 5.4...196 5.5...197 199 200 iii

1 1.1 I R I ( a, b ), ( a, b ], [ a, b ), [ a, b ] ( a<b + ) c : I R 2 R 2 (curve) (plane curve) c : I R 2 C I c : I R 2 C I Ĩ C c : Ĩ R2 c I = c c : I R 2 t I c (t) c (tangent vector) (velocity vector) c(t) =(x(t),y(t)) c (t) =(x (t),y (t)) c (t) = lim h 0 c(t + h) c(t) h c (t) c(t) c (t) c(t) c 1.1 c (t) c(t) c (t) c(t) 1 3 R n v 1.1

2 2.1 R n R n R n 5.2.3 1 x R n r>0 B(x, r) :={ y R n x y <r}, B(x, r) :={ y R n x y r } B(x, r) (open ball) B(x, r) (closed ball) x B(x, r) B(x, r) (center)r B(x, r) B(x, r) (radius) A R n 2.1.1 x R n A (interior point) r>0 B(x, r) A A A A (interior) 1 x R n A (boundary point) r>0 B(x, r) A A c := X \ A 2.1 A A A (boundary) A A A A A A A A A A A A = A A c (A c )= A 2.1.2 A A = A

3 3.1 V n 3.1.1 ω : V R V V (dual (vector) space) V 1 (1-form) (covector) V V ω, ω 1,ω 2 V, a R, v V (ω 1 + ω 2 )(v) :=ω 1 (v)+ω 2 (v), (aω)(v) :=aω(v). R n v R n v v (u) := u, v (u R n ) 1, R n V, v V v (u) := u, v (u V ) v V ω V ω V ω(u) = ω,u (u V ) V e 1,e 2,...,e n ω := n i=1 ω(e i)e i u = n i=1 ui e i V ω(u) = n i=1 ui ω(e i )= ω,u v V (v ) = v V v v V V V V v V v V 3.1.2 V n e 1,e 2,...,e n V e i V (i =1, 2,...,n) v = n i=1 vi e i V

4 4.1 4.1.1 M M p T p M, p M p, p (Riemannian metric) (0, 2) M, p (p M) (Riemannian manifold) M, p, p p, R 3 M 1 2 M B. R n, R n R n T p R n (p R n ) R n, R n R n (Euclidean metric), R n R n M n, M 4.1.2 v T p M v := v, v 1/2 v (length) v, w T p M (v, w o) v, w = v w cos θ θ [0,π] v w (angle) g p (v, w) := v, w (v, w T p M, p M)

5 5.1 X A c := X \ A A X 5.1.1 X A, B (A c ) c = A, (A B) c = A c B c, (A B) c = A c B c. 5.1.2 Λ λ Λ X A λ A λ (λ Λ) {A λ } λ Λ X {A λ } λ Λ A λ := { x X λ Λ x A λ }, λ Λ A λ := { x X λ Λ x A λ } λ Λ 5.1.3 {A λ } λ Λ ( A λ)c = ( A c λ, A λ)c = A c λ. λ Λ λ Λ λ Λ λ Λ 5.1.4 X x Y f(x) 1 (map) f : X Y f X f (domain) Y f (target) R f : X R (function)

[1] 1 [2] I, II 2, 3 [3] 6 [4] [5] [6] [7] 5 [8] I.M. J.A. [9] 5 [10] 11 [11] 2 [12] R. L.W. [13] J. [14] S. Helgason, Differential geometry, Lie groups, and symmetric spaces, Graduate Studies in Mathematics 34, American Mathematical Society.

85 78 190 190 24 27 31, 78 27, 77, 189 78 99, 102, 104 5 198 32, 82 117 117 81 13 21 165 24 125 119 170, 172 84 190 68 64 5, 65 27, 78 27, 78 19, 140 176 191 30, 75 168 23, 39 127 1 18, 143 16 143 4 43 152 5 5 156 134 133 195 20, 141 87, 194 98 194 55 98 194 56, 181 170 191 2, 133 3 192, 193 192 24, 32, 82

134 5, 35 6, 46 39, 42 37 126 35, 39 25, 36, 39 35 134 39, 190 176 163 72 74, 187 72 147 147 30, 75 13 n 24 13 187 68 198 67 190 190 162 121 169 194 163 2 6 64 64 190 42 46 73 20, 141 73 7 1, 7, 46 19, 52 189 192 198 192 191 92 153 194 86 86 16, 150 18, 150 170 1, 48 182 112, 122 1 8 1 8 1 16, 149 2 11 2 11 2 178 153 194 132 130 93 40 128 3, 10 160 191 191 192 179 195 196 191 197 42 201

93 95 94 94 97 195 32 33 79 187 127 127 127 129 187 42 192 119 162, 191 27, 78 194 194 194 27, 78 27, 78 2, 125, 188 128 120 129 194 32 75 181 182 65 2 2 98 9 32 196 37 107 107, 113 43 58 34, 60 67 193, 195 190 39 188 61 191 27 24 13 145 145 18, 145 27, 79 119 79 1 189 10 52 181 87 16, 149 16 84 65 63 12 18, 52 170 179 9 9, 109, 112 111 112 73 22 202

22 196 174 174 32, 33, 170 189 125 188 188 128 90 90 86 4 181 181 55 134 137 8, 125 130 125 129 128 40 162 162 122 64 64 140 81 81 31, 32, 79 129 [, ] 55 = 34 33, 192, 125, 194, R n 125, 188 R R ω 92 c ω 107, 113 D 19, 140, 142 c X c 18, 143 ξ vx 147 1, 125 R n 188 95 99, 102, 104 k (M) () 107 p (V )() 98 1 86 1 90 1 112 Ā 27, 79 A 27, 78 area( ) () 22 B(p, r) () 137 B(x, r) 27 B(x, r) 27 A 27, 78 D 121 i, 6, 47, 48, 53 x i C 45 C 56 C 67 C 127 D, D p exp, exp p 163 d(p, q) () 134 d area 22 Δf 181 δ j i, δ ij 87, 194 det( ) () 191, 193 df 58, 196 dim 39, 190 div X 181 dω 117 ds 2 1 8, 126 d vol 130 e i R n 9, 49, 190 exp, exp p 163 f T, f ω 98 203

Γij k 20, 141 g ij, g 1 8, 126 grad f 56, 181 H 13 Hess f 181 h ij 2 11 I 1 8 II 2 11 K, K σ 13, 160 κ 1, κ 2 13 L(c) () 2, 133 M f N 129 M/Γ 68 P c(t) () 145 p 98 R(u, v)w () 156 R 3 23 R 3 24 Ric 162 RP n 72 Scal 162 sgn(σ) () 191 S n (r), S n () 5, 40, 65 supp 112, 122 t A 195 TM 73 T n 42 T p S 7 T p M 46 Tp M 90 tr( ) () 191, 193 Tt s (V )((s, t) ) 93 vf 18, 52 vol( ) () 132 V 86 204

1963 1991 PD 1994 2000 2005 Metric geometry The Geometry of Total Curvature on Complete Open Surfaces K. Shiohama, M. Tanaka, Cambridge University Press, 2003 Metric Measure GeometryEuropean Mathematical Society, 2016 SGC -70 2016 5 25 ISBN 978 4 7819 9912 8 2009 11 25 TEL.(03)5474 8816 FAX.(03)5474 8817 http://www.saiensu.co.jp sk@saiensu.co.jp C TEL.(03)5474 8500 () 151 0051 1 3 25