di-problem.dvi

Similar documents
Chap10.dvi

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n =, ±, ±, sin + nπ = sin cos + nπ = cos sin = sin : cos = cos :. sin. sin. sin + π si


( ) a, b c a 2 + b 2 = c : 2 2 = p q, p, q 2q 2 = p 2. p 2 p q 2 p, q (QED)

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

sin cos No. sine, cosine : trigonometric function π : π = 3.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

I No. sin cos sine, cosine : trigonometric function π : π =.4 : n = 0, ±, ±, sin + nπ = sin cos + nπ = cos : parity sin = sin : odd cos = cos : even.

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

高等学校学習指導要領

高等学校学習指導要領

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

i

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

2009 I 2 II III 14, 15, α β α β l 0 l l l l γ (1) γ = αβ (2) α β n n cos 2k n n π sin 2k n π k=1 k=1 3. a 0, a 1,..., a n α a


7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a


A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

1009.\1.\4.ai

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

Chap9.dvi

6. Euler x

di-problem.dvi

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

0 = m 2p 1 p = 1/2 p y = 1 m = 1 2 d ( + 1)2 d ( + 1) 2 = d d ( + 1)2 = = 2( + 1) 2 g() 2 f() f() = [g()] 2 = g()g() f f () = [g()g()]


S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

_1203new

ac b 0 r = r a 0 b 0 y 0 cy 0 ac b 0 f(, y) = a + by + cy ac b = 0 1 ac b = 0 z = f(, y) f(, y) 1 a, b, c 0 a 0 f(, y) = a ( ( + b ) ) a y ac b + a y

1007.\1.ai

A B 5 C mm, 89 mm 7/89 = 3.4. π 3 6 π 6 6 = 6 π > 6, π > 3 : π > 3

e a b a b b a a a 1 a a 1 = a 1 a = e G G G : x ( x =, 8, 1 ) x 1,, 60 θ, ϕ ψ θ G G H H G x. n n 1 n 1 n σ = (σ 1, σ,..., σ N ) i σ i i n S n n = 1,,

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

untitled

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

( ) x y f(x, y) = ax

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

II 2 II

1 I p2/30

70 : 20 : A B (20 ) (30 ) 50 1

f : R R f(x, y) = x + y axy f = 0, x + y axy = 0 y 直線 x+y+a=0 に漸近し 原点で交叉する美しい形をしている x +y axy=0 X+Y+a=0 o x t x = at 1 + t, y = at (a > 0) 1 + t f(x, y

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

, 1 ( f n (x))dx d dx ( f n (x)) 1 f n (x)dx d dx f n(x) lim f n (x) = [, 1] x f n (x) = n x x 1 f n (x) = x f n (x) = x 1 x n n f n(x) = [, 1] f n (x

P14・15地域文化祭

IA 2013 : :10722 : 2 : :2 :761 :1 (23-27) : : ( / ) (1 /, ) / e.g. (Taylar ) e x = 1 + x + x xn n! +... sin x = x x3 6 + x5 x2n+1 + (

応力とひずみ.ppt

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ

DVIOUT

高校生の就職への数学II

brother.\..2.ai

di-problem.dvi

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

. sinh x sinh x) = e x e x = ex e x = sinh x 3) y = cosh x, y = sinh x y = e x, y = e x 6 sinhx) coshx) 4 y-axis x-axis : y = cosh x, y = s

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B

untitled

meiji_resume_1.PDF


sekibun.dvi


18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

1 I

all.dvi

C:/KENAR/0p1.dvi

M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

mugensho.dvi

Note.tex 2008/09/19( )

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

Gmech08.dvi

1990 IMO 1990/1/15 1:00-4:00 1 N N N 1, N 1 N 2, N 2 N 3 N 3 2 x x + 52 = 3 x x , A, B, C 3,, A B, C 2,,,, 7, A, B, C

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

i 18 2H 2 + O 2 2H 2 + ( ) 3K

a (a + ), a + a > (a + ), a + 4 a < a 4 a,,, y y = + a y = + a, y = a y = ( + a) ( x) + ( a) x, x y,y a y y y ( + a : a ) ( a : a > ) y = (a + ) y = a

熊本県数学問題正解

1

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

(1) + b = b +, (2) b = b, (3) + 0 =, (4) 1 =, (5) ( + b) + c = + (b + c), (6) ( b) c = (b c), (7) (b + c) = b + c, (8) ( + b)c = c + bc (9

( )

007 0 ue ue b 6666 D


HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】

difgeo1.dvi

chap1.dvi

r III... IV.. grad, div, rot. grad, div, rot 3., B grad, div, rot I, II ɛ-δ web page (

Z: Q: R: C: sin 6 5 ζ a, b

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

sim0004.dvi

Transcription:

III 005/06/6 by. : : : : : : : : : : : : : : : : : : : : :. : : : : : : : : : : : : : : : : : : : : : : : : : : 3 3. : : : : : : : : : : : : : : 4 4. : : : : : : : : : : : : : : : : : : : : : : 5 5. : : : : : : : : : : : : : : : : : : : : : : 6 6. : : : : : : : : : : : : : : : : : 7 7. : : : : : : : : : : : : : : : : : : : : : 8 8. : : : : : : : 9 9. : : : : : : : : : : : : : : : : : : : : 0 0. : : : : : : : : : : :. sin : : : : : : : : : : : : : :. cos : : : : : : : : : : : : : : 3 3. log ( + ) : : : : : : : : : : : 4 4. : : : : : : : : : : : : : 5 5. e : : : : : : : : : : : : : : : : 6 6. : : : : : : : : : : : : : : 7 7. : : : : : : : : : : : : : : 8. (A): (B): (C):

. f () = a y = f () (a; f (a)) y f (a) =f 0 (a)( a) a f 0 (a) y = jj [ ; ] y = a (» a» ) y = jj jj p y = jj y =0 ( ( : ) y = 0 ( : ) (?) ( ) ( ) " " " " " y = p jj =0 y = =3 =0. (A) y = A + B + C (A 6= 0) a; b a + b

. dy d = lim y!!0 (Leibniz:646 76) dy d 50 (Cauchy:789 857) y = f () y dy = df () dy = f 0 () dy ( ) y = d = y = f () dy = f 0 ()d f 0 () dy dy = d dy d d dy dy; d d ; y y y y = f ( + ) f() z = g(y) dz = g 0 (y)dy w = f ()+g(y) dw = f 0 ()d + g 0 (y)dy y = f () y = f () dy = df () =df () y = c (c ) ) dc =(c) 0 d =0d =0 () y = cf () (c ) ) d(cf )=(cf ()) 0 d = cf 0 () d = cdf y! 0 y dy = f( + ) f() f 0 ()d! dy y (3) y = f () +g() ) d(f + g) =(f () +g()) 0 d =(f 0 () +g 0 ()) d = df + dg (4) y = f ()g() ) d(fg)=(f ()g()) 0 d =(f 0 ()g() +f ()g 0 ()) d = gdf + fdg (5) y f = () f f 0 () ) d = d f 0 ()g() f ()g 0 () gdf fdg = d g() g g() g() = g. y = 3 +3 +dy = dy d d =(3 +6 ) d.. (A) y = + 3

3.. 3 y 5 + y 6 + =0 d( 3 y 5 )+d(y 6 )+d() d() = d(0) d( 3 )y 5 + 3 d(y 5 )+6y 5 dy +d 0 d =0d (3 d)y 5 + 3 (5y 4 dy) +6y 5 dy +d =0 (3 y 5 +)d +(5 3 y 4 +6y 5 ) dy =0 dy d = 3 y 5 + 5 3 y 4 +6y 5 :. 3 y 5 + y 6 + =0 3 y 5 + 3 (5y 4 dy dy )+6y5 d d +=0 dy d. a + y = a d+ydy =0: = 0, y = y 0, d = 0, dy = y y 0 0 ( 0 )+y 0 (y y 0 )=0: 0 + y 0 y = 0 + y 0 = a ( 0 ;y 0 ). 0 = a, y 0 = 0 a = a. = a (a; 0) y y 0 = f 0 ( 0 )( 0 ). y = 3p y 3 = 3y dy = d: = 0, y = y 0, d = 0, dy = y y 0 3y 0 (y y 0) = 0: 3y 0 y = 0: 0 =0,y 0 =0 =0 y y 0 = f 0 ( 0 )( 0 ) 3. (C) y = + 3 y = t, y t t = t 0 t =0,t = ± 4

4. s `. ` T T =ß g % s ` T (`) =ß g ` T = T (` + `) T (`): T T (` + `) = = T (`) T (`) r r` + ` = ` + ` ` : ` =0:0` T p T (`) = :0 =:00995 ο 0:0 % dt ß = p d` = g p` T (`)d` ` : d` = ` =0:0` dt =0:0T (`). % 4. (A) r % 5

5. f () = a f (a) = a f () <f(a) ( 6= a) f (a). I f () M () I f ()» M () f ( 0 )=M 0 I M = ma f () I f () I m () m =minf () I. f () = a = a 9 f 0 () < 0 ( <a) >= f 0 (a) =0 f () = a f 0 >; () > 0 ( >a) " " f 0 () > 0 f 0 (a) =0 f 0 () < 0 9 ( <a) >= f () = a ( >; >a). f () = a f 0 (a) =0 f 00 (a) < 0 ) f () = a f 00 (a) > 0 ) f () = a f 00 (a) =0 ) 5. (A) I (0; ), (0; ], [0; ), [0; ] 4 f () = ma f () min f () I I p 6. (A), 3, 4, cosh, jj 6

6. f () I (a; f (a)), (b; f (b)) f () f () I. f () I f 00 () < 0 (f 00 () > 0) I convave ( ) conve ( ).. y = f () C `: y = a + b lim (f () (a + b)) = 0! C!`. f (), f 0 (), f 00 (), f () 7. (A) e ; 3 ; log ; log ; n lim n log =0;!+0 log : log lim!+ n =0 8. (B) f () = 3 ( 3 + )log ( >0) 9. (C) f () = sin cos () f 0 () > 0(0<<ß). (0 <<ß) () lim f () =0, lim f () =.!+0!ß 0 p p 0. (C) F (t) = t + ( t) + ( + t) (t ) + (0» t» ) () t (0; ) F 00 (t )=0F 00 (t) =0 t = t t = t () t (t ; ) F 0 (t ) = 0 F 0 (+0) = lim F 0 (t) = 0 F 0 (t) = 0 t = 0 t!+0 t = t (3) F (0), F () F (t) (0» t» ) 7

7. Rolle. f () [a; b] (a; b) f (a) =f (b) f 0 (c) =0 c (a; b). f () [a; b] (a; b) f 0 f (b) f (a) (c) = c (a; b) b a f (b) f (a). g() = ( a) +f (a) f () b a. f (b) =f (a) +f 0 (c)(b a); a<c<b: f (b) =f (a) +f 0 (( )a + b)(b a); 0 < <: f (a + h) =f (a) +f 0 (a + h)h; b = a + h: f ( + ) =f () +f 0 ( + ) ; 0 < <: c c f(a) = f(b). f () I f () I f 0 () > 0 f 0 () < 0 f 0 () =0 ) f () I ) f () I ) f () k k Cauchy. f (), g() [a; b] (a; b) g 0 () 6= 0 ( (a; b)) f (b) f (a) g(b) g(a) = f 0 (c) g 0 (c) c (a; b). = g(t), y = f (t) (a» t» b) t = a (g(a);f(a)) f (b) f (a) t = b (g(b);f(b)) g(b) g(a). dy fi fi fi f 0 (c) dfi = =c g 0 (c) (g(t);f(t)) (a» t» b) f (b) f (a). F () =f () g() g(b) g(a). (B) p p + () lim! ( + )= lim p p =0k =3; 4; 5;:::! ++ lim (kp + kp )! () sin <( >0) c f(a) = f(b) 8

8. 0 0, de l'h^opital. >a lim 0 f 0 () lim!a+0 g 0 () = ` ) lim f ()!a+0 g() = `: lim f!+ () =!+ lim g() =0 f 0 () lim!+ g 0 () = ` )!+ lim f () g() = `:!a+0 f () = lim g() =!a+0. f 0 (e) g 0 (e) f () f (a) = g() g(a) = f () g() (a <e <):. lim, lim!a 0!,. n e () lim! n =! lim () lim! log n = lim! (3) lim!+0 n log = e = lim nn! = = lim nn lim!+0! log = lim n!+0 e e = = lim n(n )n! n! = : (e ) n n =0: = n (n+) = (log ) lim!+0 n n = (4) lim (sin ) log y =(sin) log!+0 lim log y = lim log(sin ) cos = sin = lim =: lim!+0!+0 log!+0 = y = e.!+0 (5) lim! ß (tan ) sec y = (tan ) sec 4 lim! ß log y = lim! ß 4 4 log(tan ) cos = lim! ß 4. (AοB) sec = tan sin 0 : () lim ( +) log! () lim 0 : (3) lim log (4) lim!+0 : (5) lim! 0 0 : (7) lim!0 = lim! ß 4 lim n!+0 n =0: sin = : lim y! ß = e. 4! ß! arctan ß arctan a (6) lim cos (a 6= 0)! a b (a; b > 0) (8) lim! ß sec sin ß a + a + + n a n (a ;:::;a n > 0) n ß arctan ± : (9) lim (0) lim!!0 0 0 : () lim () lim!+0! 0 : (3) lim!+0 (4) lim! log(tan) : (5) lim!+0 log(tan ) 9 p k p + k (k =; 3;:::) a (6) lim (a; b > )! b 3

9. f 0 (c) = f (b) f (a) b a (a <c<b) f (b) =f (a) +f 0 (c)(b a) (a <c<b) Taylor. f () [a; b] n (a; b) n c (a; b) f (b) =f (a) +f 0 (a)(b a) + f 00 (a)! (b a) f 000 (a) + (b a) 3 f (n ) (a) + + 3! (n (b )! a)n + R n ; R n = f (n) (c) (b a) n n!. n =. R n. g() = f (b)+f()+f 0 ()(b )+ f 00 () (b ) + f 000 () (b ) 3 +! 3! + f (n ) () (n (b )! )n + K(b ) n g(b) =0 g(a) =0 K g() [a; b]. a<c<b c = a + (b a) (0< <) b = f () =f (a) +f 0 (a)( a) + f 00 (a) f () = a a =0 f () =f (0) + f 0 (0) + f 00 (0)!! ( a) f 000 (a) + ( a) 3 f (n ) (a) + + 3! (n ( )! a)n + R n ; R n () = f (n) (a + ( a)) ( a) n (0 < <); n! f 000 (0) + 3 f (n ) (0) + + 3! (n )! n + R n ; R f (n) ( ) n () = n (0 < <); n! f () Maclaurin 3. (A) 0

0. 0 < < (5) ff () e =+! +! + + n (n )! + R n(); R n () = e n! n : () sin = 3 3! + 5 m 5! + +( )m (m )! + R m+(); R m+ () = ( ) m cos( ) m+ : (m +)! (3) cos =! + 4 m + +( )m 4! (m)! + R m+(); R m+ () = ( ) m+ cos( ) m+ : (m +)! (4) log( + ) = + 3 n + +( )n 3 n + R n(); R n () = ( ) n n( + ) n n : ψ! ψ! ψ! ψ! (5) ( + ) ff ff ff =+ + ff + + n ff + R n (); R n () = ( + ) ff n n : n n. ψ! ff ff(ff ) (ff (k )) = ff = n ( ) k k! ψ! n n(n ) (n (k )) = = k k! n! (n k)!k! = nc k R n () = n (5). (5) ff = + = + 3 + 4 + +( ) n n + R n (); R n () =( ) n n : ( + ) n+ (4) = =+ + + 3 + 4 + + n + R n (); R n () = n ( ) n+ :. sin sin cos cos 4. (A) 5. (A) 0 < < () sinh = + 3 3! + 5 n + + 5! (n )! + R n+(); R n+ () = () cosh = + 4 4! + 6 n + + 6! (n )! + R n(); R n () = cosh (n +)! n+ : cosh n : (n)!

. sin sin = 3 3! + 5 7 5! 7! ( ) n n + + + R n+ : (n )! n cos R n+ =( ) (n + )! n+ (0 < <): () = () = 3 3! (3) = 3 3! + 5 5! (4) = 3 3! + 5 7 5! 7! sin () (4) () (4) sin (4).5 y () () (3) sin 0.5-0 -5 0 5 0-0.5 - -.5

. cos cos =! + 4 6 4! 6! + 8 8! ( ) n n + + + R n+ : (n)! R n+ =( ) n+ cos (n +)! n+ (0 < <): () =! () =! + 4 4! (3) =! + 4 6 4! 6! (4) =! + 4 6 4! 6! + 8 8! cos () (4) () (4) cos (4) ().5 y 0.5-0 -5 0 5 0-0.5 cos - (3) () -.5 3

3. log ( + ) log( + ) = + 3 4 3 4 R n = ( )n+ n n( + ) n (0 < <): () = () = (3) = + 3 3 (4) = + 3 4 3 4 ( ) n n + + + R n : n log( + ) () (4) () (4) log( + ) y (3) () log( + ) - 0 3 - - (4) () 4

4. = + + 3 + 4 + + n + R n : R n = () = n ( ) n+ (0 < <): () = + (3) = + + 3 (4) = + + 3 + 4 () (4) () (4) y () ().5 (4) (3) 0.5 - -0.5 0 0.5 5

5. e e =+ +! + 3 3! + 4 n + + 4! (n )! + R n: R n = e n n! (0 < <): () = + () = + +! (3) = + +! + 3 3! (4) = + +! + 3 3! + 4 4! e () (4) () (4) e 4 y () () (4) e -4-0 4 - (3) -4 6

6.. lim f () =0, lim g() =0!+0!+0 f () () lim =0f()=o(g()) (! +0)!+0 g() fi fi fi () >0 0 fi f () fi fi fi g() fi» C ( ) f()=o(g()) (! +0) o O Landau.! 0 = O( )=o() = O( )=o() =o() n = O( n )=o( n ) f () = f (0) + f 0 (0) + f 00 (0) = f (0) + f 0 (0) + f 00 (0) + O( 3 )!! = f (0) + f 0 (0) + O( ) f ( + ) = f () +f 0 () + O(( ) ) (! 0) + + f (n ) (0) (n )! n + O( n ) f () =a 0 + a + a + + a n n + O( n+ ) (! +0) f () n. e 3 O( n+ )=o( n ) e =+ +! + 3 3! + O(4 ) (! 0): 6. (A)! 0 ( ) () + + ( 4 ) () log cos ( 4 ) (3) tan ( 3 ) (4) arctan ( 3 ) (5) a ( ) (6) e sin ( 3 ) 7

7.! 0 sin = 3 sin sin.! 0 3! + O(5 ) = 3! + O(4 ):! (! 0). =+ + O( ); sin = 3 tan = + 3 tan = 3 6 + O(5 ) + O(4 ) 7. (A)! 0 = 6 + O(5 ); cos = 3 + O(5 )(! 0) 3 6 + O(5 ) + = + O( ); sinh = + 3 tanh = 3 + + O(4 ) + O(4 ) 6 + O(5 ); cosh =+ 3 + O(5 )(! 0) = + 3 + O(4 ) 3 + O(5 ):. 0 0 e e sin lim!0 sin 0 0 0 0 8. (AοB) sin cos () lim = () lim!0!0 = sinh!0 log( + a) (4) lim = a (5) lim!0 (7) lim!0 sin 3 = 6 sin!0 (8) lim cos 9. (AοB) sin () lim!0 3 () lim!0 (3) lim!0 sin + e + log( ) (5) lim (6) lim!0 arctan (7) lim e +! p (9) lim 3 +! tan (3) lim =!0 e a = a!0 = (6) lim = (9) lim!0 p + + 8 3 (4) lim!0 log( + ) (8) lim!0 (0) lim! 8 sin cos!0 log( + ) + e e sin sin = p ( + a)( + b) p ( a)( b)