Table. Stage model parameters. Mass of pole part m.4 kg Mass of table part M 22 kg Thrust viscous constant c x 2. 2 N s/m Twist dumping constant of jo

Similar documents
SICE東北支部研究集会資料(2012年)

MEC NC High frequency variation speed control of spindle motor for self-excited chattering vibration suppression in NC Machine tools. Teruaki I

Proposal of Driving Torque Control Method for Electric Vehicle with In-Wheel Motors Masataka Yoshimura (Yokohama National University) Hiroshi Fujimoto

SPC PWM IPM Proposal of Control Method for IPM Motor Based on PWM Hold Model in Overmodulation Range Takayuki Miyajima, Hiroshi Fujimoto (Yokoha

特-3.indd

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

IPSJ SIG Technical Report Vol.2012-CG-148 No /8/29 3DCG 1,a) On rigid body animation taking into account the 3D computer graphics came

A c b c c c ] := A cp b cp c c b cp A c c cp (9) (8) T u { xk ] = Asxk] b suk] yk] = c s xk] 3 () Moving ifference long sampling observer: N uk N] xk]

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

鉄鋼協会プレゼン

EQUIVALENT TRANSFORMATION TECHNIQUE FOR ISLANDING DETECTION METHODS OF SYNCHRONOUS GENERATOR -REACTIVE POWER PERTURBATION METHODS USING AVR OR SVC- Ju

MD ,RM ,VT Aircraft Yaw-rate Suppression Method Using Driving Force Control by Electrically Driven Wheel for One-wheel Landing Tosh

75 unit: mm Fig. Structure of model three-phase stacked transformer cores (a) Alternate-lap joint (b) Step-lap joint 3 4)

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se

28 Horizontal angle correction using straight line detection in an equirectangular image

1 Fig. 1 Extraction of motion,.,,, 4,,, 3., 1, 2. 2.,. CHLAC,. 2.1,. (256 ).,., CHLAC. CHLAC, HLAC. 2.3 (HLAC ) r,.,. HLAC. N. 2 HLAC Fig. 2

IIC Proposal of Range Extension Control System by Drive and Regeneration Distribution Based on Efficiency Characteristic of Motors for Electric

DPA,, ShareLog 3) 4) 2.2 Strino Strino STRain-based user Interface with tacticle of elastic Natural ObjectsStrino 1 Strino ) PC Log-Log (2007 6)

Table 1. Reluctance equalization design. Fig. 2. Voltage vector of LSynRM. Fig. 4. Analytical model. Table 2. Specifications of analytical models. Fig

Study on Throw Accuracy for Baseball Pitching Machine with Roller (Study of Seam of Ball and Roller) Shinobu SAKAI*5, Juhachi ODA, Kengo KAWATA and Yu


TCP/IP IEEE Bluetooth LAN TCP TCP BEC FEC M T M R M T 2. 2 [5] AODV [4]DSR [3] 1 MS 100m 5 /100m 2 MD 2 c 2009 Information Processing Society of

Instability of Aerostatic Journal Bearings with Porous Floating Bush at High Speeds Masaaki MIYATAKE *4, Shigeka YOSHIMOTO, Tomoaki CHIBA and Akira CH

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

IPSJ SIG Technical Report Vol.2016-CE-137 No /12/ e β /α α β β / α A judgment method of difficulty of task for a learner using simple

技術研究報告第26号

untitled

JFE(和文)No.4-12_下版Gのコピー

IHI Robust Path Planning against Position Error for UGVs in Rough Terrain Yuki DOI, Yonghoon JI, Yusuke TAMURA(University of Tokyo), Yuki IKEDA, Atsus

SICE東北支部研究集会資料(2012年)

SICE東北支部研究集会資料(2012年)

JIS Z803: (substitution method) 3 LCR LCR GPIB

The Evaluation on Impact Strength of Structural Elements by Means of Drop Weight Test Elastic Response and Elastic Limit by Hiroshi Maenaka, Member Sh

第62巻 第1号 平成24年4月/石こうを用いた木材ペレット

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L

A Study on Throw Simulation for Baseball Pitching Machine with Rollers and Its Optimization Shinobu SAKAI*5, Yuichiro KITAGAWA, Ryo KANAI and Juhachi

[1.1] r 1 =10e j(ωt+π/4), r 2 =5e j(ωt+π/3), r 3 =3e j(ωt+π/6) ~r = ~r 1 + ~r 2 + ~r 3 = re j(ωt+φ) =(10e π 4 j +5e π 3 j +3e π 6 j )e jωt

1 [ 1] (1) MKS? (2) MKS? [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0 10 ( 1 velocity [/s] 8 4 O

mt_4.dvi

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Fig. 3 Flow diagram of image processing. Black rectangle in the photo indicates the processing area (128 x 32 pixels).

Table 1. Assumed performance of a water electrol ysis plant. Fig. 1. Structure of a proposed power generation system utilizing waste heat from factori

36 581/2 2012

.I.v e pmd

LD

1 1.1 [ 1] velocity [/s] 8 4 (1) MKS? (2) MKS? 1.2 [ 2] (1) (42.195k) k 2 (2) (3) k/hr [ 3] t = 0

XFEL/SPring-8

fj111_109

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

Sobel Canny i

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

IPSJ SIG Technical Report Vol.2014-CG-155 No /6/28 1,a) 1,2,3 1 3,4 CG An Interpolation Method of Different Flow Fields using Polar Inter

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

IPSJ SIG Technical Report Vol.2011-EC-19 No /3/ ,.,., Peg-Scope Viewer,,.,,,,. Utilization of Watching Logs for Support of Multi-

3 1 Table 1 1 Feature classification of frames included in a comic magazine Type A Type B Type C Others 81.5% 10.3% 5.0% 3.2% Fig. 1 A co

橡上野先生訂正2

MDD PBL ET 9) 2) ET ET 2.2 2), 1 2 5) MDD PBL PBL MDD MDD MDD 10) MDD Executable UML 11) Executable UML MDD Executable UML

Studies of Foot Form for Footwear Design (Part 9) : Characteristics of the Foot Form of Young and Elder Women Based on their Sizes of Ball Joint Girth

Optical Lenses CCD Camera Laser Sheet Wind Turbine with med Diffuser Pitot Tube PC Fig.1 Experimental facility. Transparent Diffuser Double Pulsed Nd:

MmUm+FopX m Mm+Mop F-Mm(Fop-Mopum)M m+mop MSuS+FX S M S+MOb Fs-Ms(Mobus-Fex)M s+mob Fig. 1 Particle model of single degree of freedom master/ slave sy

三石貴志.indd

<4D F736F F D DB82CC88F892A38BAD937893C190AB76355F8D5A897B8CE3325F2E646F63>

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055

teionkogaku43_527

a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

1

& Vol.2 No (Mar. 2012) 1,a) , Bluetooth A Health Management Service by Cell Phones and Its Us

食品工学.indb

Estimation of Photovoltaic Module Temperature Rise Motonobu Yukawa, Member, Masahisa Asaoka, Non-member (Mitsubishi Electric Corp.) Keigi Takahara, Me

K02LE indd

IPSJ SIG Technical Report Secret Tap Secret Tap Secret Flick 1 An Examination of Icon-based User Authentication Method Using Flick Input for

( ) [1] [4] ( ) 2. [5] [6] Piano Tutor[7] [1], [2], [8], [9] Radiobaton[10] Two Finger Piano[11] Coloring-in Piano[12] ism[13] MIDI MIDI 1 Fig. 1 Syst

RIBF


( ) 2. ( ) 1. 1, kg CO2 1 2,000 kg 1 CO2 19 % 2,000 2, CO2 (NEDO) (COURSE50) 2008 COURSE50 CO2 CO2 10 % 20 %

2 点吊り物理振子の振動解析: 弾性紐の効果 木ノ内 智貴*1 舟田 敏雄*1 桜井 賢人*1 大庭 勝久*1 青木 悠祐*1 宮内 太積*2 望月 孔二*3 An Analysis of Mode Coupling in Three Modes of Bifilar Suspension Phys

Synthesis and Development of Electric Active Stabilizer Suspension System Shuuichi BUMA*6, Yasuhiro OOKUMA, Akiya TANEDA, Katsumi SUZUKI, Jae-Sung CHO

第 55 回自動制御連合講演会 2012 年 11 月 17 日,18 日京都大学 1K403 ( ) Interpolation for the Gas Source Detection using the Parameter Estimation in a Sensor Network S. T

dsample.dvi

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

Journal of Textile Engineering, Vol.53, No.5, pp

[2] OCR [3], [4] [5] [6] [4], [7] [8], [9] 1 [10] Fig. 1 Current arrangement and size of ruby. 2 Fig. 2 Typography combined with printing

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

A Study of Effective Application of CG Multimedia Contents for Help of Understandings of the Working Principles of the Internal Combustion Engine (The

知能と情報, Vol.30, No.5, pp

.,,, [12].,, [13].,,.,, meal[10]., [11], SNS.,., [14].,,.,,.,,,.,,., Cami-log, , [15], A/D (Powerlab ; ), F- (F-150M, ), ( PC ).,, Chart5(ADIns

2 1) 2) 3) 4) 5) 6) Development of Second Generation Wireless In-Wheel Motor with Dynamic Wireless Power Transfer Hiroshi Fujimoto Takuma Takeuchi Kat

A Higher Weissenberg Number Analysis of Die-swell Flow of Viscoelastic Fluids Using a Decoupled Finite Element Method Iwata, Shuichi * 1/Aragaki, Tsut

1 Web [2] Web [3] [4] [5], [6] [7] [8] S.W. [9] 3. MeetingShelf Web MeetingShelf MeetingShelf (1) (2) (3) (4) (5) Web MeetingShelf

IP IIS Construction of Overhead View Images by Estimating Intrinsic and Extrinsic Camera Parameters of Multiple Fish-Eye Cameras Shota Kas

ばらつき抑制のための確率最適制御

AR. AR AR Lenti- Mark[3] 1 LentiMark AR ARToolKitPlus 1 3 ArraMark ArraMark 5). ID ArraMark 9 1 Lens area Reference points () ArraMark prototpe

Hansen 1 2, Skinner 5, Augustinus 6, Harvey 7 Windle 8 Pels 9 1 Skinner 5 Augustinus 6 Pels 9 NL Harvey ML 11 NL

Manoeuvring Performance of the Fishing Boat Modified by a Bulge by Yasuo Yoshimura, Member Shiro Suzuki Ning Ma, Member Yoshiyuki Kajiwara Summary Fis

A Construction of Hybrid Adaptive Control System Using a Fixed Compensator Shiro MASUDA*, Hiroshi OKAMOTO** and Akira INOUE* In this paper, we propose

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

Study on Application of the cos a Method to Neutron Stress Measurement Toshihiko SASAKI*3 and Yukio HIROSE Department of Materials Science and Enginee

1 4 4 [3] SNS 5 SNS , ,000 [2] c 2013 Information Processing Society of Japan

Transcription:

IIC--7 Precise Positioning Control of High-order Pitching Mode for High-Precision Stage Yushi Seki, Hiroshi Fujimoto (The University of Tokyo), Hideaki Nishino, Kazuaki Saiki (Nikon) Abstract Precision stages are demanded to grow in size for increased production efficiency. But stages are getting larger, its rigidity are decreasing. Then, the pitching of stage causes a problem on the control. Conventional method is using the feedback control of the pitching angle θ 2 between carriage part and table part. But, the pitching angle θ is caused between guide and carriage part. Then, The feedback control using the pitching angle θ θ 2 of the entire stage is proposed. Finally, simulations and experiments are performed to show the advantages of the proposed method. (High-precision stage, MIMO, Feedback Control, Pitching, Tracking Error )., Hz () (2) V oice Coil Motor(VCM) / (AF/LV) (3) 4 2 ( 2) (4) θ 2 (4) θ θ θ θ 2 θ θ 2 2 4 Fig.. Two-mass Four-degree Model. 2. (x ) L f M M 2 O x /6

Table. Stage model parameters. Mass of pole part m.4 kg Mass of table part M 22 kg Thrust viscous constant c x 2. 2 N s/m Twist dumping constant of joint µ θ. kn m s Spring constant k 4.5 2 MN/µm Viscous constant c 3 kn s/µm Twist spring constant of joint k θ 9. kn m/rad Inertia of pole part I m 89 kg m 2 Inertia of table part I M 2.4 3 kg m 2 Distance from C M to joint L.3 m Distance from C m to joint L 2.5 m Distance from C M to X 2 L x2.6 m Distance from C M to F L f. m Distance between air pads L p.5 m Gravity acceleration g 9.8 m/s 2 y z F VCM y T x θ y C z θ C 2 θ θ 2 X 2 2 cos θ i, sin θ i θ i, θi 2 = (i =, 2) x () θ θ 2 (2) (3) F = (M m)ẍ c xẋ m(l L 2) θ ml 2 θ2 () F (L L 2 L f ) T = {I M I m m(l L 2 ) 2 } θ (I m ml 2 2 ml L 2 ) θ 2 m(l L 2 )ẍ {2kl 2 mg(l L 2)}θ mgl 2θ 2 2cl 2 θ(2) F (L 2 L f ) T = (I m ml 2 2 ml L 2) θ (I m ml 2 2) θ 2 µ θ θ2 mgl 2 θ (k θ mgl 2 )θ 2 (3) 2 2 (7) (4) (6) F (s) = (a s 2 b s)x(s) a 2s 2 θ (s) a 3s 2 θ 2(s)(4) F (s)(l L 2 L f ) T = a 2 s 2 X(s) (a 4 s 2 b 3 s c ) θ (s) (a 5 s 2 c 2 )θ 2 (s) (5) F (s)(l 2 L f ) T = a 3 s 2 X(s) (a 5 s 2 c 2 )θ (s) (a 6s 2 b 2s c 3)θ 2(s) (6) a = M m a 2 = m(l L 2) a 3 = ml 2 a 4 = I M I m m(l 2 L 2 2 2L L 2) a 5 = I m ml 2 2 ml L 2 a 6 = I m ml 2 2 b = c x c = 2kl 2 mg(l L 2 ) b 2 = µ θ b 3 = 2cl 2, c 2 = mgl 2 (7) c 3 = k θ mgl 2 (4) (6) (8) (2) (4) D e(s) = {(a a 4 a 2 2)a 6 (a 2a 5 a 3a 4)a 3 a a 2 5 a 2 a 3 a 5 }s 6 {(a a 6 a 2 3)b 3 (a a 4 a 2 2)b 2 (a 4 a 6 a 2 5) b }s 5 {(a a 4 a 2 2)c 3 (a 2 a 3 2a a 5 a 2 a 3 )c 2 (a a 6 a 2 3)c (a b 2 a 6b )b 3 a 4b b 2}s 4 {(a b 3 a 4b )c 3 2a 5b c 2 (a b 2 a 6b )c b b 2b 3}s 3 {(a c b b 3) c 3 a c 2 2 b b 2 c }s 2 (b c c 3 b c 2 2)s (8) X(s) F (s) = [{(a2a6 a3a5)l f a 4a 6 a 2 5}s 4 (a 2b 2L f a 6b 3 a 4b 2)s 3 {(a 2c 3 a 3c 2)L f a 4c 3 2a 5c 2 a 6c b 2b 3}s 2 (b 3c 3 b 2c )s (c 2 2 c c 3)]/D e(s) = F X (9) θ (s) F (s) = [{(aa6 a2 3)L f a 2a 6 a 3a 5}s 3 {(a b 2 a 6 b )L f a 2 b 2 }s 2 {(a c 3 b b 2 )L f a 2c 3 a 3c 2}s b c 3L f ]/D e(s) = F θ () θ 2 (s) F (s) = [{(a 2a 3 a a 5 )L f a 3 a 4 a 2 a 5 }s 3 (a 5 b L f a 3 b 3 )s 2 (a c 2 L f a 2 c 2 a 3 c )s b c 2 L f ]/D e (s) = F θ2 () X(s) T (s) = [{(a2a6 a3a5)l f a 4a 6 a 2 5}s 4 (a 2b 2L f a 6 b 3 a 4 b 2 )s 3 {(a 2 c 3 a 3 c 2 )L f a 4 c 3 2a 5 c 2 a 6 c b 2b 3}s 2 (b 3c 3 b 2c )s (c 2 2 c c 3)]/D e(s) = T X(2) θ (s) T (s) = [{(a a 6 a 2 3)L f a 2 a 6 a 3 a 5 }s 3 {(a b 2 a 6 b )L f a 2 b 2 }s 2 {(a c 3 b b 2 )L f a 2 c 3 a 3 c 2 }s b c 3 L f ]/D e (s) = T θ (3) θ 2 (s) T (s) = [{(a 2a 3 a a 5 )L f a 3 a 4 a 2 a 5 }s 3 (a 5 b L f a 3b 3)s 2 (a c 2L f a 2c 2 a 3c )s b c 2L f ]/D e(s) = T θ2 (4) (5) 2/6

Magnitude [db] 8 2 4 2 Frequency response of plant measured model 2 3 2 X(s) θ (s) θ 2(s) 2 = Fig. 2. F X F θ F θ2 Model fitting. T X T θ T θ2 [ F (s) T (s) ] (5) (5) C 2 L x2 L, L 2 (6) 2 P X P X = {F X T X F θ (L L 2 L x2 ) 3. 3 F θ2 (L 2 L x2)} (6) F VCM T 2 x θ 2 2 2 x θ θ 2 2 2 F F PTC F B 3(a), 3(b) 3 2 4 (7) (8) (7) F X (8) T θ 4 PID C x (s), PD C y(s) (9), (2) C x (s) ω p Hz, C y (s) ω p 8 Hz.3 ms P nx(s) = a xs 2 a x2s (7) Ref Ref PTC - FB Cx PTC FF Force FB Force F FB Torque T - FB Cx Fig. 3. P ny(s) = FB Force F 3 Plant FB C y (a) Conventional FF Force FB Torque T Plant FB C y (b) Proposed Precise positioning control system. X X θ 2 θ θ 2 a ys 2 a y2s (8) C x (s) = b xs 2 b x2 s b x3 (9) s(s c ) C y (s) = a x = 2.9 a x2 = 2. 2 b x = 6ω 2 pa x c b x2 = 4ω 3 pa x c b x3 = ω 4 pa xc c = a x 4ω p a x a x2 bys s c 2 b y2 (2) a y = 2.5 2 a y2 =. a y3 = 4. 2 b y = ω 3 pa y(4c ω p) b y2 = 6ω 2 pa y c b y c 2 = 3 3 (PTC) a y 4ω pa y a y2 5 PTC (5) 2 n p x[k n p] 4. V CM θ 2 θ θ θ 2 θ θ 2 θ θ 2 3/6

Magnitude [db] 5 2 Frequency response of nominal plant 2 Plant model Position [m].2.5..5 Trajectories.5.5 2 2.5.2 2 Velocity [m/s].5..5 3 2.5.5 2 2.5 Magnitude [db] r(t) 5 2 25 2 3 4 (a) P nx Frequency response of nominal plant 2 2 (b) P ny Fig. 4. r[i]=x pd [i] S (T Multilate FFC r ) Fig. 5. 5 Nominal plant fitting. u [i] H M (T u ) P n [z] C[z] y [k] e[k] - Plant model u [k] u[k] u(t) H Plant (T u ) Perfect Tracking Control system. S (T y ) 6 X (θ θ 2) 7(a) X ±.57 nm 7(b) (θ θ 2) ±.55 µrad θ 2 θ (θ θ 2 ) 8(a) X ±.62 nm 8(b) (θ θ 2 ) ±.5 µrad θ 2 θ (θ θ 2 ) 2 x y(t) Vel * [m/s] θ θ 2 (θ θ 2 ) x [nm] 2 Table 2. Fig. 6. 6 Target trajectories. () Tracking error (Simulations). Conv. Prop. Tracking error X ±.57 nm ±.62 nm Tracking error (θ θ 2 ) ±.55 µrad ±.5µrad.2.5..5 Simulation result.5.5 2 2.5 2 Conventional 2.5.5 2 2.5 (a) x Positioning error Conventional.5.5 2 2.5.5.5 2 2.5.5.5 2 2.5 Fig. 7. (b) θ y Positioning error 7 Conventional method..5 nm, θ θ 2 θ θ 2 4/6

Vel * [m/s].2.5..5 Simulation result Proposed.5.5 2 2.5 θ θ 2 (θ θ 2 ) x [nm] 2 2.5.5 2 2.5 time[sec] (a) x Positioning error Proposed.5.5 2 2.5.5.5 2 2.5.5.5 2 2.5 5. 5 (b) θ y Positioning error Fig. 8. 8 Proposed method. 9(a) 2 2 x nm 9(b) VCM 4 z VCM θ 2 AF/LV θ θ 2 (4) VCM AF/LV θ 5 2 VCM AF/LV T θ (2), (22) C x (s) 4 (23), (24) C x (s) ω p Hz, C yc(s) C yp(s) ω ye 8 Hz P nyc (s) = a yc s 2 a yc2 s (2) (a) Overview of Nano-stage 2 (b) Image of the table part 9 2 Fig. 9. Experimental nano stage 2. P nyp (s) = a yp s 2 a yp2 s (22) C yc (s) = b ycs s c 3 b yc2 (23) C yp (s) = b yps b yp2 (24) s c 4 a yc = 2.5 2 a yp = 2.5 2 a yc2 =. a yc3 = 4. 2 b yc = ω 3 yea yc (4c 3 ω ye ) b yc2 = 6ω 2 yea yc c 3 b yc c 3 = a yc 4ω yea yc a yc2 5 3 a yp2 =. a yp3 =.6 2 b yp = ω 3 yea yp (4c 4 ω ye ) b yp2 = 6ω 2 yea yp c 4 b yp c 4 = a yp 4ω yea yp a yp2 6 (b) θ 2 θ θ θ 2 θ θ 2 3 X ± 422 µm (θ θ 2 ) ±39 µrad X ±3 µm (θ θ 2) ±2 µrad x 76% θ y 48% F B θ θ 2 5/6

Magnitude [db] 5 5 2 Frequency response of plant 2 Measurement Vel * [m/s] x [µm].2 Conventional Proposed.2 2 3 4 5 6 7 5 Experimental results Magnitude [db] 5 5 2 3 Fig.. Table 3. 2 (a) P nyc (VCM sensor) Frequency response of plant 2 2 (b) P nyp (AF/LV sensor) Measurement ( ) Nominal plant fitting (Experiments). 3 ( ) Tracking error (Experiments). Conv. Prop. Tracking error X ± 422 µm ± 3 µm Tracking error (θ θ 2 ) ± 39 µrad ± 2 µrad 6. θ 2 FB FB 7. ( 268628) θ θ 2 θ θ 2 5 2 3 4 5 6 7 5 (a) x Positioning error 5 2 3 4 5 6 7 5 5 2 3 4 5 6 7 2 4 2 3 4 5 6 7 Fig.. (b) θ y Positioning error Experimental results. Y. Seki, H. Fujimoto, A. Hara, T. Yamanaka, and K. Saiki, Basic examination of simultaneous optimization of mechanical and control design for gantry-type precision stage modeled as two-mass 4-DOF system, in Proc. The 36rd Annual Conference of the IEEE Industrial Electronics Society, pp. 872-877 (2). 2 S. Wakui, Roles of an Active Anti-Vibration Apparatus in Precision Positioning J. JSPE, vol. 73, no. 4, pp. 45-49, (27). 3 K. Sakata, H. Fujimoto, T. Ohtomo, and K. Saiki, Experimental verification on auto focus and leveling control of scan-stage using driving force and surface shape of the stage in Proc. IEE of Japan Technical Meeting Record, IIC-8-44, (28). 4 K. Sakata, H. Fujimoto, A. Hara, T. Ohtomo, and K. Saiki, Design Fabrication and Control of 4-DOF High- Precision Stage, The th IEEE International Workshop on Advanced Motion Control, pp. 2-24, (2). 5 H. Fujimoto, Y. Hori, and A. Kawamura, Perfect tracking control based on multirate feedforward control with generalized sampling periods, IEEE Trans. Industrial Electronics, vol. 48, no. 3, pp. 636-644 (2). 6/6