情報通信工学2-ocw.dvi

Similar documents
<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

Microsoft PowerPoint - 山形大高野send ppt [互換モード]

1 s(t) ( ) f c : A cos(2πf c t + ϕ) (AM, Amplitude Modulation) (FM, Frequency Modulation) (PM, Phase Modulation) 2

untitled

通信理論

数学演習:微分方程式

1 1 3 ABCD ABD AC BD E E BD 1 : 2 (1) AB = AD =, AB AD = (2) AE = AB + (3) A F AD AE 2 = AF = AB + AD AF AE = t AC = t AE AC FC = t = (4) ABD ABCD 1 1

1

LD

Chap9.dvi

ds2.dvi

HITACHI 液晶プロジェクター CP-AX3505J/CP-AW3005J 取扱説明書 -詳細版- 【技術情報編】

スライド タイトルなし

:010_ :3/24/2005 3:27 PM :05/03/28 14:39

取扱説明書 -詳細版- 液晶プロジェクター CP-AW3019WNJ

SAR: Synthetic Aperture Radar 0.52 Radarsat SAR 2004 ALOS i

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

HITACHI 液晶プロジェクター CP-EX301NJ/CP-EW301NJ 取扱説明書 -詳細版- 【技術情報編】 日本語

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

振動と波動

V s d d 2 d n d n 2 n R 2 n V s q n 2 n Output q 2 q Decoder 2 R 2 2R 2R 2R 2R A R R R 2R A A n A n 2R R f R (a) 0 (b) 7.4 D-A (a) (b) FET n H ON p H

CDMA (high-compaciton multicarrier codedivision multiple access: HC/MC-CDMA),., HC/MC-CDMA,., 32.,, 64. HC/MC-CDMA, HC-MCM, i

64 3 g=9.85 m/s 2 g=9.791 m/s 2 36, km ( ) 1 () 2 () m/s : : a) b) kg/m kg/m k

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

5. [1 ] 1 [], u(x, t) t c u(x, t) x (5.3) ξ x + ct, η x ct (5.4),u(x, t) ξ, η u(ξ, η), ξ t,, ( u(ξ,η) ξ η u(x, t) t ) u(x, t) { ( u(ξ, η) c t ξ ξ { (

laplace.dvi

untitled

5. F(, 0) = = 4 = 4 O = 4 =. ( = = 4 ) = 4 ( 4 ), 0 = 4 4 O 4 = 4. () = 8 () = 4

2009 IA 5 I 22, 23, 24, 25, 26, (1) Arcsin 1 ( 2 (4) Arccos 1 ) 2 3 (2) Arcsin( 1) (3) Arccos 2 (5) Arctan 1 (6) Arctan ( 3 ) 3 2. n (1) ta

OHO.dvi

2000年度『数学展望 I』講義録

Microsoft Word - 学士論文(表紙).doc

sp3.dvi

FR-N9X/X-N9/N7( Co)(SN )

QMI_10.dvi

数値計算:フーリエ変換


,.,. 2, R 2, ( )., I R. c : I R 2, : (1) c C -, (2) t I, c (t) (0, 0). c(i). c (t)., c(t) = (x(t), y(t)) c (t) = (x (t), y (t)) : (1)

(1) (2) (3) (4) HB B ( ) (5) (6) (7) 40 (8) (9) (10)

all.dvi

di-problem.dvi

chap1.dvi

曲面のパラメタ表示と接線ベクトル


(5 B m e i 2π T mt m m B m e i 2π T mt m m B m e i 2π T mt B m (m < 0 C m m (6 (7 (5 g(t C 0 + m C m e i 2π T mt (7 C m e i 2π T mt + m m C m e i 2π T

(interferometer) 1 N *3 2 ω λ k = ω/c = 2π/λ ( ) r E = A 1 e iφ1(r) e iωt + A 2 e iφ2(r) e iωt (1) φ 1 (r), φ 2 (r) r λ 2π 2 I = E 2 = A A 2 2 +

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (


untitled

Microsoft Word - 信号処理3.doc

QMI_10.dvi

QMI_09.dvi

DVIOUT

数学Ⅱ演習(足助・09夏)

QMI_09.dvi

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

Report10.dvi

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

December 28, 2018

ARspec_decomp.dvi

(n ) 1. Ungerboe TCM (trellis oded modulation) 3 [4] (i ) (ii) (iii).1 TV [,3]. MPEG PCM 1/10. 3 (B.B.) 1/ B.B. (i ) AC AMI (ii) ( ) (n ) (iii) NRZ (i

2 (2016 3Q N) c = o (11) Ax = b A x = c A n I n n n 2n (A I n ) (I n X) A A X A n A A A (1) (2) c 0 c (3) c A A i j n 1 ( 1) i+j A (i, j) A (i, j) ã i

高速データ変換

85 4

ohp_06nov_tohoku.dvi

[1] 1.1 x(t) t x(t + n ) = x(t) (n = 1,, 3, ) { x(t) : : 1 [ /, /] 1 x(t) = a + a 1 cos πt + a cos 4πt + + a n cos nπt + + b 1 sin πt + b sin 4πt = a

Gmech08.dvi

1 1.1 [ ]., D R m, f : D R n C -. f p D (df) p : (df) p : R m R n f(p + vt) f(p) : v lim. t 0 t, (df) p., R m {x 1,..., x m }, (df) p (x i ) =

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

1 1.1 ( ). z = a + bi, a, b R 0 a, b 0 a 2 + b 2 0 z = a + bi = ( ) a 2 + b 2 a a 2 + b + b 2 a 2 + b i 2 r = a 2 + b 2 θ cos θ = a a 2 + b 2, sin θ =

MF 型

chap03.dvi

高等学校学習指導要領

高等学校学習指導要領

, x R, f (x),, df dx : R R,, f : R R, f(x) ( ).,, f (a) d f dx (a), f (a) d3 f dx 3 (a),, f (n) (a) dn f dx n (a), f d f dx, f d3 f dx 3,, f (n) dn f

量刑における消極的責任主義の再構成

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

f (x) x y f(x+dx) f(x) Df 関数 接線 x Dx x 1 x x y f f x (1) x x 0 f (x + x) f (x) f (2) f (x + x) f (x) + f = f (x) + f x (3) x f

untitled

clover-375.pdf

000-OFDM前付き.indd

4‐E ) キュリー温度を利用した消磁:熱消磁

鉄筋単体の座屈モデル(HP用).doc

29

untitled

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

6 2 2 x y x y t P P = P t P = I P P P ( ) ( ) ,, ( ) ( ) cos θ sin θ cos θ sin θ, sin θ cos θ sin θ cos θ y x θ x θ P



(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y


untitled

ω 0 m(ẍ + γẋ + ω0x) 2 = ee (2.118) e iωt x = e 1 m ω0 2 E(ω). (2.119) ω2 iωγ Z N P(ω) = χ(ω)e = exzn (2.120) ϵ = ϵ 0 (1 + χ) ϵ(ω) ϵ 0 = 1 +

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

1 7 ω ω ω 7.1 0, ( ) Q, 7.2 ( Q ) 7.1 ω Z = R +jx Z 1/ Z 7.2 ω 7.2 Abs. admittance (x10-3 S) RLC Series Circuit Y R = 20 Ω L = 100

取扱説明書 [F-05E]

Euler Appendix cos, sin 2π t = 0 kx = 0, 2π x = 0 (wavelength)λ kλ = 2π, k = 2π/λ k (wavenumber) x = 0 ωt = 0, 2π t = 0 (period)t T = 2π/ω ω = 2πν (fr

D xy D (x, y) z = f(x, y) f D (2 ) (x, y, z) f R z = 1 x 2 y 2 {(x, y); x 2 +y 2 1} x 2 +y 2 +z 2 = 1 1 z (x, y) R 2 z = x 2 y

Transcription:

4 4.1 (Amplitude Modulation) (VSB: 4.1.1 ( ) (AM) m(t) f c s(t) = (1 + m(t)) c(t) =A c (1 + m(t)) cos(2ßf c t + ffi c ) = <[(1 + m(t)) A c e j2ßfct+ffic ] (4.1) c(t) = A c cos(2ßf c t + ffi c ) = = <[A c e j2ßfct+ffic ] (4.2) 4.1 AM(Amplitude Modulation ) DSB-SC SSB-SC AM (4.1) Modulating Signal m(t) AM Signal (1+m(t))cos2πfct 4.1: AM m(t) M(f) S(f) = A c 2 [M(f + f c)e jffic + ffi(f + f c )e jffic +M(f f c )e jffic + ffi(f f c )e jffic ] (4.3) 17

1: AM m(t) =a cos 2ßf m t f m fi f c s(t) = A c (1 + a cos 2ßf m t)cos(2ßf c t + ffi c ) = A c cos(2ßf c t + ffi c )+ A c 2 cos(2ß(f c f m )t + ffi c )+ A c 2 cos(2ß(f c + f m )t + ffi c ) = < 1+ a 2 e j2ßfmt + a 2 ej2ßfmt A c e j2ßfct+fficλ (4.4) S(f) = A c 2 [e jffic ffi(f + f c )+e jffic ffi(f f c )] + A ca 4 fe jffic [ffi(f + f c + f m )+ffi(f + f c f m )] + e jffic [ffi(f f c + f m )+ffi(f f c f m )]g 4.2: AM (1) 2 AM 4.3: AM (2) 18

4.1.2 (DSB-SC) m(t) s(t) = m(t) c(t) =A c m(t) cos(2ßf c t + ffi c ) = <[m(t) A c e j2ßfct+ffic ] (4.5). 4.4 Modulating Signal m(t) DSB-SC Signal m(t)cos2πfct 4.4: DSB-SC m(t) M(f) s(t) S(f) = M(f) Λ A c 2 [e jffic ffi(f + f c )+e jffic ffi(f f c )] = A c 2 [M(f + f c)e jffic + M(f f c )e jffic ] (4.6) ( )A 1 DSB-SC m(t) =a cos 2ßf m t f m fi f c (4.5) S(f) = A ca 4 f e jffic [ffi(f + f c + f m )+ffi(f + f c f m )] + e jffic [ffi(f f c + f m )+ffi(f f c f m )]g (4.7) 4.5: DSB (1) 19

1 DSB-SC 4.6: DSB (2) 4.1.3 (SSB) s(t) = A c m(t) cos(2ßf c t + ffi c ) A c ^m(t) sin(2ßf c t + ffi c ) = < m(t) ± j ^m(t) A c e j2ßfct+fficλ (4.8) ^m(fi) h(fi) = 1 ßfi (4.9) H(f) = ( j; f>0 0; f =0 +j; f<0 = ( e jß=2 ; f > 0 0; f =0 e +jß=2 ; f < 0 (4.10) ( ß=2 m(t) m(t) 1 ^m(fi) ^M(f) (4.8) S(f) = A c 2 [M(f + f c)e jffic + M(f f c )e jffic ] ^M(f) = M(f)H(f) (4.11) j A c 2 [ ^M(f + f c )e jffic ^M(f f c )e jffic ] (4.12) = A c 2 f[m(f + f c) j ^M(f + f c )]e jffic +[M(f f c ) ± j ^M(f f c )]e jffic g (4.13) ( M(f + fc j ^M(f ); f> f c + f c )= 0; f = f c (4.14) M(f f c ); f< f c ( M(f fc j ^M(f ); f>f c f c )= 0; f = f c (4.15) M(f f c ); f<f c (4.12) f >f c ( f< f c M(f f c ) M(f + f c ) USB(upper side-band: 0 <f<f c ( f c <f<0 M(f f c ) M(f + f c ) LSB(lower side-band: 1 h(fi) H(f) 20

1 SSB-SC m(t) =a cos 2ßf m t f m fi f c ^m(t) =asin 2ßf m t s(t) =A c a cos 2ßf m t cos(2ßf c t + ffi c ) A c a sin 2ßf m t sin(2ßf c t + ffi c ) s U (t) =A c a cos(2ß(f c + f m )t + ffi c ) s L (t) =A c a cos(2ß(f c f m )t + ffi c ) 4.7: SSB(LSB) (1) 2 SSB-SC 4.8: SSB(LSB) (2) 21

4.1.4 AM m(t) A c cos(2ßf c t + ffi c ) ( ( f(x) =ffx + fix 2 s(t) s(t) = f(m(t) +A c cos(2ßf c t + ffi c )) = ffm(t) +ffa c cos(2ßf c t + ffi c ) +fim 2 (t) +2fim(t)A c cos(2ßf c t + ffi c )+fia 2 c cos2 (2ßf c t + ffi c ) = A c ff(1 + 2fi ff m(t)) cos(2ßf ct + ffi c ) ffm(t) +fim 2 (t) +fia 2 c cos2 (2ßf c t + ffi c ) f c AM A c ff(1 + 2fi ff m(t)) cos(2ßf ct + ffi c ) (2fi=ff) 4.9 AM m(t) V f c 1X [V + m(t)]ffi(t m=f c ) (4.16) m= 1 (f c ) AM 4.10 m(t) mt )?JELA @ALE?A fc v fc v(t) v vt 4.9: 4.10: DSB-SC 4.11 DSB-SC AM AM DSB-SC 4.12 SSB SSB 4.13 4.14 DSB-SC 22

m(t) Ac[1+m(t)]cos2 AM 2 modulator fct m(t) v out s(t)=acm(t)cos2 Ac 2 cos2 fct m(t) AM modulator Ac[1 m(t)]cos2 fct 2 fct Square-wave carrier (fc ) 4.11: 4.12: m(t) Accos2 fct Hilbert transform s(t) m(t) Highpass Filter s(t) 90 m(t) Acsin2 fct Accos2 fct 4.13: 4.14: DSB-SC 4.1.5 AM AM 4.15 Capacitor voltage, Carrier envelope Carrier in 4 + L c out t 4.15: 4.16: A c (1 + m(t)) cos(2ßf c t + ffi c ) A 2 c [ 1 2 + m(t) (t) +m2 ][1 + cos(2ß2f c t +2ffi c )] (4.17) 2 m(t) m(t) 2 A c (1 + m(t)) cos(2ßf c t + ffi c ) cos(2ßf c t + ψ) 2 m 2 (t)=2 1 2 (A c(1 + m(t))[cos(ffi c ψ) + cos(2ß2f c t + ffi c + ψ)] (4.18) 23

2f c m(t), ffi c ψ =0ffi c ψ = ß=2 3 DSB-SC A c m(t) cos(2ßf c t + ffi c ) C cos(2ßf c t + ffi c ) C(1 + A c C m(t)) cos(2ßf ct + ffi c ) (4.19) Ac C m(t) A c m(t) cos(2ßf c t + ffi c ) cos(2ßf c t + ψ) 1 2 A cm(t)[cos(ffi c ψ) + cos(2ß2f c t + ffi c + ψ)] (4.20) 2f c m(t), ffi c ψ =0ffi c ψ = ß=2 4 SSB-SC SSB-SC DSB-SC ( ) SSB-SC AM DSB-SC ( ) 3, 1 Ac cos(ffic ψ) 4 2 24

4.2 (PM: Phase Modulation),, (FM: Frequency Modulation) FM FM 4.2.1 s(t) = A c cos(2ßf c t + ffi(t)+ffi c ) (4.21) = < e jffi(t) A c e j2ßfct+fficλ ffi(t) f i (t) = 1 d 2ß = f c + 1 2ß dt (2ßf ct + ffi(t)) dffi(t) dt (4.22) ffi(t) m(t) k p ffi(t) =k p m(t) (4.23) ffi max = k p max[jm(t)j] (4.24) (modulation index) m(t) f i (t) =f c + k p dm(t) 2ß dt (4.25) m(t) f i (t) f c = 1 d 2ß dt ffi(t) =k f m(t) (4.26) k f f max = k f max[jm(t)j] (4.27) m(t) W fi f = f max =W m(t) ffi(t) = 2ßk f Z t 1 m(fi)dfi (4.28) 25

4.2.2 (4.25) m(t) dm(t)=dt (4.28) m(t) m(t) 4.17 4.17: m(t) = cos 2ßf m t max[jm(t)j] =1 ffi max = k p f i (t) =f c k p f m sin! m t (4.29) sin! m t k p f m ( k p ) m(t) = cos 2ßf m t k f =f m ( k f ) ffi(t) = 2ßk f 2ßf m sin 2ßf m t (4.30) sin! m t ( ) k f =f m 26

4.2.3 ffi(t) fi 1 (4.22) s(t) = A c cos(2ßf c t + ffi(t)) = A c cos 2ßf c t cos ffi(t) A c sin 2ßf c t sin ffi(t) ß A c cos 2ßf c t A c ffi(t) sin 2ßf c t (4.31) 5 f c A c DSB A c ffi(t)sin2ßf c t (4.31) AM A c (1 + ffi(t)) cos 2ßf c t reffig:pm-am-vectors 6 sin2πf t c sin2πf t c cos2πf t c cos2πf t c modulating signal component 4.18: m(t) = cos 2ßf m t s(t) = A c cos(2ßf c t + k p m(t)) = A c cos(2ßf c t + k p cos 2ßf m t) = +1X J n () n A c J n (k p ) cos(2ß(f c + nf m )t) (4.32) n= 1 J n (fi) = ß +1X k=0 kn p 2 n n! ( 1) k ( kp 2 )n+2k k!(k + n)! (4.33) k p (4.32) f c f m k p PM 98%, W 7 (Carson 2(k p max[jm(t)j] +1)W (4.34) 5 ffi<<1sin ffi ß 0, cos ffi ß 1 6 AM (ffi(t) fi 1) () PM ( (4.31) 7 m(t) =cos2ßf mt 2(k p +1)f m 27

4.2.4 m(t) m(t) Armstrong sin ct 90 phase shift cos ct Carrier signal source sin ct Adder FM signal mt To remainder of oscillator m(t)= sin mt Blanced modulator m(t)sin ct= sin mt sin ct 4.19: ( ) 4.20: (Armstrong ) 4.2.5 ( ) ( ) (Phase Lock Loop:PLL) Loop Filter ( ) A i cos2 f o t A o cos(2 f o t+ ) Frequency selective network (a) Diode Demodulator A o Intput signal Phase comparator Loop filter / B Output signal A o A i R o Linear Section, slope= d(a o A i ) df VCO (b) f f o 4.22: PLL 4.21: 28