G:/SHIRAFUJI/テキスト類/EM1999/ALL/em99ps.dvi

Similar documents
120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

i

Note.tex 2008/09/19( )

50 2 I SI MKSA r q r q F F = 1 qq 4πε 0 r r 2 r r r r (2.2 ε 0 = 1 c 2 µ 0 c = m/s q 2.1 r q' F r = 0 µ 0 = 4π 10 7 N/A 2 k = 1/(4πε 0 qq

pdf

II 2 II


II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb


128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

II (10 4 ) 1. p (x, y) (a, b) ε(x, y; a, b) 0 f (x, y) f (a, b) A, B (6.5) y = b f (x, b) f (a, b) x a = A + ε(x, b; a, b) x a 2 x a 0 A = f x (

2.4 ( ) ( B ) A B F (1) W = B A F dr. A F q dr f(x,y,z) A B Γ( ) Minoru TANAKA (Osaka Univ.) I(2011), Sec p. 1/30

Quz Quz

Gauss Gauss ɛ 0 E ds = Q (1) xy σ (x, y, z) (2) a ρ(x, y, z) = x 2 + y 2 (r, θ, φ) (1) xy A Gauss ɛ 0 E ds = ɛ 0 EA Q = ρa ɛ 0 EA = ρea E = (ρ/ɛ 0 )e

振動と波動

v er.1/ c /(21)

2 1 x 1.1: v mg x (t) = v(t) mv (t) = mg 0 x(0) = x 0 v(0) = v 0 x(t) = x 0 + v 0 t 1 2 gt2 v(t) = v 0 gt t x = x 0 + v2 0 2g v2 2g 1.1 (x, v) θ


B 38 1 (x, y), (x, y, z) (x 1, x 2 ) (x 1, x 2, x 3 ) 2 : x 2 + y 2 = 1. (parameter) x = cos t, y = sin t. y = f(x) r(t) = (x(t), y(t), z(t)), a t b.

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

untitled

y π π O π x 9 s94.5 y dy dx. y = x + 3 y = x logx + 9 s9.6 z z x, z y. z = xy + y 3 z = sinx y 9 s x dx π x cos xdx 9 s93.8 a, fx = e x ax,. a =

Chap11.dvi

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.



S I. dy fx x fx y fx + C 3 C vt dy fx 4 x, y dy yt gt + Ct + C dt v e kt xt v e kt + C k x v k + C C xt v k 3 r r + dr e kt S Sr πr dt d v } dt k e kt

S I. dy fx x fx y fx + C 3 C dy fx 4 x, y dy v C xt y C v e kt k > xt yt gt [ v dt dt v e kt xt v e kt + C k x v + C C k xt v k 3 r r + dr e kt S dt d

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

) a + b = i + 6 b c = 6i j ) a = 0 b = c = 0 ) â = i + j 0 ˆb = 4) a b = b c = j + ) cos α = cos β = 6) a ˆb = b ĉ = 0 7) a b = 6i j b c = i + 6j + 8)

(3) (2),,. ( 20) ( s200103) 0.7 x C,, x 2 + y 2 + ax = 0 a.. D,. D, y C, C (x, y) (y 0) C m. (2) D y = y(x) (x ± y 0), (x, y) D, m, m = 1., D. (x 2 y

i

I ( ) 2019

B ver B

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

x = a 1 f (a r, a + r) f(a) r a f f(a) 2 2. (a, b) 2 f (a, b) r f(a, b) r (a, b) f f(a, b)

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

I 1

meiji_resume_1.PDF

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

2011de.dvi

..3. Ω, Ω F, P Ω, F, P ). ) F a) A, A,..., A i,... F A i F. b) A F A c F c) Ω F. ) A F A P A),. a) 0 P A) b) P Ω) c) [ ] A, A,..., A i,... F i j A i A

I A A441 : April 21, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka ) Google

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B


M3 x y f(x, y) (= x) (= y) x + y f(x, y) = x + y + *. f(x, y) π y f(x, y) x f(x + x, y) f(x, y) lim x x () f(x,y) x 3 -

A = A x x + A y y + A, B = B x x + B y y + B, C = C x x + C y y + C..6 x y A B C = A x x + A y y + A B x B y B C x C y C { B = A x x + A y y + A y B B

) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

. p.1/14

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

The Physics of Atmospheres CAPTER :

I ( ) 1 de Broglie 1 (de Broglie) p λ k h Planck ( Js) p = h λ = k (1) h 2π : Dirac k B Boltzmann ( J/K) T U = 3 2 k BT

x (x, ) x y (, y) iy x y z = x + iy (x, y) (r, θ) r = x + y, θ = tan ( y ), π < θ π x r = z, θ = arg z z = x + iy = r cos θ + ir sin θ = r(cos θ + i s

2.5 (Gauss) (flux) v(r)( ) S n S v n v n (1) v n S = v n S = v S, n S S. n n S v S v Minoru TANAKA (Osaka Univ.) I(2012), Sec p. 1/30

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

i 18 2H 2 + O 2 2H 2 + ( ) 3K

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

: 2005 ( ρ t +dv j =0 r m m r = e E( r +e r B( r T 208 T = d E j 207 ρ t = = = e t δ( r r (t e r r δ( r r (t e r ( r δ( r r (t dv j =

III No (i) (ii) (iii) (iv) (v) (vi) x 2 3xy + 2 lim. (x,y) (1,0) x 2 + y 2 lim (x,y) (0,0) lim (x,y) (0,0) lim (x,y) (0,0) 5x 2 y x 2 + y 2. xy x2 + y

Gmech08.dvi


t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

46 4 E E E E E 0 0 E E = E E E = ) E =0 2) φ = 3) ρ =0 1) 0 2) E φ E = grad φ E =0 P P φ = E ds 0

mugensho.dvi

I y = f(x) a I a x I x = a + x 1 f(x) f(a) x a = f(a + x) f(a) x (11.1) x a x 0 f(x) f(a) f(a + x) f(a) lim = lim x a x a x 0 x (11.2) f(x) x

l µ l µ l 0 (1, x r, y r, z r ) 1 r (1, x r, y r, z r ) l µ g µν η µν 2ml µ l ν 1 2m r 2mx r 2 2my r 2 2mz r 2 2mx r 2 1 2mx2 2mxy 2mxz 2my r 2mz 2 r


ii p ϕ x, t = C ϕ xe i ħ E t +C ϕ xe i ħ E t ψ x,t ψ x,t p79 やは時間変化しないことに注意 振動 粒子はだいたい このあたりにいる 粒子はだいたい このあたりにいる p35 D.3 Aψ Cϕdx = aψ ψ C Aϕ dx

.1 z = e x +xy y z y 1 1 x 0 1 z x y α β γ z = αx + βy + γ (.1) ax + by + cz = d (.1') a, b, c, d x-y-z (a, b, c). x-y-z 3 (0,

Fubini

Untitled

6kg 1.1m 1.m.1m.1 l λ ϵ λ l + λ l l l dl dl + dλ ϵ dλ dl dl + dλ dl dl 3 1. JIS 1 6kg 1% 66kg 1 13 σ a1 σ m σ a1 σ m σ m σ a1 f f σ a1 σ a1 σ m f 4


Part () () Γ Part ,

5.. z = f(x, y) y y = b f x x g(x) f(x, b) g x ( ) A = lim h 0 g(a + h) g(a) h g(x) a A = g (a) = f x (a, b)

c 2009 i

液晶の物理1:連続体理論(弾性,粘性)

ma22-9 u ( v w) = u v w sin θê = v w sin θ u cos φ = = 2.3 ( a b) ( c d) = ( a c)( b d) ( a d)( b c) ( a b) ( c d) = (a 2 b 3 a 3 b 2 )(c 2 d 3 c 3 d

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (



= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

notekiso1_09.dvi


b3e2003.dvi

untitled

x,, z v = (, b, c) v v 2 + b 2 + c 2 x,, z 1 i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1) v 1 = ( 1, b 1, c 1 ), v 2 = ( 2, b 2, c 2 ) v

all.dvi

B line of mgnetic induction AB MN ds df (7.1) (7.3) (8.1) df = µ 0 ds, df = ds B = B ds 2π A B P P O s s Q PQ R QP AB θ 0 <θ<π

1 variation 1.1 imension unit L m M kg T s Q C QT 1 A = C s 1 MKSA F = ma N N = kg m s 1.1 J E = 1 mv W = F x J = kg m s 1 = N m 1.

sin.eps

p = mv p x > h/4π λ = h p m v Ψ 2 Ψ

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

08-Note2-web

Transcription:

1999 1999 12 17

Contents 1 9 1.1........................ 9 1.2 (Cartesian )..................... 9 1.3........................ 10 1.4............................. 11 1.5............................. 12 1.6......................... 13 1.6.1.......................... 13 1.6.2........................... 14 2 17 2.1................................. 17 2.2................................ 17 2.3................................ 19 2.4................................ 20 2.5.............................. 21 2.6.............................. 21 3 23 3.1................................. 23 3.1.1 grad............................. 23 3.1.2.................. 23 3.2................................. 24 3.2.1 div............................. 24 3.2.2 Gauss........................ 24 3.3 (rotation)............................ 24 3.3.1 rot.............................. 24 3.3.2 Stokes........................ 25 3

4 CONTENTS 3.4............................ 25 3.5....................... 25 3.5.1 grad............................. 25 3.5.2 div............................. 26 3.5.3 rot.............................. 26 3.5.4.................. 26 4 27 4.1.......................... 27 4.2................................. 28 4.3 Gauss...................... 28 4.4 Gauss...................... 29 4.5......................... 29 4.5.1............. 29 4.5.2................. 29 4.6....... 30 5 ( 2) 33 5.1 Poisson.......................... 33 5.2............................. 33 5.3............................. 34 5.3.1.......................... 34 5.3.2...................... 34 5.4........................ 35 6 37 6.1 Coulomb.......................... 37 6.1.1............................. 37 6.1.2...................... 37 6.1.3............................. 37 6.2 Gauss............................ 38 6.3 Ampere........................... 38 6.4....................... 38 6.4.1.............. 38 6.4.2.............. 39 6.5 Biot-Savart......................... 39

CONTENTS 5 7 ( 2) 41 7.1 Poisson.......................... 41 7.1.1 Poisson.............. 41 7.1.2 Poisson.............. 41 7.1.3 Poisson............... 42 7.1.4 Poisson............... 42 7.2 4A = µ 0 i......................... 43 8 45 8.1......................... 45 8.1.1 E D.................... 45 8.1.2.......................... 45 8.2......................... 46 8.2.1 H B................... 46 8.2.2.......................... 46 9 49 9.1.......................... 49 9.2.......................... 50 9.2.1.................... 50 9.3................................. 50 9.3.1............................. 50 9.3.2 Coulomb.................. 51 9.3.3 H........................... 51 9.3.4.................. 51 9.3.5......................... 52 9.3.6.............. 52 9.3.7................ 53 10 55 10.1......................... 55 10.2 rot H = i......................... 55 10.2.1 D= t................... 56 10.3 rot E = 0......................... 57 10.3.1 B= t................... 57 10.4....................... 58 10.5.............................. 59

6 CONTENTS 11 61 11.1 Maxwell......................... 61 11.2......................... 61 11.2.1............................. 62 11.3......................... 63 11.3.1 A= t.................... 64 11.3.2 Poisson............ 65 A 67 A.1................................. 67 A.1.1.......................... 67 A.1.2......................... 68 A.1.3......................... 69 A.1.4........................... 70 A.2................................. 70 A.2.1.......................... 70 A.2.2.......................... 71 A.2.3.................... 71 A.2.4.................... 71 A.2.5........................... 72 A.2.6.......................... 72 A.2.7......................... 73 A.3......................... 73 A.4......................... 74 A.4.1..................... 74 A.4.2................. 75 A.4.3 Stokes.................... 76 A.5................................ 77 A.5.1 ( ).................... 77 A.5.2 ( ).................. 77 A.5.3 dω ds.......... 78 A.6........................ 78 A.6.1...... 79 A.6.2 (D = ε 0 E)............. 80 A.7................... 81 A.7.1.......................... 81 A.7.2.......................... 82 A.8................... 82

CONTENTS 7 A.8.1.......................... 82 A.8.2.......................... 83 A.8.3................ 84 A.9................ 85 A.10................. 87 A.11................ 88 A.12................. 90 A.13........... 92 A.14........ 94 A.15....................... 96 A.16................... 99 A.17............ 100 A.18....................... 102 A.19 10............... 105 A.20................... 107

Chapter 1 1.1 φ (r) A(x;y;z) 1.2 (Cartesian ) x y z 1 e x ;e y ;e z ffl A =(A x ;A y ;A z ) ffl A = A x e x + A y e y + A z e z A = jaj = q A 2 x + A2 y + A2 z, 9

10 CHAPTER 1. z e z e x e y y x z A x e x r A z e z A A y e y A( r ) r x y A ± B =(A x ± B x )e x +(A y ± B y )e y +(A z ± B z )e z, aa = aa x e x + aa y e y + aa z e z 1.3 A ± B = B ± A A ± (B ± C) =(A ± B) ± C α(βa) =β (αa) =(αβ)a (α ± β )A = αa ± βb α(a ± B) =αa ± αb

1.4. 11 1.4 A B θ A B = jajjbjcosθ A B B O θ A ffl A B = B A ffl A A = jaj ffl A B = 0 $ A? B ffl cosθ = A B jajjbj ffl (A + B) C = A C + B C ffl (aa) B = a(a B) =A (ab) ffl e x e y = e y e y = e z e z = 1 ffl e x e y = e y e z = e z e x = 0 A B = A x B x + A y B y + A z B z

12 CHAPTER 1. B A = Proj: B ona = jbj cos(ab) = jbj A B jajjbj = A B jaj = e A B B O ΑΒ B A A 1.5 A B θ A B e A B =(jajjbjsinθ)e A B A B S = jajjbjsinθ = ja Bj ffl A B = B A ffl A A = 0 ffl A B = 0 $ A k B

1.6. 13 A B A e θ B ffl (A + B) C = A C + A C ffl (aa) B = a(a B) =A (ab) ffl e x e x = e y e y = e z e z = 0 ffl e x e y = e z ; e y e z = e x ; e z e x = e y A B = (A y B z A z B y )e x +(A z B x A x B z )e y +(A x B y A y B x )e fi fi z fi fi e x e y e z fi fi = fi fi A x A y A z fi fi fi B x B y B z fi 1.6 1.6.1 (r;φ;z) r 0 0» φ» 2π e r e φ e z

14 CHAPTER 1. z e z r e φ e r φ y x Cartesian x = r cosφ y = r sinφ z = z p = re r + ze z 1.6.2 (r;θ;φ) r 0 0» φ» 2φ 0» θ» π z e r θ r e φ e θ y φ x

1.6. 15 e r e θ e φ Cartesian x = r sinθ cosφ y = r sinθ sinφ z = r cosθ p = re r

Chapter 2 2.1 d A(t + t) A(t) A(t) = lim dt t!0 t d dt A(t) = d dt A x(t)e x + d dt A y(t)e y + d dt A z(t)e z d dt fa(t) ± B(t)g = d dt A(t) ± d dt B(t) d dt fc(t)a(t)g = d dt c(t)a(t)+c(t) d dt A(t) d dt fa(t) B(t)g d d = A(t) B(t)+A(t) dt dt B(t) d dt fa(t) B(t)g = d dt A(t) B(t)+A(t) d dt B(t) 2.2 A(x;y;z) =A x (x;y;z)e x + A y (x;y;z)e y + A z (x;y;z)e z 17

18 CHAPTER 2. C r = r(t) =x(t)e x + y(t)e y + z(t)e z C t = a t = b u(t) C A u dt = b A C a A(x(t);y(t);z(t)) u(t) dt A ( r(t) ) = A ( x(t), y(t), z(t) ) u A u C t=b t=a r (t) = x(t) e x + y(t) e y + z(t) e z O u(t) C u(t) = d dt x(t)e x + d dt y(t)e y + d dt z(t)e z A u dt = = b a xb x a A x dx dt + A dy y dt + A dz z dt dt A x dx+ yb y a A y dy+ zb z a A z dz x a ;x b ;y a ;y b ;z a ;z b t = a;t = b x;y;z dr = dxe x + dye y + dze z C A dr

2.3. 19 2.3 A S S n A A n = A n S i A lim A n S i = lim A n S i S i!0 i S i!0 i S A n ds S A ds A S S (i) A n n A S i S A n S i = A x e x n S i + A y e y n S i + A z e z n S i A z je z j = jnj = 1 A z e z n S i = A z je z jjnjcosγ S i = A z cosγ S (i) γ z n ( e z n ) S i cosγ S i x-y S i cosγ = x y

20 CHAPTER 2. z n γ e z S i γ x y x y dscosγ = dxdy A n S i! A x dydz+ A y dzdx+ A z dxdy A S A n ds = A x dydz+ A y dzdx+ A z dxdy A 2.4 A(x;y;z) V A dv = A x (x;y;z) dv e x + A y (x;y;z) dv e y + A z (x;y;z) dv e z V dv dv = dxdydz A x ;A y ;A z

2.5. 21 2.5 ds (x;y;z) (r;φ;z) (r;θ;φ) ds = dxdy; dydz; dzdx ds = rdφdz ds = r 2 sinθdφdθ r sin θ dφ r dθ dz 1 dφ dz r dφ dφ θ r dθ r sin θ dy dx r ds = dxdy, dydz, dzdx ds = r dφ dz ds = r 2 sin θ dθ dφ 2.6 dv (x;y;z) (r;φ;z) (r;θ;φ) dv = dxdydz dv = rdrdφdz dv = r 2 sinθdrdθdφ

22 CHAPTER 2. r dφ d r r sin θ dφ dz r dθ θ r dr dθ dz 1 dφ dφ r sin θ dy dx r dv = dx dy dz dv = r dr dφ dz dv = r 2 sin θ dr dθ dφ

Chapter 3 3.1 3.1.1 grad φ (x;y;z) φ grad φ = φ = φ x e x + φ y e y + φ z e z = x e x + y e y + z e z φ φ φ 3.1.2 A A = grad φ (or φ ) φ φ A E ( )φ 23

24 CHAPTER 3. A φ A φ b A dr = φ (a) φ (b) 3.2 3.2.1 div a A A div A = A A x A = x + y A y + z z A div A 3.2.2 Gauss S V A div A A S div A dv = A n ds 3.3 (rotation) 3.3.1 rot V A A rot A = A A z = ( y A y z )e A x x +( z A z x )e A y y +( x A x y )e z fi fi fi fi e x e y e z fi fi fi = fi fi fi fi fi x y z fi fi fi A x A y A z fi S

3.4. 25 A rot A 3.3.2 Stokes C S A rot A A C 3.4 S (rot A) n ds = C A dr 4 = = 2 x 2 + 2 y 2 + 2 z 2 div grad 4φ 2 φ 2 φ 2 φ = x 2 + y 2 + z 2 div grad 4A =(4A x )e x +(4A y )e y +(4A z )e z 4A 2 A 2 i A 2 i = x 2 + i A y 2 + i z 2 3.5 3.5.1 grad ffl grad ( f + g) =grad f + grad g ( f + g) = f + g

26 CHAPTER 3. ffl grad (cf)=c grad f (cf)=c f ffl grad ( fg)=(grad f ) g + f grad g ( fg)=( f )g + f g 3.5.2 div ffl div (A + B) =div A + div B (A + B) = A + B ffl div (φa) =grad φ A + φ div A (φa) =( φ ) A + φ A 3.5.3 rot ffl rot (A + B) =rot A + rot B (A + B) = A + B ffl rot (φa) =grad φ A + φ rot A (φa) =( φ ) A + φ A 3.5.4 ffl grad (A B) =(A grad) B +(B grad) A + A rot B + B rot A ffl div (A B) =B rot A A rot B ffl rot rot A = grad div A 4A ffl rot (A B) =A div B B div A +(B grad) A (A grad) B

Chapter 4 4.1 q(c) Q(C) r(m) F(N) F 1 qq = 4πε 0 r 2 e 1 qq r r = 4πε 0 r 2 r where e r = r r e r ε 0 (F/m=CV 1 m 1 ) Q q r e r F E F=qE Q r Q r q 27

28 CHAPTER 4. 4.2 q(c) F(N) E(V/m) F = qe Q(C) r E(V/m) E 1 Q r 1 Q = 4πε 0 r 2 r = 4πε 0 r 3 r 4.3 Gauss Q(C) ffl E(V/m) Q=ε 0 (Vm) ffl D(C/m 2 ) Q(C) D E [ ] D = ε 0 E S E n ds = 1 ε 0 Q S D n ds = Q S E n ds 1 = ε Q i D n ds = 0 i S i Q i ( ρ(r) S E n ds = 1 ε 0 V ρ(r) dv S D n ds = ρ(r) dv V

4.4. GAUSS 29 4.4 Gauss Gauss Gauss S D n ds = Gauss V div D dv = V div D dv ρ(r) dv V dv Gauss div D = ρ(r) 4.5 4.5.1 F = GmM r r 3 $ φ (r) = GmM r F = grad φ E = 4.5.2 Q r 4πε 0 r 3 $ φ Q 1 (r) = 4πε 0 r E = grad φ ffl B A E dr = φ (A) φ (B) ffl I E dr = 0 $ rot E = 0

30 CHAPTER 4. 4.6 dq(c) de(v/m) dφ(v) ( ) ds dφ r de dq = λ ds ds dφ r de dq = σ ds dv dφ r de dq = ρ dv de = 1 4πε 0 dq r 3 r dφ 1 dq = 4πε 0 r λ(c/m) ds(m) dq = λ ds E = 1 4πε 0 λ r 3 r ds φ = 1 4πε 0 λ r ds σ(c/m 2 ) ds(m 2 ) dq = σ ds E = 1 4πε 0 σ r 3 r ds φ = 1 4πε 0 σ r ds

4.6. 31 ρ(c/m 3 ) dv(m 3 ) dq = ρ dv E = 1 4πε 0 ρ r 3 r dv φ = 1 4πε 0 ρ r dv

Chapter 5 ( 2) 5.1 Poisson div E = ρ=ε 0 E = grad φ 4φ = ρ ε 0 5.2 s s p = qs r 1 ;r 2 φ q ρ 1 = 1 ff 4πε 0 r 1 r 2 ( ) E = grad φ E 1 ρ = p ff 3r(r p) + 4πε 0 r3 r 5 33

34 CHAPTER 5. ( 2) 5.3 5.3.1 1V ([F]=[C]/[V]) C = Q V Q = CV a C = 4πε 0 a S d a b C = ε 0 S d ab C = 4πε 0 b a a b L(L fl a) L C = 2πε 0 ln(b=a) a d L (a fi d;a fi L) 5.3.2 C = πε 0 L ln(d=a) U e = 1 C Q2 1 2 CV 2 1 2 QV Q(C)

5.4. 35 5.4 E E U e = Q2 (ε 2C = 0 SE) 2 ε 0 2( d S) = ε 0 2 E2 Sd = ε 0 2 E2 v U e = 1 2 ε 0 V E 2 dv

Chapter 6 6.1 Coulomb 6.1.1 q m Q m r(m) F(N) F 1 q m Q m r = 4πµ 0 r 2 r 6.1.2 r(m) I 1 I 2 (A) F µ 0 I 1 I 2 r = 2π r r 6.1.3 I 1 (A) F(N) B(T) ([T( )]=[Wb( )/m 2 ]=[10 4 Gauss] Wb Φ ) F = I 1 B 37

38 CHAPTER 6. I 2 (A) r(m) B(T) B µ 0 I 2 r = 2π r r 6.2 Gauss S 0 B n ds = 0 div B = 0 6.3 Ampere I B I B µ 0 I C 0 B dr = µ 0 I rot B = µ 0 i 6.4 6.4.1 E φ E = gradφ

6.5. BIOT-SAVART 39 rot E = 0 6.4.2 rot B = 0 B A B = rot A div B = 0 E φ 6.5 Biot-Savart I ds( ) r P dh db µ 0 I ds r = 4π r 3 ds r θ db µ 0 I ds sinθ = 4π r 2 ds r Ampere

40 CHAPTER 6. I ds θ r db

Chapter 7 ( 2) 7.1 Poisson 7.1.1 Poisson ρ(c/m 3 ) E(V/m) φ(v) Poisson 4φ = ρ ε 0 φ E = grad φ E 7.1.2 Poisson i(a/m 2 ) B(Wb/m 2 ) A(Wb) Poisson 4A = µ 0 i A B = rot A 41

42 CHAPTER 7. ( 2) B ψ 1 A z rot A = r φ A! φ Ar e r + z z A ψ! z 1 (ra φ ) e r φ + A r e z r r φ 7.1.3 Poisson dq(c) de(v/m) dφ(v) ( 4 6 ) E = V de 1 dq r = 4πε 0 V 1 dv ρ r r 3 = 4πε 0 V r 3 φ = V dφ 1 dq = 4πε 0 V 1 dv ρ r = 4πε 0 V r ρ(c/m 3 ) dq = dv ρ 7.1.4 Poisson I ds(am) db(wb/m 2 ) da(wb) (Biot-Savart ) B = V A = db = µ 0 4π V C ds I r µ 0 dv i r r 3 = 4π V r 3 da µ 0 ds I µ 0 dv i = = 4π C r 4π V r

7.2. 4A = µ 0 I 43 i(a/m 2 ) ds I = ds ds i = dv i I ds ds I = Ids dv 7.2 4A = µ 0 i A B = rot A B Ampere rot B = µ 0 i rot rot A = grad div A 4A Ampere (a) grad div A 4A = µ 0 i B = rot A u grad rot B = µ 0 i rot grad = 0 A 0 B A 0 = A + grad u φ grad E u χ 4χ = div A 0

44 CHAPTER 7. ( 2) A 0 (a) χ A = A 0 + grad χ (a) χ div A = div A 0 + div grad χ = div A 0 + 4χ = 0 (a) Poisson 4A = µ 0 i

Chapter 8 8.1 8.1.1 E D D = ε 0 E D = εe 8.1.2 D B E D 1 n D 2 n = 0 ε 1 E 1 n ε 2 E 2 n = 0 E 1 t + E 2 t = 0 D D 1 ε 1 t + D 2 ε 2 t = 0 45

46 CHAPTER 8. E 1 t D 1 n ε 1 ε 2 D 2 D 1 n S n D 2 n ε 1 ε 2 E 2 S t t E 1 E 2 t 8.2 8.2.1 H B B = µ 0 H B = µh 8.2.2 B 1 n B 2 n = 0 µ 1 H 1 n µ 2 H 2 n = 0 H 1 t + H 2 t = 0 B 1 µ 1 t + B 2 µ 2 t = 0

8.2. 47 H 1 t B 1 n µ 1 µ 2 B 2 B 1 n S n B 2 n µ 1 µ 2 H 2 S t t H 1 H 2 t

Chapter 9 9.1 I 2 B I 1 F = I 1 B I B Ids df = Ids B I 1 I 2 I ds B F = I 1 B B θ F F = I ds B = I ds B sin θ 49

50 CHAPTER 9. 9.2 v(m/s) q(c) F = qe F = q v B F = q(e + v B) 9.2.1 S(m 2 ) ([A]=[C]/[s]) v(m/s) S S L(m) =v(m=s) 1(s) nsl = nsv( ) n( /m 3 ) q(c) I = qnvs ds ds df = Ids B I df = qnsvds B = qnsdsv B ds nsds F = q v B 9.3 9.3.1 N S

9.3. 51 L[m] = v[m/s] 1[s] v S n [ /m 3 ] 9.3.2 Coulomb q m (Wb) Q m (Wb) r(m) F(N) 9.3.3 H F 1 q m Q m r = 4πµ 0 r 2 r H(N/Wb A/m) q m (Wb) F(N) F = q m H 9.3.4 Q m (Wb) H(A/m) H 1 Q m r = 4πµ 0 r 2 r E(V/m) φ e (V) φ m (A) φ 1 Q m m = 4πµ 0 r

52 CHAPTER 9. 9.3.5 s s m = q m s r fl l φ m = q m 1 1 4πµ 0 r 2 r 1 φ m = q2l cosθ 4πµ 0 r 2 H 1» = m 3r(r m) + 4πµ 0 r3 r 5 grad H r = φ m 2ql 2cosθ r = 4πµ 0 r 3 H θ = 1 r φ m θ = 2ql sinθ 4πµ 0 r 3 9.3.6 P I(A) ω(str) φ m (A) φ m = Iω 4π

9.3. 53 9.3.7 a fi r ω ß π a2 r 2 cosθ φ m = Ia2 4r 2 cosθ l fi r φ m = 2ql 4πµ 0 r 2 cosθ m = 2ql I m = µ 0 IS S = πa 2 S

Chapter 10 10.1 Gauss Gauss 10.2 rot H = i S S C D n ds = Q $ div D = ρ C B n ds = 0 $ div B = 0 E u ds = 0 $ rot E = 0 H u ds = I $ rot H = i rot H = i rot H = i + D t 55

56 CHAPTER 10. 10.2.1 D= t rot H = i div div rot H = div i div rot div i = 0 div i = 0 OK div i 6= 0 Q dt n i I out = dq dt S Q dq I out = i n ds (S S ) dq dt = S i n ds dv (Gauss ) dρ dt = div i ( ) div D = ρ div i + t div D = 0

10.3. ROT E = 0 57 rot H = i + D t div 10.3 rot E = 0 rot E = 0 rot E = B t 10.3.1 B= t Φ S A C V Φ ( Wb 1 ) V Φ V = dφ dt Φ B Φ = S B n ds

58 CHAPTER 10. E V = C E dr = S (rot E) n ds rot E = B t 10.4 C Φ υ C v dt ds dr C v C dr dt ds ds = j(vdt) drj dφ dφ = = = dφ dt S S S = dt = I B nds B j(vdt) drj I B (vdt dr) C C (v B) dr (v B) dr dφ dt = I C E dr

10.5. 59 E = v B B C B V = S t IC + (v B) dr 10.5 V dφ=dt Φ Φ I I L (t) V L (t) V L (t) = L d dt I(t) L(H) I(t) C V(t) L R RI = V (t)+ Q C LdI dt V (t) =V 0 cosωt L d2 I dt 2 + RdI dt + 1 C I = ωv 0 sinωt

Chapter 11 11.1 Maxwell Maxwell div D(x; t) = ρ(x; t); (11.1) div B(x;t) = 0; (11.2) rot E(x;t) = B(x;t) ; t (11.3) rot D H(x;t) = + i(x;t): t (11.4) D = ε 0 E; (11.5) B = µ 0 H: (11.6) m dv dt = e E + e v B (11.7) 11.2 61

62 CHAPTER 11. d dt ψ! 1 i 2 m i v2 i +W = S n ds (11.8) 1 i 2 m i v2 i W = 1 (E D + B H)dV 2 11.2.1 v v (v B) S = E H m dv dt = e E + e v B d 1 dt 2 mv2 = e ve+ e v (v B) =e ve= i E dv V i Maxwell rot H D = i t d 1 dt 2 mv2 = rot H D E dv V t div (E H) =H rot E E rot H

11.3. 63 d dt d dt ρ 1 2 mv2 = H rot E D ff + E + div (E H) dv V t rot E = B t» 1 2 mv2 = H B V t + E D dv + div (E H) dv t V 1 2 t D (E D + B H) =E t + H B t (D = ε 0 E B = µ 0 H ) Gauss d dt d dt 1 2 mv2 = d dt 1 (E D + B H) dv + (E H) n ds 2 V S 1 1 2 mv2 + (E D + B H) dv = (E H) n ds 2 V S ψ! d 1 dt 2 m 1 i v2 i + (E D + B H) dv 2 i 11.3 V E = grad φ B = rot A = S (E H) n ds

64 CHAPTER 11. Poisson 4φ = ρ ε 0 4A = µ 0 i E = A t grad φ B = rot A Poisson 4 1c 2 2 t 2 φ = ρ ε 0 4 1c 2 2 t 2 A = µ 0 i 11.3.1 A= t div A + 1 c 2 φ t = 0 rot E = B= t grad φ rot E = 0 B = rot A rot E = B= t rot E A + = 0 t rot E = 0 E E + A= t E = grad φ A t

11.3. 65 11.3.2 Poisson φ A E = grad φ A t B = rot A Maxwell div B = 0 div D = ρ rot E = B t rot H D t = i B E rot B ε 0 µ 0 E t = µ 0 i E B rot rot A ε 0 µ 0 A t t grad φ = µ 0 i 4 1c 2 2 t 2 rot rot A = grad div A 4A A grad div A 1 φ + c 2 = µ t 0 i A Poisson div D = ρ E 4 1c 2 2 t 2 φ div A 1 φ + t c 2 = ρ t ε 0 φ Poisson

66 CHAPTER 11. u A L = A 0 + grad u φ L = φ 0 u t A 0 φ 0 u χ 4 1c 2 2 t 2 χ = div A 1 φ 0 0 + c 2 t χ () div A 0 + 1 c 2 φ 0 t = div A + 1 c 2 φ t + 4χ 1 c 2 2 χ t 2 = 0 4 1c 2 2 t 2 φ = ρ ε 0 4 1c 2 2 t 2 A = µ 0 i () χ A φ div A + 1 c 2 φ t = 0

Appendix A A.1 A.1.1 y = f (x) f (x + x) f (x) lim x!0 x lim x!0 y x df(x) df dy dx ; dx ; dx ; f 0 (x); f 0 d dx f (x); d dx f d dx grad div rot 4 67

68 APPENDIX A. y f(x+ x) y x x 0 dy dx y f(x) x x x+ x A.1.2 d df(x) (α f (x)+βg(x)) = α + β dg(x) dx dx dx d df(x) ( f (x)g(x)) = dx dx g(x)+ f (x)dg(x) dx d dx ( f (x) g(x) )= d dx df(x) dx g(x) f (x)dg(x) dx g(x) 2 df(g(x)) dg(x) f (g(x)) = dg(x) dx dx 1 dy = dy dx x = x(t) y = y(t) dy dx = dy dt dx dt

A.1. 69 d df dx dx = d2 dx 2 f = d2 f dx 2 A.1.3 dy/dx > 0 d 2 y/dx 2 > 0 dy/dx < 0 d 2 y/dx 2 < 0 y = f (x) x dy dy > 0(yincreases)! dx dx < 0(ydecreases) dy dx d 2 y dx 2 < 0 y = f (x) x dy dy < 0(ydecreases)! dx dx > 0(yincreases) d 2 y dx 2 > 0 dy dx = 0

70 APPENDIX A. d 2 y dx 2 > 0! d2 y dx 2 < 0 d 2 y dx 2 < 0! d2 y dx 2 > 0 A.1.4 z = f (x;y) f (x + x;y) f (x;y) lim x!0 x x f (x;y); f (x;y) ; x z x ; f x ; x f A.2 A.2.1 f g g f g(x) = f (x) dx

A.2. 71 A.2.2 A.2.3 faf(x)+bg(x)g dx = a f (x) dx = f dx (x(t)) dt dt + c f 0 (x)g(x) dx = f (x)g(x) f (x) dx+ b g(x) dx+ c f (x)g 0 (x) dx+ c p x 2 + a 2 x = atanθ; p x 2 + a 2 = a cosθ ; dx a dθ = cos 2 θ p t 2 a 2 x 2 + a 2 = t x; x = 2t ; p x 2 + a 2 = t 2 + a 2 2t ; dx dt = t2 + a 2 2t 2 A.2.4 f (x) a» x» b n I 1 ;I 2 ;:::;I n x 1 ; x 2 ;:::; x n I i x i S n = n f (x i ) x i i=1 S n b S = a f (x) dx f (x) x = a x = b

72 APPENDIX A. y y S a x b x a b x A.2.5 f (x;y) x;y D D D f (x;y) dxdy f (x;y) dxdy f (x;y;z) x;y;z D D D f (x;y;z) dxdydz f (x;y;z) dxdydz A.2.6 ρ ff f (x;y) dxdy = f (x;y) dx dy = ρ ff f (x;y) dy dx

A.3. 73 fg dy dx f (x;y) dx f (x;y) dy z A.2.7 f (x)g(y) f (x)g(y)h(z) ρ ffρ ff f (x)g(y) dxdy = f (x) dx g(y) dy f (x)g(y)h(z) dxdydz = ρ ffρ f (x) dx ffρ g(y) dy ff h(z) dz A.3 A φ A φ b a A dr = b a dφ = φ (a) φ (b) φ dr = ( φ x e x + φ y e y + φ z e z) (dxe x + dye y + dze z ) = φ x dx+ φ y φ dy+ dz = dφ z

74 APPENDIX A. A.4 A.4.1 A div A S V A A nds S (V ) V! 0 diva 1 diva = lim V!0 V S A nds z n 1 S 1 S2 δz x δy δx n 2 y V = δxδyδz y S 1 y S 1 A nds = fa ngδxδz = A y (x;y;z)n 1 δxδz S 2 y S 2 A nds = fa ngδxδz = A y (x;y + δy;z)n 2 δxδz

A.4. 75 A V y ( n 1 = n 2 jn 1 j = jn 2 j = 1 ) S 1 A n 1 ds 1 + S 2 A n 2 ds 2 + = A y (x;y;z)n 1 δxδz + A y (x;y + δy;z)n 2 δxδz = fa y (x;y + δy;z) A y (x;y;z)gδxδz A y(x;y + δy;z) A y (x;y;z) = δxδyδz δy A y(x;y;z) = V y x;z A.4.2 S S S (A n)xds = A x x V (A n)yds = A y y V (A n)zds = A z z V 1 lim V V!0 = lim V!0 A nds S ρ Ax A x + y A y + z z A x A = x + y A y + z z V i = δx i δy i δz i S i A i n i ds = δx i δy i δz i div A i V V i i ff A i n i ds = S δx i δy i δz i div A i i i

76 APPENDIX A. i j ni ds A nj V i V j n i = n j A i = A j A i n i + A j n j = 0 V i V j V A.4.3 Stokes V div A dv = S A n ds S S i S i z x;y S i C i C i A dr = A x (x;y;z)dx+ A y (x + dx;y;z)dy A x (x;y + dy;z)dx A y (x;y;z)dy = A y x dxdy+ A x(x;y;z)dx+ A y (x;y;z)dy = = A x y dxdy A y(x;y;z)dy A x (x;y;z)dx Ax x A y dxdy y S i (rot A) n ds

A.5. 77 y (x,y+dy) S i x (x,y) (x+dx,y+dy) C i (x+dx,y) S i S j Stokes A.5 S (rot A) n ds = C A dr A.5.1 ( ) 1 θ(radian) ffl r rθ A 1 O r θ rθ B A.5.2 ( ) 1 Ω(steradian) ffl r r 2 Ω

78 APPENDIX A. r 1 O Ω r 2 Ω A.5.3 dω ds ds dω dω r n = r 3 ds ds r ds dω θ n 1 O r dω r 2 dω dω r ds n θ r 2 dω r 2 dω θ ds r 2 dω ds dscosθ = r 2 dω ds n(jnj = 1) ds r(jrj = 1) r n = r cosθ dω = r n r 3 ds A.6 E nds = jejcosθds

A.6. 79 Q R n E dω ds 1 R dω R 2 dω n θ ds E dω dscosθ = R 2 dω E nds = jejr 2 dω = 1 Q 4πε 0 R 2 R2 dω = Q 4πε 0 dω S E n ds = Q 4πε 0 S dω = Q ε 0 R S dω = 4π A.6.1 ( Ψ ) ffl 1C 1 ffl 1C 1

80 APPENDIX A. +Q Q +Q C D(C/m 2 ) n ds(m 2 ) dψ(c) D = dψ ds n A.6.2 (D = ε 0 E) Gauss D = ε 0 E Q(C) r D(C/m 2 ) D Q Q = S D n ds = 4πr 2 jdj = 4πr 2 D D = Q=(4πr 2 ) D r=r D Q r = 4πr 2 r E = Q r 4πε 0 r 2 r D = ε 0 E

A.7. 81 A.7 A.7.1 S Gauss S D n ds = V S ρ dv ε 1 S 1 ε 2 S 2 S S d S 1 D 1 n 1 ds + S 2 D 2 n 2 ds + S d D n ds = V S ρ dv S 1 S 2 D 1 D 2 ( ) ( ) S d! 0 S 1 = S 2 = S n 1 = n 2 = n D 1 n S D 2 n S = ρ S (D 1 D 2 ) n = ρ D ρ D D i = ε i E i E ε D 1 ε 1 ε2 n 1 S S 1 d D 2 n 2 S d S 2

82 APPENDIX A. A.7.2 C rot E = 0 I C E uds = 0 ε 1 L 1 ε 2 L 2 L d ( ) E 1 u 1 ds+ E 2 u 2 ds+ E uds = 0 L 1 L 2 L d L 1 L 2 E 1 E 2 ( ) ( ) L d d! 0 L 1 = L 2 = L u 1 = u 2 = u E 1 u L E 2 u L = 0 (E 1 E 2 ) u = 0 E E i = D i =ε i D ε E 1 C ε 1 ε2 L 1 u 1 L 2 L d L d d u 2 E 2 A.8 A.8.1 S Gauss S B n ds = 0

A.8. 83 µ 1 S 1 µ 2 S 2 S S d S 1 B 1 n 1 ds + S 2 B 2 n 2 ds + S d B n ds = 0 S 1 S 2 B 1 B 2 ( ) ( ) S d! 0 S 1 = S 2 = S n 1 = n 2 = n B 1 n S B 2 n S = 0 (B 1 B 2 ) n = 0 B B i = µ i H i H µ B 1 µ 1 µ2 n 1 S S 1 d B 2 n 2 S d S 2 A.8.2 C rot H = i i I H u ds = i n ds C µ 1 L 1 µ 2 L 2 L d ( ) L 1 H 1 u 1 ds+ S L 2 H 2 u 2 ds+ L d H u ds = 0

84 APPENDIX A. L 1 L 2 H 1 H 2 ( ) ( ) L d d! 0 L 1 = L 2 = L u 1 = u 2 = u H 1 u L H 2 u L = 0 (H 1 H 2 ) u = 0 E H i = B i =µ i B µ H 1 C µ 1 µ2 L 1 u 1 L 2 L d L d d u 2 H 2 A.8.3 e h C(ABCDA) e t C 0 (A BCD ) i = i h e h + i t e t C rot H = i d! 0 I C H e t ds = S i ( e h ) ds H 1 e t L H 2 ( e t ) L = i h L (H 1 H 2 ) e t = i h

A.9. 85 e t i h C 0 I C 0 H e h ds = S i ( e t ) ds (H 1 H 2 ) e h = i t e h i t (H 1 H 2 ) e n = i H i n h t A D B A' D' C A.9 (x;y;z) ffl grad V = V x e x + V y e y + V z e z ffl div A A x A = x + y A y + z z ffl rot A = Az y A y Ax e x + z z A z Ay e y + x x A x e z y (r;φ;z)

86 APPENDIX A. ffl grad V V = r e 1 V r + r φ e V φ + z e z ffl div A = 1 r ffl rot A = ψ (ra r ) r 1 r + 1 r A φ A φ + z z A z φ A! φ Ar e r + z z A ψ z e r φ + 1 r (ra φ ) r A r φ! e z (r;θ;φ) ffl grad V V = r e 1 V r + r θ e 1 V θ + r sinθ φ e φ ffl div A = 1 r 2 (r 2 A r ) r ψ ffl rot A 1 (Aφ sinθ) = r sinθ θ ψ 1 (A θ sinθ) 1 A φ + + r sinθ θ r sinθ φ + 1 r A φ φ 1 A r sinθ! e r φ (ra φ e r θ (raθ ) + 1 r )! r A r e θ φ

A.10. 87 A.10 15, Oct., 1999 1. A (B C) =(A C)B (A B)C 2. A = 3e x e y + 2e z, B = 2e x + 3e y e z, C = 4e y 3e z A (B C), A (B C), A (B C), (A B) C 3. A B A B A B A = 3e x + e y + p 3ez, B = 3e x + e y p 3e z 4. (r;φ;z) e r, e φ, e z (x;y;z) 5. (r;θ;φ) e r, e θ, e φ (x;y;z)

88 APPENDIX A. A.11 22, Oct., 1999 1. A = 4xye x 8ye y + 2e z (a) y = 2x, z = 0 (3;6;0) (0;0;0) (b) y = 2x, z = 2x (0;0;0) (3;6;6) (c) x 2 + y 2 = 4, z = 0 (2;0;0) (2;0;0) 2. (a) A = x 2 e x + xye y + ze z xy, yz, zy x = 2, y = 2, z = 2 (b) A = ze z x 2 + y 2 + z 2 = 1 r (c) r 3 x2 + y 2 + z 2 = a r r = jrj 3. (a) ρ(r;θ;φ) =r a 1 8 M (b) ρ(r;θ;z) =e r2 a L M 4. px (a) 2 + a 2 dx 1 n = x p p o x 2 2 + a 2 + a 2 lnjx + x 2 + a 2 j 1 (b) p dx x 2 + a 2 = lnjx p + x 2 + a 2 j

A.11. 89 (c) (d) x p dx p x 2 + a 2 = x 2 + a 2 x 2 p dx 1 n x 2 + a 2 = x p p o x 2 2 + a 2 a 2 lnjx + x 2 + a 2 j (e) (f) (g) 1 (x 2 + a 2 ) 3=2 dx x = a 2p x 2 + a 2 x (x 2 + a 2 ) 3=2 dx = 1 p x 2 + a 2 x 2 (x 2 + a 2 ) 3=2 dx = x p x 2 + a 2 + lnjx p + x 2 + a 2 j

90 APPENDIX A. A.12 29, Oct., 1999 1. A (i) grad r = r r (ii) grad 1 r = r r 3 (iii) div r r = 0 (iv) rot A A r r = r 3 2. (a) grad (A B) =(A grad) B +(B grad) A + A rot B + B rot A (b) div (A B) =B rot A A rot B (c) rot rot A = grad div A 4A (d) rot (A B) =A div B B div A +(B grad) A (A grad) B 3. Gauss Gauss S A n ds = V div A dv (a) A = x 2 e x + xye y + ze z x = 0;2 y = 0;2 z = 0;2 (b) A = x 2 e x + ze y + yze z x = 0;1 y = 0;1 z = 0;1 (c) A = 6ze x +(2x + y)e y xe z x 2 + y 2 = 3 2 x = 0 y = 0 z = 0 y = 8 1/4 (d) A = x 2 e x xye y + z 2 e z x 2 + y 2 = 1 0» z» 1

A.12. 91 4. Stokes Stokes C A dr = S rot A n ds (a) A = 2ye x + 3xe y z 2 e z S x 2 + y 2 + z 2 = 9 (z 0) C x 2 + y 2 = 9 (z = 0) (b) A = ye x +(x 2 + z)e y + ye z S x 2 +y 2» 9 (z = 0) C x 2 +y 2 = 9 (z = 0)

92 APPENDIX A. A.13 5, Nov., 1999 E(V/m) φ(v) 1. (a) λ(c/m) z ±L(m) z = 0 a(m) (b) λ(c/m) z a(m) z z(m) (c) σ(c/m 2 ) z a(m) z z(m) 2. Gauss (a) R 1 ;R 2 (m) (0 < R 1 < R 2 ) Q 1 ;Q 2 (C) r(m) (φ ( ) =0 ). (b) ρ 1 ;ρ 2 (C/m 2 ) z R 1 ;R 2 (m) (0 < R 1 < R 2 ) z r(m) (φ (R 2 )=0 ). (c) z a;b(m) (0 < a < b) ρ(r;φ) =r 1 cos 2 φ (C/m 3 ) z r(m) (φ (b) =0 ).

A.13. 93

94 APPENDIX A. A.14 12, Nov., 1999 1. p = qs r 2. (a) ( a, Q, ) (b) ( a, 2L) C = C = 4πε 0 a 4πε 0 L ψ p! L + L 2 + a 2 ln a (c) ( S, σ) C = ε 0 S d (d) ( a, b (0 < a < b), Q) ab C = 4πε 0 b a (e) ( a, b, λ, L) C 2πε 0 L = ln(b=a) (f) ( a, d (d fl a), L (L fl a), λ) C = πε 0 ln(d=a)

A.14. 95 3. (a) a(m) ( Q(C)) (b) a(m) ( Q(C))

96 APPENDIX A. A.15 26, Nov., 1999 1. a(m) I(A) x(m) B(T) : B µ 0 Ix = (r» a) 2πa2 : B µ 0 I = (r a) 2πx 2. x(m) θ 1 θ 2 B µ 0 I = 4πx (cosθ 1 + cosθ 2 ) 3. a(m) I(A) z(m) B = a 2 µ 0 I 2(a 2 + z 2 ) 3=2 4. n θ 1 θ 2 B = nµ 0 I 2 (cosθ 2 cosθ 1 )

A.15. 97

98 APPENDIX A. 5. 2a 2b(m) I(A) z(m) P ( 6. ( R(m)) O n I h(m) P B = nµ 0 I 2 ( ln ψ R + p R 2 + h 2 h R p R 2 + h 2!)

A.16. 99 A.16 3, Dec., 1999 1. x(m) A(Wb) B(Wb/m 2 ) θ 1 θ 2 0q A µ 0 I x 2 + L 2 = 4π ln 1 @ + L 1 1 q Ae z x 2 + L 2 2 L 2 2. 2d(m) I(A) A(Wb) B(Wb/m 2 ) A = µ 0 I 2π ln r 1 r 2 e z

100 APPENDIX A. A.17 3, Dec., 1999 1. a(m) b(m) ε 2. d(m) x(m) ε(x) =ε 1 +(ε 2 ε 1 ) x d 3. a b(m) r(m) k(m) ε(r) = k + r r 4. a b(m) r(m) ε(r) =ε ε 2 ε 1 1 + (r a) b a d S = 1 m 2 b O a ε ε 0 ε ε 2 ε 1 0 d x

A.17. 101 a b a b ε 1 + k/a 1 + k/b 1 0 a b r ε ε 2 ε 1 0 a b r

102 APPENDIX A. A.18 10, Dec., 1999 1. (a) a b(m) B(Wb/m 2 ) I(A) (b) L(m) ( d(m)) I 1 I 2 (A) (c) L(m) ( d(m)) I(A) B L A A' L θ 2 I 2 θ 1 r 2 df r 1 dx I 2 B x L C B' D D' d d C' (d) I 1 (A) d(m) a(m) I 2 (A) π 0 cosx bcosx + c dx π = b c π p (c b c 2 b 2 > b)

A.18. 103 ds α d a θ O I 2 I 1

104 APPENDIX A. 2. (a) B(Wb/m 2 ) m(kg) q(c) v(m/s) i. ii. r = mv=(eb) (m) iii. ω = eb=m (rad/s) (b) I(A) B(Wb/m 2 ) I B V H (V) ( q(c) n(m 3 )) V H V H = a E H z y E H = E H e y v B = B z e z x d b a i = i x e x I = ad i x

A.19. 10 105 A.19 10 17, Dec., 1999 1. B(Wb/m 2 ) S(m 2 ) ω(rad/s) 2. I = I 0 sinωt (A) 3. B(Wb/m 2 ) a(m) ω(rad/s) 4. LR LR I = 0(A) SW 1 ON SW 2 ON N B S S r B ω I = I 0 sin ωt L ds dz dr b a

106 APPENDIX A. B L dr r ds v a V SW 1 SW 2 V E R

A.20. 107 A.20 3, Dec., 1999 1. x(m) A(Wb) B(Wb/m 2 ) θ 1 θ 2 0q A µ 0 I x 2 + L 2 = 4π ln 1 @ + L 1 1 q A x 2 + L 2 2 + L 2 2. 2d(m) I(A) A(Wb) B(Wb/m 2 ) µ 0 I 2π ln r 1 r 2