スケーリング理論とはなにか? - --尺度を変えて見えること--

Similar documents
( ) URL: December 2, 2003

References: 3 June 21, 2002 K. Hukushima and H. Kawamura, Phys.Rev.E, 61, R1008 (2000). M. Matsumoto, K. Hukushima,

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

chap9.dvi

1 s 1 H(s 1 ) N s 1, s,, s N H({s 1,, s N }) = N H(s k ) k=1 Z N =Tr {s1,,s N }e βh({s 1,,s N }) =Tr s1 Tr s Tr sn e β P k H(s k) N = Tr sk e βh(s k)

プログラム

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

September 9, 2002 ( ) [1] K. Hukushima and Y. Iba, cond-mat/ [2] H. Takayama and K. Hukushima, cond-mat/020

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

磁性物理学 - 遷移金属化合物磁性のスピンゆらぎ理論

: , 2.0, 3.0, 2.0, (%) ( 2.

本文/目次(裏白)

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

chap10.dvi

A

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

untitled

2016 ǯ¥Î¡¼¥Ù¥ëʪÍý³Ø¾Þ²òÀ⥻¥ß¥Ê¡¼ Kosterlitz-Thouless ž°Ü¤È Haldane ͽÁÛ

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

ʪ¼Á¤Î¥È¥Ý¥í¥¸¥«¥ë¸½¾Ý (2016ǯ¥Î¡¼¥Ù¥ë¾Þ¤Ë´ØÏ¢¤·¤Æ)

薄膜結晶成長の基礎4.dvi

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

TOP URL 1

Ł\”ƒ-2005

第10章 アイソパラメトリック要素

1 1.1,,,.. (, ),..,. (Fig. 1.1). Macro theory (e.g. Continuum mechanics) Consideration under the simple concept (e.g. ionic radius, bond valence) Stru

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

Part () () Γ Part ,

D = [a, b] [c, d] D ij P ij (ξ ij, η ij ) f S(f,, {P ij }) S(f,, {P ij }) = = k m i=1 j=1 m n f(ξ ij, η ij )(x i x i 1 )(y j y j 1 ) = i=1 j

第90回日本感染症学会学術講演会抄録(I)


x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

[ ] (Ising model) 2 i S i S i = 1 (up spin : ) = 1 (down spin : ) (4.38) s z = ±1 4 H 0 = J zn/2 i,j S i S j (4.39) i, j z 5 2 z = 4 z = 6 3


4. ϵ(ν, T ) = c 4 u(ν, T ) ϵ(ν, T ) T ν π4 Planck dx = 0 e x 1 15 U(T ) x 3 U(T ) = σt 4 Stefan-Boltzmann σ 2π5 k 4 15c 2 h 3 = W m 2 K 4 5.

日本内科学会雑誌第102巻第4号

[1] convention Minkovski i Polchinski [2] 1 Clifford Spin 1 2 Euclid Clifford 2 3 Euclid Spin 6 4 Euclid Pin Clifford Spin 10 A 12 B 17 1 Cliffo


1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e

seminar0220a.dvi

Untitled

ohpr.dvi

プリント

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

tokei01.dvi

st.dvi

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

遍歴電子磁性とスピン揺らぎ理論 - 京都大学大学院理学研究科 集中講義

main.dvi

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

H.Haken Synergetics 2nd (1978)

プリント

Łñ“’‘‚2004

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α


80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0


GJG160842_O.QXD

201711grade1ouyou.pdf

O x y z O ( O ) O (O ) 3 x y z O O x v t = t = 0 ( 1 ) O t = 0 c t r = ct P (x, y, z) r 2 = x 2 + y 2 + z 2 (t, x, y, z) (ct) 2 x 2 y 2 z 2 = 0

LLG-R8.Nisus.pdf


July 28, H H 0 H int = H H 0 H int = H int (x)d 3 x Schrödinger Picture Ψ(t) S =e iht Ψ H O S Heisenberg Picture Ψ H O H (t) =e iht O S e i

Outline I. Introduction: II. Pr 2 Ir 2 O 7 Like-charge attraction III.

* 1 1 (i) (ii) Brückner-Hartree-Fock (iii) (HF, BCS, HFB) (iv) (TDHF,TDHFB) (RPA) (QRPA) (v) (vi) *

nsg02-13/ky045059301600033210

第1章 微分方程式と近似解法

untitled

Onsager SOLUTION OF THE EIGENWERT PROBLEM (O-29) V = e H A e H B λ max Z 2 Onsager (O-77) (O-82) (O-83) Kramers-Wannier 1 1 Ons

9. 05 L x P(x) P(0) P(x) u(x) u(x) (0 < = x < = L) P(x) E(x) A(x) P(L) f ( d EA du ) = 0 (9.) dx dx u(0) = 0 (9.2) E(L)A(L) du (L) = f (9.3) dx (9.) P

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

Kaluza-Klein(KK) SO(11) KK 1 2 1

2/24

卒業研究報告 題 目 Hamiltonian 指導教員 山本哲也教授 報告者 汐月康則 平成 14 年 2 月 5 日 1

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

(e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ,µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) [ ] [ ] [ ] ν e ν µ ν τ e µ τ, e R,µ R,τ R (2.1a

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

ii 3.,. 4. F. (), ,,. 8.,. 1. (75%) (25%) =7 20, =7 21 (. ). 1.,, (). 3.,. 1. ().,.,.,.,.,. () (12 )., (), 0. 2., 1., 0,.

untitled

²ÄÀÑʬΥ»¶ÈóÀþ·¿¥·¥å¥ì¡¼¥Ç¥£¥ó¥¬¡¼ÊýÄø¼°¤ÎÁ²¶á²òÀÏ Asymptotic analysis for the integrable discrete nonlinear Schrödinger equation

SFGÇÃÉXÉyÉNÉgÉãå`.pdf

05Mar2001_tune.dvi


,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

I-2 (100 ) (1) y(x) y dy dx y d2 y dx 2 (a) y + 2y 3y = 9e 2x (b) x 2 y 6y = 5x 4 (2) Bernoulli B n (n = 0, 1, 2,...) x e x 1 = n=0 B 0 B 1 B 2 (3) co

1 1.1 H = µc i c i + c i t ijc j + 1 c i c j V ijklc k c l (1) V ijkl = V jikl = V ijlk = V jilk () t ij = t ji, V ijkl = V lkji (3) (1) V 0 H mf = µc

1 2 2 (Dielecrics) Maxwell ( ) D H

ohpmain.dvi

日歯雑誌(H19・5月号)済/P6‐16 クリニカル  柿木 5


#2 (IISEC)


Transcription:

? URL: http://maildbs.c.u-tokyo.ac.jp/ fukushima mailto:hukusima@phys.c.u-tokyo.ac.jp DEX-SMI @ 2006 12 17 ( ) What is scaling theory? DEX-SMI 1 / 40

Outline Outline 1 2 3 4 ( ) What is scaling theory? DEX-SMI 2 / 40

r αr = S(r) S(αr) =? r S(r) S(r) = πr 2 r αr α? S(αr) = π(αr) 2 = α 2 S(r) 2 2 = d dr log S(r) r=1 ( ) What is scaling theory? DEX-SMI 4 / 40

S(r) r L R(L) R(L)? L R(L) R(L) = R 0 L φ φ:! R 0 ( ) What is scaling theory? DEX-SMI 5 / 40

m r = {r 1, r 2,, r N } m d 2 dt 2 r i = r i U(r 1, r 2,, r N ) (1) U k U(ar 1, ar 2,, ar N ) = a k U(r 1, r 2,, r N ) (2) r i r i = αr i, t t = βt. (3) β 2 α m d 2 dt 2 r i = 1 α k 1 r i U(r 1, r 2,, r N ) (4) ( ) What is scaling theory? DEX-SMI 6 / 40

U(r 1, r 2,, r N ) = mg(z 1 + z N ) k = 1 = β 2 /α = 1 α = 10 β = 10??? 1M T 10M 10 1M 10M 10! ( ) What is scaling theory? DEX-SMI 7 / 40

? 7:30 7 50!!. ( ) What is scaling theory? DEX-SMI 8 / 40

3/2 r? k = 1, = β 2 = α 3 T ( ) R 3/2 T = R 1000 100 10 1 0.1 0.01 Kepler s third law 1 10 ( ) What is scaling theory? DEX-SMI 9 / 40

??. ( ) What is scaling theory? DEX-SMI 11 / 40

?(2). ( ) What is scaling theory? DEX-SMI 12 / 40

ξ L sim ξ L sim ( ) What is scaling theory? DEX-SMI 13 / 40

e.g. (! : ξ (T c ) =. L sim > ξ (T c )! ( ) What is scaling theory? DEX-SMI 14 / 40

T < T c M T c T T c β ξ T T c ν T c, χ T T c γ T c 1 H/Tc=0.0 H/Tc=0.1 0.8 0.6 m 0.4 0.2 0 0 0.5 1 1.5 2 2.5 3 T/Tc ( ) What is scaling theory? DEX-SMI 15 / 40

( ) ex. H(S) = J ij M 1 S i = N M = i {S i =±1} {S i =±1} S i S j = H( S) ( ) 1 exp( βh(s)) S i N Z i ( ) 1 exp( βh( S)) S i N Z i = 1 N i S i = 0, Si ( ) What is scaling theory? DEX-SMI 16 / 40

:. L T A(L, T ), 1 L A(, T )!. 2 ( )!. 3 L ( L L ) INPUT A(L, T ) for 1, 10, 10 2, = OUTPUT A(, T ) and/or T c, ν,..? e.g. A(L, T ) = A(, T ) + a 1 L b 1? + a 2 L b 2 + ( ) What is scaling theory? DEX-SMI 17 / 40

2 : χ(l, T ) = 1 N ( Si S j S i S j ) = r ij S 0 S r, m (2) (L, T ) = χ(l, T ) N χ M (2) : L = 64 = N = 4096 L = 4, 8, 16, 32, 64 (T,L) 10000 1000 100 10 1 1 1.5 2 2.5 3 3.5 4 4.5 5 T/J 64 M 2 (T,L)/V= 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 1 1.5 2 2.5 3 3.5 4 4.5 5 T/J 10000 1 L= 4 L= 4 8 0.9 8 16 16 1000 32 0.8 32 ( ) 64 What is scaling 0.7 theory? DEX-SMI 64 18 / 40 64

by my M. N. Baber, in Phase transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz, vol. 8 (Academic Press), 1983. D.J.Amit, V.Martín-Mayor, Field Theory; The Renormalization Group and Critical Phenomena. 3rd Edition ( ) What is scaling theory? DEX-SMI 20 / 40

ξ (T ) L/ξ (T ) L/ξ (T ) 1: L/ξ (T ) 1: L L/ξ ( ) A(L, T ) L φ A L Ã ξ (T ). ξ (T ) φ A A(L, T ) ( ) A(L, T ) L L φ Ã A ξ (T ) T ( ) What is scaling theory? DEX-SMI 21 / 40

2 ξ (T ) T T c ν T c for T Tc ( A(L, T ) L φ A à L/ T T c T c = T T c T c ( Aν φ L/ ν ) For A = χ(susceptibility), χ (T ) T T c T c T T c T c ν) φa à ( L/ T T c T c γ for T Tc φ A = γ/ν. = 3 T c, ν, γ/ν Ãχ(x) x φ A for large x. ν ) ( ) What is scaling theory? DEX-SMI 22 / 40

Finite-Size Scaling Example for 2D Ising model Raw data: befor scaling (T,L) 10000 1000 100 10 L= 4 8 16 32 64 1 1 1.5 2 2.5 3 3.5 4 4.5 5 T/J disconnected susceptibility : χ(l, T ) = 1 N ij S is j When correlation length reaches size L, this susceptibility gets a constant. χ FSS plot: L 2 η vs (T T c)l 1/ν. (T,L)/L 2 2.5 2 1.5 1 0.5 L= 4 8 16 32 64 0-10 -5 0 5 10 ( T 1)L 1/ Tc choose T c, γ/ν and ν so as to get a universal function. A deviation from the universal function is attributed to the correction to scaling... ( ) What is scaling theory? DEX-SMI 23 / 40

. 1 T = T c : χ(l, T c ) = L γ/ν χ(0) for L. 2 T > T c : ( χ(l, T ) χ L/ T T c L γ/ν T c ν) χ( ) = 0 χ(x) x γ/ν for x 1(L ), ( = χ(l, T ) L γ/ν L/ T T ) γ/ν c χ( ) T c L L( T-Tc /Tc) ( ) What is scaling theory? DEX-SMI 24 / 40

? ξ (T ) T T c ( ) ν ( ( ) ω ) T Tc T Tc ξ (T ) C χ 1 + C 1 + T c T c???? L χ(l, T ) L γ/ν F 0 ( L ((T T c )/T c ) ν )+L ω F 1 ( L ((T T c )/T c ) ν ) + ( ) What is scaling theory? DEX-SMI 25 / 40

Binder parameter 2 Binder parameter: (Phys. Rev. Lett. 47 (1981) 693.) ( U(L, T ) = 1 M4 3 M 2 2 = Ũ L/ T T c T c ν ) φ A = 0 A ξ L /L F (L, T )/T ( ) What is scaling theory? DEX-SMI 26 / 40

Binder parameter 2D Ising model: U(L, T )vs T T c T c L 1/ν 1 0.9 0.8 1 0.9 0.8 g(t,l) 0.7 0.6 0.5 0.4 0.3 L= 4 0.2 L= 8 L=16 0.1 L=32 L=64 0 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5 2.6 T/J g(t,l) 0.7 0.6 0.5 0.4 0.3 L= 4 0.2 L= 8 L=16 0.1 L=32 L=64 0-10 -5 0 5 10 (T/Tc 1)L 1/ ν ( ) What is scaling theory? DEX-SMI 27 / 40

ξ(l, T ) ξ (T )! ξ(l, T )? A = ξ ( ) ( ) ξ(l, T ) L φ ξ L F = ξ φ ξ L φξ ( ) L F ξ (T ) ξ ξ (T ) ( ) ( ) = ξ φ ξ F L = T T c φ ξν L F ξ (T ) ξ (T ) L φ ξ = 1 F ( ) = ( ) ξ(l, T ) L F L = ξ ( ) (T ) L F ξ (T ) L ξ(l, T ) ξ /L ξ(l, T )/L ξ(l, T )! ( ) What is scaling theory? DEX-SMI 28 / 40

2 FSS ( ) A(L, T ) L φ A ξ(l, T ) Ã L T c ν = ( ) χ(l, T ) ξ(l, T ) L γ/ν Ã L INPUT: χ(l, T ), ξ(l, T ) OUTPUT: γ = (T,L)/L 2 10 0 10 1 10 2 10 3 L= 4 8 12 16 24 32 48 64 10 1 10 0 10 1 (T,L)/L ( ) What is scaling theory? DEX-SMI 29 / 40

Campbell-Hukushima-Takayama: Phys.Rev.Lett.97, 117202 (2006). β ξ (1 T c /T ) ν = χ(l, T ) L γ/ν ( ) ξ(l, T ) F χ β L T] 2 (T,L)/[L 10 0 10 1 10 2 L= 4 8 12 16 24 32 48 64 10 3 10 2 10 1 10 0 10 1 10 2 (T,L)/L ( ) What is scaling theory? DEX-SMI 30 / 40

A(L, T ) A(, T )?!?? (?) J-K.Kim(1994), S.Caracciolo et al(1995). A(L, T ) ( ) L A(L, T ) = A(, T )f A ξ(l, T ) ξ(l, T ) ( ) L ξ(l, T ) = ξ (T )f ξ ξ(l, T ) ( ) What is scaling theory? DEX-SMI 31 / 40

(1) by Kim ( ) ξ(l, T ) ξ(l, T ) ξ (T ) = f ξ L Step0: /L 25 20 15 10 5 L= 8 L=12 L=16 L=24 0 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 T/J Step1: ξ(l, T ) vs ξ(l, T )/L. (L,T) 2.05 2 1.95 1.9 1.85 1.8 1.75 1.7 Fixed T T/J=1.80 T/J=1.77 0 0.05 0.1 0.15 0.2 0.25 (L,T)/L ξ(l, T ) vs ξ(l, T )/L L! ( ) What is scaling theory? DEX-SMI 32 / 40

(2) Step2: ξ(l,t ) ξ(,t ) vs ξ(l, T )/L (T) (L,T)/ 1.1 1.05 1 0.95 0.9 0.85 0.8 T/J=1.80 T/J=1.77 0 0.05 0.1 0.15 0.2 0.25 (L,T)/L Step1 y y ( ) T ξ (T ) A(L, T ) OUTPUT:A(, T )?? ( ) What is scaling theory? DEX-SMI 33 / 40

(3): Scaling Plot (T) (L,T)/ 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 T/J=1.8 1.703 1.609 1.519 1.403 1.374 1.345 1.317 1.289 1.260 1.232 1.204 1.176 1.148 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 (T,L)/L L/ξ 1: L/ξ O(1):! (L,T) 9 8 7 6 5 4 3 2 1 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 1/L T/J=1.80 T/J=1.61 T/J=1.40 1/L ( ) What is scaling theory? DEX-SMI 34 / 40

(4): ξ (T ) 1000 100 L= 8 L=12 L=16 L=24 (T) 10 3 10 2 10 1 Tc=1.106(4) =1.95(6) /L 10 10 0 0.1 1 T Tc 1 0.8 1 1.2 1.4 1.6 1.8 2 2.2 T/J? ξ (T T c ) ν T c 1.1 ν 1.95 ( ) What is scaling theory? DEX-SMI 35 / 40

FSS Carraciolo et al, PRL(1995)? ( ) L ξ(l, T ) = ξ (T )f ξ, ξ(l, T ) ( ξ(2l, T ) = ξ (T )f ξ 2L ) ξ(l, T ) ξ(2l, T ) = f ξ ( f ξ ( L ξ(l,t ) 2L ξ(2l,t ) ξ(2l, T ) ) = f ξ ( L ξ(l, T ) ( ) A(L, T ) L A(2L, T ) = Ã ξ(l, T ) ) ),!! ( ) What is scaling theory? DEX-SMI 36 / 40

ξ(l, T ) 4 χ(l, T ). 4 (2L,T) (L,T 3.5 3 2.5 2 1.5 L= 4 1 L= 8 L=12 0.5 L=16 L=24 L=32 0 0 0.5 1 1.5 2 2.5 3 (L,T)/L (L,T) (2L,T) 3.5 3 2.5 2 L= 4 1.5 L= 8 L=12 1 L=16 L=24 L=32 0.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 (L,T)/L (L 2L) ξ(l, T ) χ(l, T ) ξ(2l, T ) χ(2l, T ) ξ(4l, T ) χ(4l, T ) ξ(, T ) χ(, T ) OUTPUT:ξ (T ), χ(, T ). ( ) What is scaling theory? DEX-SMI 37 / 40

1 ξ(, T ) Kim s method Carraciolo s method T c γ. χ(t ) vs T /T c 1 (T,L) 1000 100 10 L= 4 8 16 32 64 Carraciolo s method Kim s method 1 0.01 0.1 1 T/Tc 1 ( ) What is scaling theory? DEX-SMI 38 / 40

? ( ) ( ) correction-to-scaling? scaling variables? ( )? ( ) What is scaling theory? DEX-SMI 40 / 40