1. ( ) L L L Navier-Stokes η L/η η r L( ) r [1] r u r ( ) r Sq u (r) u q r r ζ(q) (1) ζ(q) u r (1) ( ) Kolmogorov, Obukov [2, 1] ɛ r r u r r 1 3

Similar documents
,, Andrej Gendiar (Density Matrix Renormalization Group, DMRG) 1 10 S.R. White [1, 2] 2 DMRG ( ) [3, 2] DMRG Baxter [4, 5] 2 Ising 2 1 Ising 1 1 Ising

Venkatram and Wyngaard, Lectures on Air Pollution Modeling, m km 6.2 Stull, An Introduction to Boundary Layer Meteorology,

1 (Contents) (1) Beginning of the Universe, Dark Energy and Dark Matter Noboru NAKANISHI 2 2. Problem of Heat Exchanger (1) Kenji

スケーリング理論とはなにか? - --尺度を変えて見えること--

d (i) (ii) 1 Georges[2] Maier [3] [1] ω = 0 1

Hanbury-Brown Twiss (ver. 2.0) van Cittert - Zernike mutual coherence

kawa (Spin-Orbit Tomography: Kawahara and Fujii 21,Kawahara and Fujii 211,Fujii & Kawahara submitted) 2 van Cittert-Zernike Appendix A V 2

/ Christopher Essex Radiation and the Violation of Bilinearity in the Thermodynamics of Irreversible Processes, Planet.Space Sci.32 (1984) 1035 Radiat

T g T 0 T 0 fragile * ) 1 9) η T g T g /T *1. τ τ η = Gτ. G τ

L. S. Abstract. Date: last revised on 9 Feb translated to Japanese by Kazumoto Iguchi. Original papers: Received May 13, L. Onsager and S.

(a) (b) (c) (d) 1: (a) (b) (c) (d) (a) (b) (c) 2: (a) (b) (c) 1(b) [1 10] 1 degree k n(k) walk path 4

Black-Scholes [1] Nelson [2] Schrödinger 1 Black Scholes [1] Black-Scholes Nelson [2][3][4] Schrödinger Nelson Parisi Wu [5] Nelson Parisi-W

(Stochastic Thermodynsmics) Langevin Langevin

Trapezoidal Rule θ = 1/ x n x n 1 t = 1 [f(t n 1, x n 1 ) + f(t n, x n )] (6) 1. dx dt = f(t, x), x(t 0) = x 0 (7) t [t 0, t 1 ] f t [t 0, t 1 ], x x

1: Sheldon L. Glashow (Ouroboros) [1] 1 v(r) u(r, r ) ( e 2 / r r ) H 2 [2] H = ( dr ψ σ + (r) 1 2 ) σ 2m r 2 + v(r) µ ψ σ (r) + 1 dr dr ψ σ + (r)ψ +

2 (March 13, 2010) N Λ a = i,j=1 x i ( d (a) i,j x j ), Λ h = N i,j=1 x i ( d (h) i,j x j ) B a B h B a = N i,j=1 ν i d (a) i,j, B h = x j N i,j=1 ν i

Untitled

1: (Emmy Noether; ) (Feynman) [3] [4] {C i } A {C i } (A A )C i = 0 [5] 2

201711grade1ouyou.pdf

1 Tokyo Daily Rainfall (mm) Days (mm)

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

03.Œk’ì

waseda2010a-jukaiki1-main.dvi

Ł\”ƒ-2005

第90回日本感染症学会学術講演会抄録(I)

Feynman Encounter with Mathematics 52, [1] N. Kumano-go, Feynman path integrals as analysis on path space by time slicing approximation. Bull

20 $P_{S}=v_{0}\tau_{0}/r_{0}$ (3) $v_{0}$ $r_{0}$ $l(r)$ $l(r)=p_{s}r$ $[3 $ $1+P_{s}$ $P_{s}\ll 1$ $P_{s}\gg 1$ ( ) $P_{s}$ ( ) 2 (2) (2) $t=0$ $P(t

6 2 T γ T B (6.4) (6.1) [( d nm + 3 ] 2 nt B )a 3 + nt B da 3 = 0 (6.9) na 3 = T B V 3/2 = T B V γ 1 = const. or T B a 2 = const. (6.10) H 2 = 8π kc2

( ) ) ) ) 5) 1 J = σe 2 6) ) 9) 1955 Statistical-Mechanical Theory of Irreversible Processes )

proc.dvi

1 2 LDA Local Density Approximation 2 LDA 1 LDA LDA N N N H = N [ 2 j + V ion (r j ) ] + 1 e 2 2 r j r k j j k (3) V ion V ion (r) = I Z I e 2 r

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

φ 4 Minimal subtraction scheme 2-loop ε 2008 (University of Tokyo) (Atsuo Kuniba) version 21/Apr/ Formulas Γ( n + ɛ) = ( 1)n (1 n! ɛ + ψ(n + 1)

第5章 偏微分方程式の境界値問題

( ) I( ) TA: ( M2)

Kullback-Leibler

Vol. 29, No. 2, (2008) FDR Introduction of FDR and Comparisons of Multiple Testing Procedures that Control It Shin-ichi Matsuda Department of

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

1 9 v.0.1 c (2016/10/07) Minoru Suzuki T µ 1 (7.108) f(e ) = 1 e β(e µ) 1 E 1 f(e ) (Bose-Einstein distribution function) *1 (8.1) (9.1)

untitled


A

d > 2 α B(y) y (5.1) s 2 = c z = x d 1+α dx ln u 1 ] 2u ψ(u) c z y 1 d 2 + α c z y t y y t- s 2 2 s 2 > d > 2 T c y T c y = T t c = T c /T 1 (3.

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se

D v D F v/d F v D F η v D (3.2) (a) F=0 (b) v=const. D F v Newtonian fluid σ ė σ = ηė (2.2) ė kl σ ij = D ijkl ė kl D ijkl (2.14) ė ij (3.3) µ η visco

CVMに基づくNi-Al合金の

SAMA- SUKU-RU Contents p-adic families of Eisenstein series (modular form) Hecke Eisenstein Eisenstein p T

all.dvi

untitled

ms.dvi

main.dvi

: , 2.0, 3.0, 2.0, (%) ( 2.

橡超弦理論はブラックホールの謎を解けるか?

sakigake1.dvi


薄膜結晶成長の基礎3.dvi

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

Z: Q: R: C: sin 6 5 ζ a, b

untitled

2 1 x 2 x 2 = RT 3πηaN A t (1.2) R/N A N A N A = N A m n(z) = n exp ( ) m gz k B T (1.3) z n z = m = m ρgv k B = erg K 1 R =

xia2.dvi

163 KdV KP Lax pair L, B L L L 1/2 W 1 LW = ( / x W t 1, t 2, t 3, ψ t n ψ/ t n = B nψ (KdV B n = L n/2 KP B n = L n KdV KP Lax W Lax τ KP L ψ τ τ Cha

Title 最適年金の理論 Author(s) 藤井, 隆雄 ; 林, 史明 ; 入谷, 純 ; 小黒, 一正 Citation Issue Date Type Technical Report Text Version publisher URL

DVIOUT-fujin

(Onsager )

( ) ) AGD 2) 7) 1

Kaluza-Klein(KK) SO(11) KK 1 2 1

80 4 r ˆρ i (r, t) δ(r x i (t)) (4.1) x i (t) ρ i ˆρ i t = 0 i r 0 t(> 0) j r 0 + r < δ(r 0 x i (0))δ(r 0 + r x j (t)) > (4.2) r r 0 G i j (r, t) dr 0

Hilbert, von Neuman [1, p.86] kt 2 1 [1, 2] 2 2

液晶の物理1:連続体理論(弾性,粘性)

Jorgenson F, L : L: Inada lim F =, lim F L = k L lim F =, lim F L = 2 L F >, F L > 3 F <, F LL < 4 λ >, λf, L = F λ, λl 5 Y = Const a L a < α < CES? C

1/2 ( ) 1 * 1 2/3 *2 up charm top -1/3 down strange bottom 6 (ν e, ν µ, ν τ ) -1 (e) (µ) (τ) 6 ( 2 ) 6 6 I II III u d ν e e c s ν µ µ t b ν τ τ (2a) (

Aharonov-Bohm(AB) S 0 1/ 2 1/ 2 S t = 1/ 2 1/2 1/2 1/, (12.1) 2 1/2 1/2 *1 AB ( ) 0 e iθ AB S AB = e iθ, AB 0 θ 2π ϕ = e ϕ (ϕ ) ϕ

ver.1 / c /(13)

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

抄録/抄録1    (1)V

untitled

a L = Ψ éiγ c pa qaa mc ù êë ( - )- úû Ψ 1 Ψ 4 γ a a 0, 1,, 3 {γ a, γ b } η ab æi O ö æo ö β, σ = ço I α = è - ø çèσ O ø γ 0 x iβ γ i x iβα i

01.Œk’ì/“²fi¡*

2 1 1 (1) 1 (2) (3) Lax : (4) Bäcklund : (5) (6) 1.1 d 2 q n dt 2 = e q n 1 q n e q n q n+1 (1.1) 1 m q n n ( ) r n = q n q n 1 r ϕ(r) ϕ (r)

チャネル乱流における流体線の伸長

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

研修コーナー

パーキンソン病治療ガイドライン2002

fiš„v8.dvi

講義ノート 物性研究 電子版 Vol.3 No.1, (2013 年 T c µ T c Kammerlingh Onnes 77K ρ 5.8µΩcm 4.2K ρ 10 4 µωcm σ 77K ρ 4.2K σ σ = ne 2 τ/m τ 77K

p *2 DSGEDynamic Stochastic General Equilibrium New Keynesian *2 2

‚åŁÎ“·„´Šš‡ðŠp‡¢‡½‹âfi`fiI…A…‰…S…−…Y…•‡ÌMarkovŸA“½fiI›ð’Í

1 a b cc b * 1 Helioseismology * * r/r r/r a 1.3 FTD 9 11 Ω B ϕ α B p FTD 2 b Ω * 1 r, θ, ϕ ϕ * 2 *

H.Haken Synergetics 2nd (1978)

x 3 a (mod p) ( ). a, b, m Z a b m a b (mod m) a b m 2.2 (Z/mZ). a = {x x a (mod m)} a Z m 0, 1... m 1 Z/mZ = {0, 1... m 1} a + b = a +

2 A A 3 A 2. A [2] A A A A 4 [3]

(extended state) L (2 L 1, O(1), d O(V), V = L d V V e 2 /h 1980 Klitzing

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

( ) (, ) arxiv: hgm OpenXM search. d n A = (a ij ). A i a i Z d, Z d. i a ij > 0. β N 0 A = N 0 a N 0 a n Z A (β; p) = Au=β,u N n 0 A

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

TOP URL 1

Nosé Hoover 1.2 ( 1) (a) (b) 1:

Sample function Re random process Flutter, Galloping, etc. ensemble (mean value) N 1 µ = lim xk( t1) N k = 1 N autocorrelation function N 1 R( t1, t1

Transcription:

Kolmogorov Toward Large Deviation Statistical Mechanics of Strongly Correlated Fluctuations - Another Legacy of A. N. Kolmogorov - Hirokazu FUJISAKA Abstract Recently, spatially or temporally strongly correlated fluctuations are observed in many different contexts such as price fluctuations in economic dynamics as well as, e.g., turbulence, intermittency in coupled chaotic systems. They are ubiquitous in nonlinear, nonequilibrium systems. Statistical mechanics so far developed for statistically independent or weakly correlated fluctuations faces the problem, how to construct the emergency mechanism as well as to characterize the fundamental statistics of strongly correlated fluctuations. They often exhibit self-similarity characteristics. The aim of the present paper is to suggest the possibility of constructing statistical mechanics for strongly correlated fluctuations by proposing a unified approach to several kinds of examples from the phenomenological viewpoint based on the large devition statistics in the probability theory. Keywords Turbulence, On-off intermittency, Price fluctuations, Strongly correlated fluctuations, Self-similarity, Multifractals 1

1. ( ) 30 2. L L L Navier-Stokes η L/η η r L( ) r [1] r u r ( ) r Sq u (r) u q r r ζ(q) (1) ζ(q) u r (1) ( ) Kolmogorov, Obukov [2, 1] ɛ r r u r r 1 3 ɛ 1 3 r Sq(r) ɛ ɛ q r r τ(q) (2) 2

ζ(q) = q 3 + τ ( q 3 ) (3) [1, 3, 4] 1941 Kolmogorov (7) ɛ r r (ɛ r ɛ L ) τ(q) = min [ qz] (9) τ(q) = 0 ζ(q) = q 3 z E(k) ɛ 2 3 L k 5 3, (L 1 Kolmogorov(1962) k η 1, Kolmogorov ) (K62) = 1 2µ (z + µ 2 )2 K41 u r [2] (3) [5] µ ɛ r 0.3 1 r 1 r 2 r 3 Taylor r P (ɛ j, r j ɛ k, r k ) r k [5] SL ɛ r ɛ k r j She-Leveque ɛ j ) η r 3 [3] r 2 r 1 L τ(q) = 2 ( ) q ] 2 [1 3 q + 2 (10) 3 P (ɛ 3, r 3 ɛ 1, r 1 ) = P (ɛ 3, r 3 ɛ 2, r 2 )P (ɛ 2, r 2 ɛ 1, r 1 )dɛ 2 (4) [4] K62 [2] P (7) P (ɛ j, r j ɛ k, r k ) ɛ 1 j ( ) S(z(ɛj,r j ɛ k,r k )) rk r j z(ɛ j, r j ɛ k, r k ) = P r (ɛ) ɛ 1 ( L r (5) ln ɛj ɛ k ln r k rj (6) Kolmogorov(1962) r k = L, r j = z r r r = L ɛ L ɛ r ( ) S(zr(ɛ)) )[5], (7) z r (ɛ) = ln ɛ ɛ L ln L r (8) [5] u r r 1 3 ɛ 1 3 r τ(q) Legendre 2 3 = 2 + z ( 2 3 ln 3 ln z ) 2 2e ln 3 (11) 2 (4) ɛ r r z r (12) z r (Extended Self- Similarity, ESS) 3

r/η =19 A t = 1 t t 0 r s ds (13) t T τ t T t T τ τ t T A q t t φ(q) (14) z 1: n t n = e n T, (15) (Generalized Extended Self-Similarity, GESS)[6] (n = 0, 1, 2, 3,, N(= ln τ 1 )) [5, 7] 3. A tn+1 A tn = e zn (16) z n z n n ( ) z j N A tn = A T e n z n, (17) z n 1 n 1 z j (18) n n z n [9] Q n (z) e n (19) A T A [9] T A t P r t t (a) ( ) T S(zt (a)) T P t (a) a 1, (20) t j=0 z t (a) = ln a/a T ln T/t (21) 4

4. 2 Ising ξ T T c ν ξ = ψ 2 G(r) ψ(r + r 0 )ψ(r 0 ) r (d 2+η), (24) z d η Fisher Ising r 2: m τ = 1, T = 2.5 10 5 r (x 0 ) = 1 ψ(x 0 + r)dr, (25) V r r <r [10] φ(q) φ(q) = min z [ qz] (22) (V r r d ) q µ q (r) m q r r φ(q), (26) φ(q) 2 m r r t+1 = r t exp (λ r t + f t ), (23) (λ > 0, f t : ) µ 2 (r) r (d 2+η) z φ(2) = (d 2 + η) (27) (0 r t ) 2 Onsager φ(2) = η = 1 4 ( ) z m r r z r (28) [10] z r z r z r Q r (z) r S(z r(m)), (29) z r (m) = ln m m 0 ln r a (30) 5

z r r=64 m 0 a m 0 = 1 m r ( P r (m) m 1 r ) S(zr(m)), (31) a ( r a, a ) φ(q) = min z [ qz] z r 0-2 -1.8-1.6-1.4-1.2-1 -0.8-0.6-0.4-0.2 0 2 3: Ising φ(2)/2 z r z r 3 2 Ising ( 512 512) Monte Carlo [14] P (s) s t r t (s) = ln P (s) (32) P (s t) 2 t r t (s) t 2 t( 1 ) [11, 12] r t r t 5. 2.5 2 1.5 1 0.5 volatility clustering ( ) (New York ) t s (1 ) [13] T ( 1 ) z r=32 r=128 6

t/ t 1 y t (s) r t (s k t) = r t (s) (33) k=0 20 t=10 0 4 n t = t n T e n, (n = 0, 1, 2,, N, N ln(t/t s )) y n = 14 y tn r t (s) 17 0 t=20 t=40 1 2 3 4 0.5 1 1.5 2 y n+1 y n = e z n (34) 0 0.25 0.5 0.75 1 s (10 4 samples) z n z n n 4: y t t z(t) (35) z(t) z(t n ) = n 1 n 1 j=0 z j z j z t (y) = ln y y T ln T t (36) (T/t) 40 y t P t (y) y 1 ( T t ) S(zt(y)) (37) 5 (NYSE, New York ) S (37) t s t T 5: t t 3 2 1 0 t = 10 20 80 160 320 640 1280 2 1 0 z 7

6. Kolmogorov - - ( ) [15] Tsallis [16] (a),, (b) z (c) Andrei Nikolaevich Kolmogorov (1903-1987) (K41 ) 1962 Kolmogorov Frisch Kolmogorov ([8] ) (The Legacy of A. N. Kolmogorov) 8

[1] Kolmogorov [17] 30 ( ) (Kolmogorov ) Appendix Kolmogorov (K62 ) 30 (ζ(q) ) ( Navier-Stokes ) 1970 K62 (η r Kolmogorov L) Reynolds Re L/η = Re 3 4 Reynolds Kolmogorov 7. : ESS GESS 1993 Benzi (1) ζ(q) Sq u (r) Sp u (r)(p ) Sq u (r) [ Sp u (r) ] α(q p), (38) α(q p), r Langevin 9

α(q p) = ζ(q) ζ(p) (39) [ ] q [ Sq u (r) u q r ζ(q) L f(r) 1(r)] L g, (46) (Extended GESS r = η L Self-Similarity, ESS) α(q p) ζ(3) = 1 p = 1 ESS, ζ(q) GESS ESS (39) [ [ Sq u (r) u q r ζ(q) L 1(r)] L g Sq(r) ɛ ɛ q r τ(q), (ul = (Lɛ L ) 1 L 1(r)] 3 ) (40) L g, (47) (2) g 1 (r) η r L 1 r = η L 2 (47) 1 ESS η < r 3 < r 2 < L r 1 < L (4) ESS ESS ˆr = r g 1 (r), (48) S ɛ q(r) [ S ɛ p(r) ] β(q p), (41) β(q p) = τ(q) τ(p), (42) ( ˆr P r (ɛ) ɛ 1 L Benzi (1996) ESS zˆr (ɛ) ln ɛ (Generalized Extended Self-Similarity, GESS) (47) τ(q) (9) G q,p (r) Su q (r) ( S u p (r) ). (43) q/p Reynolds G q,p (r) [G q,p (r)]γ(q,p q,p ), (44) γ(q, p q, p ) r q, p, q, p (44) Sq u (r) (dˆr/dr > 0) (4) ) S(zˆr (ɛ)), (49) [1] U. Frisch, Turbulence: The Legacy of A. q γ(q, p q, p pζ(p) ζ(q) ) = (45) N. Kolmogorov, (Cambridge Univ. Press, q p ζ(p ) ζ(q ) Cambridge, 1995). ɛ L ln Ḽ r, (50) (r = η, L) 10

[2] A. N. Kolmogorov, J. Fluid Mech. 13, 82 (1962), A. M. Obukov, J. Fluid Mech. 13, 77 (1962). [3] Z.-S. She and E. Leveque, Phys. Rev. Lett. 72, 336 (1994). [4] T. Watanabe and H. Fujisaka, J. of Phys. Soc. Jpn 69, 1672 (2000). 1376 (1989). 4 ( 1998) 54 6, 423(1999) No.436, 29 (1999). C. Beck and F. Schlögl, Thermodynamics of Chaotic Systems, An Introduction, (Cambridge University Press, 1993). 15 2 ( 1997) [5] H. Fujisaka, Y. Nakayama, T. Watanabe and S. Grossmann, Scaling hypothesis leading to generalized extended selfsimilarity in turbulence, Phys. Rev. E 65, (2002). [6] ESS(Extended Self-Similarity): R. Benzi et al., Phys. Rev. E 48, R29 (1993). R. Benzi et al., Physica D 80, (1995). GESS(Generalized Extended Self- Similarity): R. Benzi et al., Phys. Rev. E 53, R3025 (1996). R. Benzi et al., Physica D 96, 162 (1996). [7] H. Fujisaka and S. Grossmann, Phys. Rev. E 63, 026305 (2001). [8] [11] W. Stroock, An Introduction to the Theory of Large Deviations, (Springer, Berlin,,, 56 27pZC- 8. 1984), P. S. Ellis, Entropy, Large Deviations, and [12] Statistical Mechanics, (Springer, Berlin, N. Ito and M. Suzuki, Prog. Theor. Phys. 1985), 77, 1391 (1987). A. D. Wentzell, Limit Theorems on Large [13] : Deviations for Markov Stochastic Processes, (Kluwer Academic, Dortrecht and ( ) ( 2000). London, 1990). P. Gopikrishnan et al., Physica A 287, 362 (2000). : 11, 322 (2001). H. Fujisaka and M. Inoue, Prog. Theor. Phys. 77, 1334 (1987); Phys. Rev. A 39, [9] : 51 11, 813 (1996). 9 1, 28 (1999); No.462, 47 (2001).. : J. Becker et al., Phys. Rev. E 59, 1622 (1999). T. John, R. Stannarius and U. Behn, Phys. Rev. Lett. 83, 749 (1999). [10] : H. Fujisaka, H. Suetani and T. Watanabe, Prog. Theor. Phys. Suppl., No. 139, 70(2000). 11

[14] Y. Fujiwara and H. Fujisaka, Physica A, 294, Issue 3-4, 439 (2001). H. E. Stanley et al., Physica A 302, 126 (2001). [15] D. C. Lin and R. L. Hughson, Phys. Rev. Lett. 86, 1650 (2001). Y. Ashkenazy et al., Phys. Rev. Lett., 86, 199 (2001). T. H. Mäkikallio et al., J. of the American College of Cardiology 37, 1395 (2001). [16] Tsallis : Nonextensive Statistical Mechanics and Its Applications, eds. S. Abe and Y. Okamoto, (Springer-Verlag, Berlin, 2001). [17] H. Mori and H. Fujisaka, Prog. Theor. Phys. 49, 764 (1973). 12