r III... IV.. grad, div, rot. grad, div, rot 3., B grad, div, rot I, II ɛ-δ web page (

Similar documents
2014 S hara/lectures/lectures-j.html r 1 S phone: ,

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

[ ] 0.1 lim x 0 e 3x 1 x IC ( 11) ( s114901) 0.2 (1) y = e 2x (x 2 + 1) (2) y = x/(x 2 + 1) 0.3 dx (1) 1 4x 2 (2) e x sin 2xdx (3) sin 2 xdx ( 11) ( s

(1) D = [0, 1] [1, 2], (2x y)dxdy = D = = (2) D = [1, 2] [2, 3], (x 2 y + y 2 )dxdy = D = = (3) D = [0, 1] [ 1, 2], 1 {

A (1) = 4 A( 1, 4) 1 A 4 () = tan A(0, 0) π A π

1 12 ( )150 ( ( ) ) x M x 0 1 M 2 5x 2 + 4x + 3 x 2 1 M x M 2 1 M x (x + 1) 2 (1) x 2 + x + 1 M (2) 1 3 M (3) x 4 +

( ) sin 1 x, cos 1 x, tan 1 x sin x, cos x, tan x, arcsin x, arccos x, arctan x. π 2 sin 1 x π 2, 0 cos 1 x π, π 2 < tan 1 x < π 2 1 (1) (

9 5 ( α+ ) = (α + ) α (log ) = α d = α C d = log + C C 5. () d = 4 d = C = C = 3 + C 3 () d = d = C = C = 3 + C 3 =

1 I p2/30

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

( ) 2.1. C. (1) x 4 dx = 1 5 x5 + C 1 (2) x dx = x 2 dx = x 1 + C = 1 2 x + C xdx (3) = x dx = 3 x C (4) (x + 1) 3 dx = (x 3 + 3x 2 + 3x +

I, II 1, 2 ɛ-δ 100 A = A 4 : 6 = max{ A, } A A 10

Gmech08.dvi

f (x) x y f(x+dx) f(x) Df 関数 接線 x Dx x 1 x x y f f x (1) x x 0 f (x + x) f (x) f (2) f (x + x) f (x) + f = f (x) + f x (3) x f

29

t θ, τ, α, β S(, 0 P sin(θ P θ S x cos(θ SP = θ P (cos(θ, sin(θ sin(θ P t tan(θ θ 0 cos(θ tan(θ = sin(θ cos(θ ( 0t tan(θ

c y /2 ddy = = 2π sin θ /2 dθd /2 [ ] 2π cos θ d = log 2 + a 2 d = log 2 + a 2 = log 2 + a a 2 d d + 2 = l

untitled

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%


高等学校学習指導要領解説 数学編

1 2 1 No p. 111 p , 4, 2, f (x, y) = x2 y x 4 + y. 2 (1) y = mx (x, y) (0, 0) f (x, y). m. (2) y = ax 2 (x, y) (0, 0) f (x,

Untitled

1 1. x 1 (1) x 2 + 2x + 5 dx d dx (x2 + 2x + 5) = 2(x + 1) x 1 x 2 + 2x + 5 = x + 1 x 2 + 2x x 2 + 2x + 5 y = x 2 + 2x + 5 dy = 2(x + 1)dx x + 1

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

18 ( ) I II III A B C(100 ) 1, 2, 3, 5 I II A B (100 ) 1, 2, 3 I II A B (80 ) 6 8 I II III A B C(80 ) 1 n (1 + x) n (1) n C 1 + n C

() (, y) E(, y) () E(, y) (3) q ( ) () E(, y) = k q q (, y) () E(, y) = k r r (3).3 [.7 ] f y = f y () f(, y) = y () f(, y) = tan y y ( ) () f y = f y

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2



function2.pdf

W u = u(x, t) u tt = a 2 u xx, a > 0 (1) D := {(x, t) : 0 x l, t 0} u (0, t) = 0, u (l, t) = 0, t 0 (2)

1 No.1 5 C 1 I III F 1 F 2 F 1 F 2 2 Φ 2 (t) = Φ 1 (t) Φ 1 (t t). = Φ 1(t) t = ( 1.5e 0.5t 2.4e 4t 2e 10t ) τ < 0 t > τ Φ 2 (t) < 0 lim t Φ 2 (t) = 0

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

高等学校学習指導要領

高等学校学習指導要領

Gmech08.dvi

(ii) (iii) z a = z a =2 z a =6 sin z z a dz. cosh z z a dz. e z dz. (, a b > 6.) (z a)(z b) 52.. (a) dz, ( a = /6.), (b) z =6 az (c) z a =2 53. f n (z

i

II 2 II

C:/KENAR/0p1.dvi

Chap9.dvi

A S- hara/lectures/lectures-j.html r A = A 5 : 5 = max{ A, } A A A A B A, B A A A %

= M + M + M + M M + =.,. f = < ρ, > ρ ρ. ρ f. = ρ = = ± = log 4 = = = ± f = k k ρ. k

i 18 2H 2 + O 2 2H 2 + ( ) 3K

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

18 2 F 12 r 2 r 1 (3) Coulomb km Coulomb M = kg F G = ( ) ( ) ( ) 2 = [N]. Coulomb

「産業上利用することができる発明」の審査の運用指針(案)

66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

#A A A F, F d F P + F P = d P F, F y P F F x A.1 ( α, 0), (α, 0) α > 0) (x, y) (x + α) 2 + y 2, (x α) 2 + y 2 d (x + α)2 + y 2 + (x α) 2 + y 2 =

lim lim lim lim 0 0 d lim 5. d 0 d d d d d d 0 0 lim lim 0 d

( 23 )


応力とひずみ.ppt

r 1 m A r/m i) t ii) m i) t B(t; m) ( B(t; m) = A 1 + r ) mt m ii) B(t; m) ( B(t; m) = A 1 + r ) mt m { ( = A 1 + r ) m } rt r m n = m r m n B


) ] [ h m x + y + + V x) φ = Eφ 1) z E = i h t 13) x << 1) N n n= = N N + 1) 14) N n n= = N N + 1)N + 1) 6 15) N n 3 n= = 1 4 N N + 1) 16) N n 4

() n C + n C + n C + + n C n n (3) n C + n C + n C 4 + n C + n C 3 + n C 5 + (5) (6 ) n C + nc + 3 nc n nc n (7 ) n C + nc + 3 nc n nc n (

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

4 4 4 a b c d a b A c d A a da ad bce O E O n A n O ad bc a d n A n O 5 {a n } S n a k n a n + k S n a a n+ S n n S n n log x x {xy } x, y x + y 7 fx

(iii) 0 V, x V, x + 0 = x. 0. (iv) x V, y V, x + y = 0., y x, y = x. (v) 1x = x. (vii) (α + β)x = αx + βx. (viii) (αβ)x = α(βx)., V, C.,,., (1)

I II III 28 29

生活設計レジメ

44 4 I (1) ( ) (10 15 ) ( 17 ) ( 3 1 ) (2)

II A A441 : October 02, 2014 Version : Kawahira, Tomoki TA (Kondo, Hirotaka )


2010 II / y = e x y = log x = log e x 2. ( e x ) = e x 3. ( ) log x = 1 x 1.2 Warming Up 1 u = log a M a u = M a 0

A大扉・騒音振動.qxd


1 : f(z = re iθ ) = u(r, θ) + iv(r, θ). (re iθ ) 2 = r 2 e 2iθ = r 2 cos 2θ + ir 2 sin 2θ r f(z = x + iy) = u(x, y) + iv(x, y). (x + iy) 2 = x 2 y 2 +

TOP URL 1

A S hara/lectures/lectures-j.html ϵ-n 1 ϵ-n lim n a n = α n a n α 2 lim a n = 0 1 n a k n n k= ϵ

高校生の就職への数学II

Chap10.dvi

Acrobat Distiller, Job 128

v v = v 1 v 2 v 3 (1) R = (R ij ) (2) R (R 1 ) ij = R ji (3) 3 R ij R ik = δ jk (4) i=1 δ ij Kronecker δ ij = { 1 (i = j) 0 (i

1 (1) ( i ) 60 (ii) 75 (iii) 315 (2) π ( i ) (ii) π (iii) 7 12 π ( (3) r, AOB = θ 0 < θ < π ) OAB A 2 OB P ( AB ) < ( AP ) (4) 0 < θ < π 2 sin θ

<4D F736F F D B B83578B6594BB2D834A836F815B82D082C88C60202E646F63>

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

(4) P θ P 3 P O O = θ OP = a n P n OP n = a n {a n } a = θ, a n = a n (n ) {a n } θ a n = ( ) n θ P n O = a a + a 3 + ( ) n a n a a + a 3 + ( ) n a n

KENZOU


熊本県数学問題正解

1. (8) (1) (x + y) + (x + y) = 0 () (x + y ) 5xy = 0 (3) (x y + 3y 3 ) (x 3 + xy ) = 0 (4) x tan y x y + x = 0 (5) x = y + x + y (6) = x + y 1 x y 3 (

Kroneher Levi-Civita 1 i = j δ i j = i j 1 if i jk is an even permutation of 1,2,3. ε i jk = 1 if i jk is an odd permutation of 1,2,3. otherwise. 3 4

. p.1/14

1 I 1.1 ± e = = - = C C MKSA [m], [Kg] [s] [A] 1C 1A 1 MKSA 1C 1C +q q +q q 1

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

名古屋工業大の数学 2000 年 ~2015 年 大学入試数学動画解説サイト

Z: Q: R: C: sin 6 5 ζ a, b

( ) ( )

mugensho.dvi

18 ( ) ( ) [ ] [ ) II III A B (120 ) 1, 2, 3, 5, 6 II III A B (120 ) ( ) 1, 2, 3, 7, 8 II III A B (120 ) ( [ ]) 1, 2, 3, 5, 7 II III A B (

08-Note2-web

( : December 27, 2015) CONTENTS I. 1 II. 2 III. 2 IV. 3 V. 5 VI. 6 VII. 7 VIII. 9 I. 1 f(x) f (x) y = f(x) x ϕ(r) (gradient) ϕ(r) (gradϕ(r) ) ( ) ϕ(r)

さくらの個別指導 ( さくら教育研究所 ) A a 1 a 2 a 3 a n {a n } a 1 a n n n 1 n n 0 a n = 1 n 1 n n O n {a n } n a n α {a n } α {a

120 9 I I 1 I 2 I 1 I 2 ( a) ( b) ( c ) I I 2 I 1 I ( d) ( e) ( f ) 9.1: Ampère (c) (d) (e) S I 1 I 2 B ds = µ 0 ( I 1 I 2 ) I 1 I 2 B ds =0. I 1 I 2

1

: α α α f B - 3: Barle 4: α, β, Θ, θ α β θ Θ

Transcription:

r 8.4.8. 3-3 phone: 9-76-4774, e-mail: hara@math.kyushu-u.ac.jp http://www.math.kyushu-u.ac.jp/~hara/lectures/lectures-j.html Office hours: 4/8 I.. ɛ-n. ɛ-δ 3. 4. II... 3. 4. 5..

r III... IV.. grad, div, rot. grad, div, rot 3., B grad, div, rot I, II ɛ-δ web page (http://www.gakushuin.ac.jp/~8879/mathbook/)

r 3.6 +.4 4 : 6 ma{, } % III

r 4 E-mail hara@math.kyushu-u.ac.jp ɛ-n a n n () a n <. n () a n < 5 n (3) ɛ > a n < ɛ n (4) lim n a n b n, c n n ɛ-n b n + n n +, c n log(n + ) 4 3 8: 4 3-3 4 B5

r 5 * * sin 3 lim ɛ-δ 4* a n, b n n 3 6 sin a n n k k n b n 5* c n n c n + n ( ) k k n e e c n e n e /e e O.K. e e e c n 6***..7 a n lim n a n b n b n n lim n b n k! n k k n a k k

r 6 5 7 8: 4 3-3 4 B5 a n. ǫ ǫ ǫ n () n. n n a n <. n > a n >. a n <. a n > <. n n > n <. n < (.) 4 < 4 n 4 < n n > a n >. () (). 5 n > a n < 5 (3). 5 ɛ n, ɛ > n < ɛ n < ɛ < ɛ n ɛ < n n > ɛ a n < ɛ (4) ɛ > n > ɛ a n < ɛ

r 7 lim a n N(ɛ) lim n ɛ a n n (4) ɛ > n > ɛ a n < ɛ lim n a n b n ǫ ǫ ǫ n c n ǫ ǫ ( ) ep ǫ n b n n b n < ɛ b n + n + b n < ɛ n + < ɛ n + > ɛ n > ɛ ɛ > n > ɛ b n < ɛ lim b n N(ɛ) lim n ɛ b n n ɛ > N(ɛ) ɛ n > N(ɛ) b n < ɛ lim n b n b n c n n c n < ɛ c n < ɛ log(n + ) < ɛ log(n + ) > ɛ ( ) n > ep ɛ ( ) ɛ > n > ep ɛ c n < ɛ

r 8 ) lim c n N(ɛ) ep( n ɛ lim c n n ( ) ɛ > N(ɛ) ep ɛ n > N(ɛ) c n < ɛ lim n c n c n b n b n < ɛ b n < ɛ b n b n < ɛ n b n ɛ n b n < ɛ n a n < ɛ n ɛ > N(ɛ) n > N(ɛ) a n < ɛ N(ɛ) b n c n b n N(ɛ) ɛ ( ) c n N(ɛ) ep ɛ

r 9 7 f(, y)ddy (a) f(, y) + y y + y 3 (b) f(, y) y y y (c) f(, y) + y y y 5 8: 4 3-3 4 B5 3 > 6 sin > < 6 sin ( ) 6 sin sin 6 ( ) ɛ > δ 6ɛ < δ sin 6 < ɛ sin lim sin lim

r f() sin f() f () cos f() f() g() sin ( 3 /6) g(), g () cos +, g () sin + g () g () g () g () g () g() g() g() sin 3 3! + 5 5! 7 7! + < < π/4 > sin E B H C O D O, OB O OC CB sin B sin < (cos ) (sin ) cos 4 8 DHE CD + CE DHE OD OH cos cos CD + CE sin sin cos 3 5 8 < < a a a /8 ( a )

r sin. lim. sin, cos 3. 4 a n b n a n a n n k n k d log n n a n a n, b n a n a m a m + + 4 + + }{{ 4 } 8 + + + + }{{ 8 } m + + m + m }{{} 4 m m a n b n b n n b n + n k b n n k + d + n < b n m m+ k k ( m ) m m k m b n m b n b n + k k m+ k m k m m n n k + n k(k ) + ( k ) + k n k

r b n m > n < b m b n m kn+ ɛ > N /ɛ m k n d n m n m > n > N b m b n < ɛ b n b n 5 m > n n c m c n kn+ ( ) k k! n kn+ ( k! + ) (n + )! n + + (n + )(n + 3) + (n + )(n + 3)(n + 4) + n (n + ), (n + 3), (n + 4) 3 ( + 3 (n + )! + 3 + 3 ) 3 + (n + )! 3 < (n + )! > ɛ > N /ɛ m > n > N c m c n < (n + )! < ɛ {c n } {c n } c n n n c n+ c n (n + )! + ( ) (n + )! ( ) (n + )! n + n + < d n : c n d n e n : c n n c n, d n, e n c n n k k! + + + 6 + + + + + 3 + 3 d n e n d n, e n c n d n e n d n e n c n c n (n)! n d n e n c n

r 3 8 y, y, u + y, v y ( + y)e y ddy (u, v) 9 a > y, y, a ( + y) cos(y) ddy a) cos(y) ddy y cos(y) ddy b) u y, w y (u, w) (, y) w) (u, (u, w) (, y) p.3, 4, 5 8 8: 4 3-3 4 B5

r 4 7 y y y 3 3 3 (a) (b) (c) (a) y ( + y)ddy 3 d 3 dy( + y) 3 d [y + y ] y3 t 3 3 y 3 d {(3 ) + { } [ dt (3 t)t + t 3t ] t3 3 + t3 3 [ 3t ] 6 t3 3 6 7 9 9 (3 ) } (b) (y)ddy d dy(y) [ y ] y d y [ d 3 4 ] 8 8 (c) ( + y)ddy d d dy( + y) d [ y + y } [ { 3 + 34 4 4 + 3 6 35 ] y y ] d { ( ) + 4 } 4 + 6 3 7 6

r 5 () y- () ( + y ) () ddy α α α ( ddy α α + y ) α B y- () B ( + y ) () B ddy α α α ( ddy α α + y ) α 6 4 8: 4 3-3 4 B5 8 + y y u + v u v

r 6 y v 4 B 4 u, y u, v (, y) (u, v) 4 dv (u, v) (, y) (u, v) (, y) 4 v du u e v 4 (, y) (u, v) v (4 v) dv e 4 4 e v (4 v) dv e4 3 9 w y a a B a a u a) cos(y)ddy y cos(y)ddy y sin(y) sin(y) a a dy d a y dy a y sin(y) d [ sin(y) ] a y d sin( ) y d sin(y) a dy [ sin(y) ] a a dy{sin(ay) sin(y )} y

r 7 a d sin( ) + a dy{sin(ay) sin(y )} a dy sin(ay) [ cos(ay) ] a cos(a ) a a b) u y y y a, y u, w u ± u + 4w, y u ± u + 4w, y u, w u w y > y y a u + u + 4w, y u + u + 4w u + u + 4w a u + u + 4w w w u a w + au a u a w w + au a u a ( + y) cos(w) B [ cos(a ] a au) a (u, v) (, y) + y (, y) (u, v) + y + y dudw cos w dudw B cos(a ) a a) a du a au dw cos w a du sin(a au)

r 8 () ().8. () y > y α > + y + y ( + y ) α ( + y ) α () () () α < () < α < α α y y n n n y B n n y C n n y B n C n n n ( + y ) α ddy B n ( + y ) α ddy + C n ( + y ) α ddy B n C n

r 9 B n y + y α B n ( ) α ddy B n ( ) α ddy B n ( + y ) α ddy B n ( ) α ddy ddy B n α ddy B n α d dy α d α d α 4 d α α > α < 3/ B n α < 3/ C n y α C n y α ddy C n ( y ) α ddy C n y α ddy C n ( + y ) α ddy y dy d y y α dy y / α 4 C n y α ddy dy y / α / α > α < 3/ C n α < 3/ n α < 3/ () α < 3/ y t, t () () α α > y n n y n B n n y C n n y B n C n n n ( + y ) α ddy B n ( + y ) α ddy + C n ( + y ) α ddy B n C n B n + y α ddy B n α B n ( + y ) α ddy ddy B n α ddy B n α

r ddy B n α n d dy α n d α 4 n d α n α < α > 3/ B n α > 3/ C n y α C n y α ddy C n ( + y ) α ddy C n y α ddy C n y α ddy n y dy d n y y α 4 dy y / α n / α < α > 3/ C n α > 3/ n α > 3/ () α > 3/

r 7/8 7/ 7/4.5 C z + y z ( + y) F F (, y, z) (y, z, ) F (r) dr C (,, ) C 3 S z +y +y 4 (, y, z) S +z F (r) ds(r) G(r) ds(r) a) F (, y, z) (,, 3), b) G(, y, z) (, y, z) S S 7 5: 4 3-3 4 B5

r 7 4 grad div () () grad div 7 9 5: 4 3-3 4 B5 C z + y ( + y) ( ) + (y ) y + cos θ, y + sin θ, z 4 + (cos θ + sin θ) θ [, π] r (θ) ( sin θ, cos θ, (cos θ sin θ)) r (θ) F (r(θ)) sin θ( + sin θ) + cos θ{4 + (cos θ + sin θ)} (cos θ sin θ)( + cos θ) cos θ sin θ sin θ + 8 sin θ cos θ cos θ sin θ + cos θ + 4 sin θ π dθ { cos θ sin θ + cos θ + 4 sin θ} π 3 S, y r cos θ, y r sin θ, z r ( r, θ π)

r 3 cos θ r r sin θ, r r θ r sin θ r cos θ, r r r θ r cos θ r sin θ r r cos θ F (r), G(r) r sin θ S S dg(r) ds(r) df (r) ds(r) dr π dr 3 π dθ 3r π r dr 3r 6π π dθ { r 3 cos θ r 3 sin θ + r 3 } dr π dθ (, y) df (r) ds(r) F S z S S y- S y- 4π 3 4π 3 π

r 4 4 () grad f e, e y, y grad f e + y e y (a), y r, θ (b) e, e y e r, e θ (a) r r + θ θ y r r y + θ θ y r, θ, y ] [ r θ r y θ y (r, θ) (, y) (, y) (r, θ) [ ] [ (, y) cos θ (r, θ) sin θ (r, θ) (, y) ] [ r sin θ r cos θ cos θ sin θ r sin θ r cos θ ] sin θ cos θ r θ r y cos θ sin θ + r θ r [ ] [ cos θ y sin θ sin θ r cos θ r ] [ ] r θ (b) [ ] [ ] [ ] e r cos θ sin θ e sin θ cos θ e θ grad f e + y e y [ e r e θ ] [ r e y [e e y ] [ y ] [ ] [ ] r r e r + r θ e θ θ [ e e y ] ] [ cos θ sin θ e r e θ sin θ cos θ [ cos θ sin θ ] [ cos θ sin θ ] [ sin θ cos θ sin θ r cos θ r e r e θ ] ] [ ] r θ div F grad F F e + F y e y div F F + F y y

r 5 (b ) F e r, e θ (a ), y r, θ grad e F F r e r + F θ e θ F r, F θ F F r e r +F θ e θ F r (cos θ e +sin θ e y )+F θ ( sin θ e +cos θ e y ) (F r cos θ F θ sin θ)e +(F r sin θ+f θ cos θ)e y [ F F y ] [ cos θ sin θ ] [ sin θ cos θ F r F θ ] div F F + F y y (F r cos θ F θ sin θ) + y (F r sin θ + F θ cos θ) (a ), y r, θ div F cos θ r (F r cos θ F θ sin θ) sin θ r + sin θ r (F r sin θ + F θ cos θ) + cos θ F r r + F r r + F θ r θ r r r (rf r) + r f div (grad f) F grad f θ (F r cos θ F θ sin θ) θ (F r sin θ + F θ cos θ) F θ θ F r e r + r θ e θ F r r, div F θ r θ f div F F r r + F r r + F θ r θ f r + r r + f r θ