63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1)., Φ = gh, f.,. (2.6.40), Φ + V Φ + Φ V = 0 (3.2.2). T = L/C (3.2.3), C. C V, T = L/V

Similar documents
5 1.2, 2, d a V a = M (1.2.1), M, a,,,,, Ω, V a V, V a = V + Ω r. (1.2.2), r i 1, i 2, i 3, i 1, i 2, i 3, A 2, A = 3 A n i n = n=1 da = 3 = n=1 3 n=1

, 1.,,,.,., (Lin, 1955).,.,.,.,. f, 2,. main.tex 2011/08/13( )

プログラム

日本内科学会雑誌第102巻第4号

,., 5., ,. 2.2,., x z. y,.,,,. du dt + α p x = 0 dw dt + α p z + g = 0 α dp dt + pγ dα dt = 0 α V dα dt = 0 (2.2.1), γ = c p /c

微分積分 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 初版 1 刷発行時のものです.

1 (Berry,1975) 2-6 p (S πr 2 )p πr 2 p 2πRγ p p = 2γ R (2.5).1-1 : : : : ( ).2 α, β α, β () X S = X X α X β (.1) 1 2

_0212_68<5A66><4EBA><79D1>_<6821><4E86><FF08><30C8><30F3><30DC><306A><3057><FF09>.pdf

1. z dr er r sinθ dϕ eϕ r dθ eθ dr θ dr dθ r x 0 ϕ r sinθ dϕ r sinθ dϕ y dr dr er r dθ eθ r sinθ dϕ eϕ 2. (r, θ, φ) 2 dr 1 h r dr 1 e r h θ dθ 1 e θ h

2012専門分科会_new_4.pptx

grad φ(p ) φ P grad φ(p ) p P p φ P p l t φ l t = 0 g (0) g (0) (31) grad φ(p ) p grad φ φ (P, φ(p )) xy (x, y) = (ξ(t), η(t)) ( )

Note.tex 2008/09/19( )

日本内科学会雑誌第98巻第4号

日本内科学会雑誌第97巻第7号

KENZOU


本文/目次(裏白)

1 1 sin cos P (primary) S (secondly) 2 P S A sin(ω2πt + α) A ω 1 ω α V T m T m 1 100Hz m 2 36km 500Hz. 36km 1

2 1 κ c(t) = (x(t), y(t)) ( ) det(c (t), c x (t)) = det (t) x (t) y (t) y = x (t)y (t) x (t)y (t), (t) c (t) = (x (t)) 2 + (y (t)) 2. c (t) =

18 I ( ) (1) I-1,I-2,I-3 (2) (3) I-1 ( ) (100 ) θ ϕ θ ϕ m m l l θ ϕ θ ϕ 2 g (1) (2) 0 (3) θ ϕ (4) (3) θ(t) = A 1 cos(ω 1 t + α 1 ) + A 2 cos(ω 2 t + α

No δs δs = r + δr r = δr (3) δs δs = r r = δr + u(r + δr, t) u(r, t) (4) δr = (δx, δy, δz) u i (r + δr, t) u i (r, t) = u i x j δx j (5) δs 2

I A A441 : April 15, 2013 Version : 1.1 I Kawahira, Tomoki TA (Shigehiro, Yoshida )

9 2 1 f(x, y) = xy sin x cos y x y cos y y x sin x d (x, y) = y cos y (x sin x) = y cos y(sin x + x cos x) x dx d (x, y) = x sin x (y cos y) = x sin x

N cos s s cos ψ e e e e 3 3 e e 3 e 3 e


1. 1 A : l l : (1) l m (m 3) (2) m (3) n (n 3) (4) A α, β γ α β + γ = 2 m l lm n nα nα = lm. α = lm n. m lm 2β 2β = lm β = lm 2. γ l 2. 3

第86回日本感染症学会総会学術集会後抄録(I)

x () g(x) = f(t) dt f(x), F (x) 3x () g(x) g (x) f(x), F (x) (3) h(x) = x 3x tf(t) dt.9 = {(x, y) ; x, y, x + y } f(x, y) = xy( x y). h (x) f(x), F (x

H 0 H = H 0 + V (t), V (t) = gµ B S α qb e e iωt i t Ψ(t) = [H 0 + V (t)]ψ(t) Φ(t) Ψ(t) = e ih0t Φ(t) H 0 e ih0t Φ(t) + ie ih0t t Φ(t) = [

基礎数学I


untitled

Z: Q: R: C: sin 6 5 ζ a, b

Ł\”ƒ-2005

量子力学 問題

B ver B

支持力計算法.PDF

I

第90回日本感染症学会学術講演会抄録(I)

85 4

meiji_resume_1.PDF

プリント

2.1: n = N/V ( ) k F = ( 3π 2 N ) 1/3 = ( 3π 2 n ) 1/3 V (2.5) [ ] a = h2 2m k2 F h2 2ma (1 27 ) (1 8 ) erg, (2.6) /k B 1 11 / K

O1-1 O1-2 O1-3 O1-4 O1-5 O1-6

sekibun.dvi

24 I ( ) 1. R 3 (i) C : x 2 + y 2 1 = 0 (ii) C : y = ± 1 x 2 ( 1 x 1) (iii) C : x = cos t, y = sin t (0 t 2π) 1.1. γ : [a, b] R n ; t γ(t) = (x

Erased_PDF.pdf

( ) Note (e ) (µ ) (τ ) ( (ν e,e ) e- (ν µ, µ ) µ- (ν τ,τ ) τ- ) ( ) ( ) (SU(2) ) (W +,Z 0,W ) * 1) 3 * 2) [ ] [ ] [ ] ν e ν µ ν τ e

医系の統計入門第 2 版 サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 2 版 1 刷発行時のものです.

(1.2) T D = 0 T = D = 30 kn 1.2 (1.4) 2F W = 0 F = W/2 = 300 kn/2 = 150 kn 1.3 (1.9) R = W 1 + W 2 = = 1100 N. (1.9) W 2 b W 1 a = 0

数学の基礎訓練I

, 3, 6 = 3, 3,,,, 3,, 9, 3, 9, 3, 3, 4, 43, 4, 3, 9, 6, 6,, 0 p, p, p 3,..., p n N = p p p 3 p n + N p n N p p p, p 3,..., p n p, p,..., p n N, 3,,,,



SO(3) 7 = = 1 ( r ) + 1 r r r r ( l ) (5.17) l = 1 ( sin θ ) + sin θ θ θ ϕ (5.18) χ(r)ψ(θ, ϕ) l ψ = αψ (5.19) l 1 = i(sin ϕ θ l = i( cos ϕ θ l 3 = i ϕ


SFGÇÃÉXÉyÉNÉgÉãå`.pdf

.5 z = a + b + c n.6 = a sin t y = b cos t dy d a e e b e + e c e e e + e 3 s36 3 a + y = a, b > b 3 s363.7 y = + 3 y = + 3 s364.8 cos a 3 s365.9 y =,

(Bessel) (Legendre).. (Hankel). (Laplace) V = (x, y, z) n (r, θ, ϕ) r n f n (θ, ϕ). f n (θ, ϕ) n f n (θ, ϕ) z = cos θ z θ ϕ n ν. P ν (z), Q ν (z) (Fou


08-Note2-web

TOP URL 1

( ; ) C. H. Scholz, The Mechanics of Earthquakes and Faulting : - ( ) σ = σ t sin 2π(r a) λ dσ d(r a) =

,. Black-Scholes u t t, x c u 0 t, x x u t t, x c u t, x x u t t, x + σ x u t, x + rx ut, x rux, t 0 x x,,.,. Step 3, 7,,, Step 6., Step 4,. Step 5,,.

t = h x z z = h z = t (x, z) (v x (x, z, t), v z (x, z, t)) ρ v x x + v z z = 0 (1) 2-2. (v x, v z ) φ(x, z, t) v x = φ x, v z

128 3 II S 1, S 2 Φ 1, Φ 2 Φ 1 = { B( r) n( r)}ds S 1 Φ 2 = { B( r) n( r)}ds (3.3) S 2 S S 1 +S 2 { B( r) n( r)}ds = 0 (3.4) S 1, S 2 { B( r) n( r)}ds

II 1 II 2012 II Gauss-Bonnet II

.2 ρ dv dt = ρk grad p + 3 η grad (divv) + η 2 v.3 divh = 0, rote + c H t = 0 dive = ρ, H = 0, E = ρ, roth c E t = c ρv E + H c t = 0 H c E t = c ρv T

131WA (ai).pdf

December 28, 2018

放射線専門医認定試験(2009・20回)/HOHS‐05(基礎二次)

プログラム

φ s i = m j=1 f x j ξ j s i (1)? φ i = φ s i f j = f x j x ji = ξ j s i (1) φ 1 φ 2. φ n = m j=1 f jx j1 m j=1 f jx j2. m

( )

A 2 3. m S m = {x R m+1 x = 1} U + k = {x S m x k > 0}, U k = {x S m x k < 0}, ϕ ± k (x) = (x 0,..., ˆx k,... x m ) 1. {(U ± k, ϕ± k ) 0 k m} S m 1.2.

7. y fx, z gy z gfx dz dx dz dy dy dx. g f a g bf a b fa 7., chain ule Ω, D R n, R m a Ω, f : Ω R m, g : D R l, fω D, b fa, f a g b g f a g f a g bf a

The Physics of Atmospheres CAPTER :

Holton semigeostrophic semigeostrophic,.., Φ(x, y, z, t) = (p p 0 )/ρ 0, Θ = θ θ 0,,., p 0 (z), θ 0 (z).,,,, Du Dt fv + Φ x Dv Φ + fu +


4 2 Rutherford 89 Rydberg λ = R ( n 2 ) n 2 n = n +,n +2, n = Lyman n =2 Balmer n =3 Paschen R Rydberg R = cm 896 Zeeman Zeeman Zeeman Lorentz

ohp_06nov_tohoku.dvi

4 4 θ X θ P θ 4. 0, 405 P 0 X 405 X P 4. () 60 () 45 () 40 (4) 765 (5) 40 B 60 0 P = 90, = ( ) = X

() x + y + y + x dy dx = 0 () dy + xy = x dx y + x y ( 5) ( s55906) 0.7. (). 5 (). ( 6) ( s6590) 0.8 m n. 0.9 n n A. ( 6) ( s6590) f A (λ) = det(a λi)

Part () () Γ Part ,

N/m f x x L dl U 1 du = T ds pdv + fdl (2.1)

all.dvi

x A Aω ẋ ẋ 2 + ω 2 x 2 = ω 2 A 2. (ẋ, ωx) ζ ẋ + iωx ζ ζ dζ = ẍ + iωẋ = ẍ + iω(ζ iωx) dt dζ dt iωζ = ẍ + ω2 x (2.1) ζ ζ = Aωe iωt = Aω cos ωt + iaω sin

最新耐震構造解析 ( 第 3 版 ) サンプルページ この本の定価 判型などは, 以下の URL からご覧いただけます. このサンプルページの内容は, 第 3 版 1 刷発行時のものです.

eto-vol1.dvi

τ τ

b n c n d n d n = f() d (n =, ±, ±, ) () πi ( a) n+ () () = a R a f() = a k Γ ( < k < R) Γ f() Γ ζ R ζ k a Γ f() = f(ζ) πi ζ dζ f(ζ) dζ (3) πi Γ ζ (3)


( ) ,


66 σ σ (8.1) σ = 0 0 σd = 0 (8.2) (8.2) (8.1) E ρ d = 0... d = 0 (8.3) d 1 NN K K 8.1 d σd σd M = σd = E 2 d (8.4) ρ 2 d = I M = EI ρ 1 ρ = M EI ρ EI

II ( ) (7/31) II ( [ (3.4)] Navier Stokes [ (6/29)] Navier Stokes 3 [ (6/19)] Re

b3e2003.dvi

pdf

(Compton Scattering) Beaming 1 exp [i (k x ωt)] k λ k = 2π/λ ω = 2πν k = ω/c k x ωt ( ω ) k α c, k k x ωt η αβ k α x β diag( + ++) x β = (ct, x) O O x


Transcription:

62 3 3.1,,.,. J. Charney, 1948., Burger(1958) Phillips(1963),.,. L : ( 1/4) T : ( 1/4) V :,. v x u x V L, etc, u V T,,.,., ( )., 2.1.1.

63 3.2,.,.,. (2.6.38a), (2.6.38b), V + V V + Φ + fk V = 0 (3.2.1)., Φ = gh, f.,. (2.6.40), Φ + V Φ + Φ V = 0 (3.2.2). T = L/C (3.2.3), C. C V, T = L/V (3.2.4).,. L 10 6 m, V 10 m/s, T 10 5 s ( 1 )., 1/4. (3.2.1). V + V V + Φ + fk V = 0 (3.2.5) R o fv R o fv fv, R o = V/fL.., f 10 4 s 1, L 10 6 m, V 10 m/s, R o 0.1.,.

64 R o, (3.2.5).,., Φ fv (3.2.6) (3.2.2), Φ. Φ = Φ + Φ (3.2.7), Φ = gh. Φ, (3.2.6). Φ fv L (3.2.8),. (3.2.7) (3.2.2), (3.2.4) (3.2.8), Φ + V Φ + Φ V + Φ V = 0 (3.2.9) R o F Φ V L R o F Φ V L R o F Φ V L ΦV/L., F = f 2 L 2 / Φ (rotational Froude number).. F = f 2 L 2 / Φ = L 2 /L 2 R (3.2.10), L R = Φ 1/2 /f (Rossby radius of deformation). 2.7, L R. R o, (3.2.5) Φ + fk V = 0 or V = f 1 k Φ (3.2.11)., R o. F 1, (3.2.9) Φ V = 0 (3.2.12). f, (3.2.12) (3.2.11). (3.2.11) (3.2.12)

65,.,., (3.2.11), (3.2.12), ( 2.7 )., Richardson(1922) (3.2.9),,., (3.2.1) (3.2.2) ( 2.5 ).. 2.5,., R o 1 1 (3.2.11), (3.2.12)., *1. V = V ψ + V χ, V ψ = k ψ, V χ = χ (3.2.13), ψ, χ., ζ = k V = 2 ψ D = V = 2 χ (3.2.14)., ψ χ., (3.2.1) k. + V ζ + (f + ζ) V = 0 (3.2.15), (3.2.1).. D + (V V ) + 2 Φ fζ = 0 (3.2.16) V ψ V, V χ R 1 V (3.2.17) *1, 3 F, 0, F., F = φ + A, φ, A.,.

66, R 1. (3.2.13) (3.2.9), (3.2.17) Φ + V ψ Φ + V χ Φ + Φ V χ + Φ V χ = 0 (3.2.18) R o F Φ V L R of Φ V L R 1 R o F Φ V L R 1R o F Φ V L R 1 Φ V L. *2, R 1 R o F (3.2.19)., (3.2.13) (3.2.15),, + V ψ ζ + V χ ζ + fd + ζd = 0 V 2 L 2 V 2 L 2 R 1 V 2 R 1 V 2 V 2 R L 2 R o L 2 1 L 2 (3.2.20)., ζ V/L, D R 1 V/L. (3.2.16), D + (V ψ V ψ ) + (V ψ V χ ) + (V χ V ψ ) R 1 V 2 L 2 V 2 L 2 R 1 V 2 V 2 R L 2 1 L 2 (3.2.21) + (V χ V χ ) + 2 Φ fζ = 0 R1 2 V 2 1 V 2 1 V 2 L 2 R o L 2 R o L 2. (3.2.20),., R 1 R o (3.2.22) D ζ = R 1 (3.2.23)., R 1 (3.2.19) (3.2.22)., L = k 1, Φ = gh, (2.6.61).,. *2.

67 F 1, R o 1., (3.2.19) (3.2.22) R 1 = R 0. (3.2.9), (3.2.20), (3.2.21), R o,. Φ + V ψ Φ + ΦD = 0 (3.2.24) + V ψ ζ + fd = 0 (3.2.25) 2 Φ fζ = 0 (3.2.26) (3.2.26), ζ = 2 ψ, ψ = Φ /f., V ψ = k ψ = f 1 k Φ (3.2.27). (3.2.11). (3.2.24), (3.2.25), (3.2.26)( (3.2.27)), (quasi-geostrophic equation)., ( ). (3.2.23), (3.2.24) (3.2.25). (3.2.24) (3.2.25) D, ( ) + V ψ (ζ f ΦΦ ) = 0 (3.2.28)., (quasi-geostrophic potential vorticity equation). (2.6.42), (2.6.42), *3. (3.2.26) (3.2.27), (3.2.28) Φ. *3,. q = f + ζ 1 f + ζ = g Φ h + H 1 + (Φ / Φ) g Φ 1 f g Φ [ ] 1 f 1 + (ζ/f) (Φ / Φ) [ ] 1 + (ζ/f))(1 (Φ / Φ), h/h 1., R 1 (= R o ) 1 ζ/f 1., V ψ V χ R 1 (= R o ), V ψ (3.2.28).

68, (3.2.24) (3.2.25) (3.2.26). ( 2 f ) 2 D = 1 Φ f Φ k Φ ( 2 Φ ) (3.2.29),., (2.6.59) x. (3.2.29), Φ (3.2.26).,., (L 10 6 m, f 10 4 s 1, Φ 1/2 = 300 m/s) F, F 0.1. F 1,. F R o 1, (3.2.19) R 1 = Ro 2. (3.2.20), + V ψ ζ = 0 (3.2.30).., (3.2.27). (3.2.28), (3.2.30),,. (3.2.1), (3.2.2),.

69 3.3,.. Z = ln(p/p 0 ) (3.3.31), p 0. Z, z, Φ = gz. RT = pα = p Φ p = Φ (3.3.32) Z, H = RT /g( 8 km) Z., T. 1,. p = p = 1 (3.3.33) p, ( 1.8 ). Ż, ω. Ż = ṗ/p = ω/p (3.3.34) Z, V + V V + Ż V., 1 (3.3.32), Φ + V Φ + Ż + Φ + fk V = 0 (3.3.35) ( ) Φ + κφ = κq (3.3.36)., κ = R/c p, Q., V + Ż Ż = 0 (3.3.37)., R o, ε, L/a., a. ε,

70. F,., V L, 1 L, 1 (3.3.38)., f β = 2Ω cos φ /a. β. Z, / 1 8 km ( )., V ψ V χ ((3.2.13) (3.2.14) )., Φ = Φ(Z) + Φ (3.3.39)., Φ(Z).. V ψ V, V χ R 1 V (3.3.40) Ż R 1 V/L (3.3.41) Φ fv L (3.3.42), R 1. Ż, V χ (3.3.37). Φ, (3.2.8).,., + V ψ ζ + V χ ζ + V ψ f + V χ f + Ż V 2 L 2 V 2 L 2 R 1 V 2 L 2 (βa/f)l/a R o V 2 L 2 (βa/f)l/a R o R 1 V 2 L 2 R 1 V 2 L 2 (3.3.43) + fd + ζd + k Ż V ψ + k Ż V χ = 0 R 1 V 2 R 1 V 2 R 1 V 2 R1V 2 2 R o L 2 L 2 L 2 L 2., ζ V/L, D R 1 V/L., R o = V/fL V 2 /L 2.

71, D + (V ψ V ψ ) + (V ψ V ψ + V χ V ψ ) R 1 V 2 V 2 R 1 V 2 L 2 L 2 L 2 R 2 1V 2 + (V χ V χ ) + Ż V ψ + Ż D L 2 L 2 L 2 R 1 V 2 R 1 V 2 + Ż V χ + 2 Φ fζ k f V ψ k f V χ = 0 R1V 2 2 1 V 2 1 V 2 (βa/f)l/a V 2 (βa/f)l/a R 1 V 2 L 2 R o L 2 R o L 2 R o L 2 R o L 2 (3.3.44). (3.3.37) Ż,. D + Ż Ż = 0 R 1 V L R 1 V L R 1 V L 1 (3.3.36),. Φ, + V ψ Φ + V χ Φ + ŻΓ(Z) ( Φ + Ż + κφ fv 2 fv 2 R 1 fv 2 R 1 fv 2 R o ε R 1 fv 2 Γ(Z) = ) = κq ( ) ( ) ( Φ + κ Φ T = R + κ T = H2 g g + 1 T ) T c p H (3.3.45) (3.3.46) (3.3.47). (3.3.47), (3.3.32) H = R T /g. Γ,. ε, ε f 2 L 2 Γ 1 (3.3.48).. ε = 1/(R 2 or i ) (3.3.49)

72, R i = Γ/V 2 (3.3.50).,., (3.3.46).,,. (3.3.48), (3.3.50). g 10 ms 2, T 300 K, g/cp + H 1 T / 3.5 10 3 Km 1, H 10 4 m, V 10 ms 1,. R i 100 (3.3.51) 3.3.1 L 10 6 m., R o 0.1, L/a 0.1, ε 1, βa/f 1., a 6.4 10 6 m, f 10 4 s 1. ε 1, (3.3.43) (3.3.46) R 1 R o (3.3.52)., R 1 = R o. (3.3.44), (3.3.43), (3.3.46) R o,. + V ψ (ζ + f) + fd = 0 (3.3.53) Φ + V ψ Φ 2 Φ fζ = 0 (3.3.54) + Γ(Z)Ż = 0 (3.3.55) (3.3.53),,, ζ,., (3.3.55),,.

73,., = i x + j, V = ui + vj (3.3.56) y, x, y. (3.3.53) (3.3.54) f,., V ψ f = v ψ df dy = v ψβ (3.3.57) β = d (2Ω sin φ) = 2Ω cos φdφ dy dy = 2Ω cos φ a (3.3.58). f, f y = y 0 [ f = f 0 + β 0 (y y 0 ) + = f 0 1 + β ] 0 (y y 0 ) +... (3.3.59) f 0. L, y y y 0 L. β f/a, (3.3.59) 2, β 0 (y y 0 ) f 0 L/a (3.3.60). L/a 0.1, f f = f 0, (3.3.57) β β 0.,,., L/a. Phillips(1963), Z,,.,., (3.3.53) D (3.3.45), (3.3.53) + V ψ (ζ + β 0 y) f 0 e Z (e Z Ż) = 0 (3.3.61)., (3.3.54)., 2 Φ = f 0 ζ = f 0 2 ψ (3.3.62) ψ = f 1 0 Φ (3.3.63)

74,. V ψ = f 1 0 k Φ, ζ = f 1 0 2 Φ (3.3.64) (3.3.55) (3.3.61) Ż, 1. (3.3.55) Ż, e Z Z, (e Z Ż) = ( e Z Γ Φ ) V ψ ( e Z Γ Φ ) (3.3.65)., V ψ /, (3.3.64). (3.3.61), ( ) [ + V ψ ζ + β 0 y + e Z ( )] f0 e Z Φ = 0 (3.3.66) Γ., (quasi-geostrophic potential vorticity equation), (3.2.28). (3.3.64), Φ. [ 2 + e Z ( f 2 0 e Z ) ] Φ Γ = k Φ [ f0 1 2 Φ + β 0 y + e Z ( e Z Γ )] (3.3.67) Φ,.,, (3.3.67) Φ /., Ż., (3.3.61) (3.3.55). = f 0 1 2 Φ R T = V ψ (ζ + β 0 y) + f 0 e Z (e Z Ż) (3.3.68) = Φ = V ψ Φ Γ(Z)Ż (3.3.69) V ψ (ζ + β 0 y) V ψ (Φ /), / T / Φ /. Ż, (3.3.68) Z, (3.3.69) f 0 2. ( Γ(Z) 2 Ż + f0 2 e Z ) (e Z Ż) (3.3.70) =f 0 [V ψ (ζ + β 0 y)] 2 [V ψ Φ ]

75, (quasi-geostrophic vertical motion equation)., (3.2.29). (3.3.64) Φ. Φ,, Ż. Ż (3.3.70), (3.3.45)., (3.3.68).,. (3.3.70),. Φ,, (3.3.70).,. (3.3.67) (3.3.70),. Ż, (3.3.67), (3.3.55) (/)(Φ /). (Z ), Ż.,, Ż w. gw = dφ/dt,. gw = Φ + V ψ Φ + V χ Φ + Ż Φ + ŻR T (3.3.71) fv 2 fv 2 R 1 fv 2 R 1 fv 2 R 1 MfV 2 R o, Φ/ = R T., M. M R T /f 2 L (3.3.72),., R 1 = R o, M 10., R T 10 5 m 2 s 2. 3.2, H f 2 L 2 /gh. H H = RT /g, M = F 1., (3.3.71), gw = R T Ż (3.3.73)., w g 1 fv 2 M 1 cms 1. (3.3.73) Z = Z s, Ż s = (g/r T )w S = (g/r T )V h s (3.3.74)

76, h s (x, y). (Charney and Eliassen, 1949), Phillips(1963)., (3.3.74) Żs = 0. Z s, Z s ( Z s = 0) (3.3.74) *4., p = p 0 (3.3.74). Z = 0, Z, Z s *5., H/10( 1 km),, 1/10.. (3.3.33) (3.3.34), (3.3.61) (3.3.55), ( ) + V ω ψ (ζ + β 0 y) f 0 p = 0 (3.3.76)., Φ p + V ψ Φ + σ(p)ω = 0 (3.3.77) p σ(p) = Γ/p 2 = p 1 d dp ( p Φ ) p Φ. (3.3.66),. ( ) [ + f 0 1 V Φ f0 1 2 Φ + β 0 y + ( )] f0 Φ = 0 (3.3.78) p σ(p) p *4 Z Z s, Z = Z s (3.3.74)., (Z s = 0)., Z s = 0. *5 T (x, y, Z, t) Z Z = 0, A(x, y, Z, t) = V (x, y, 0, t) + T Z +... Z=0, Z = Z s Z = 0 T (Z s ) T (Z) R 1 ( 2 Φ/ T (Z s) T (Z) 2 ) Z=0 T Z s (3.3.75)., / 1.

77, (3.3.70), σ 2 ω + f0 2 2 ω p = f 2 0 p (V ψ (ζ + β 0 y)) 2 ) (V ψ Φ p (3.3.79)., (quasi-geostrophic omega equation). 3.3.2, 10 5 s 1 ( 10 ),, R o 1, L/a 0.1, ε 10 2, βl/f 1 (3.3.80)., ε (3.3.49) R i = 100.,, L f, β f/l., (3.3.43) R 1 R o 1, (3.3.46) R 1 R o ε ε., R 1 = ε (3.3.81). (3.3.43) V 2 /10L 2,., (3.3.44) + V ψ (ζ + f) = 0 (3.3.82) (V ψ V ψ ) + 2 Φ fζ k f V ψ = 0 (3.3.83). (balance equation),. (3.3.82),.,, (3.3.46) fv 2., (3.3.81), (3.3.82)., (3.3.46).

78,.,., ( 4 ) 3.3.3, L/a 1, R o 0.01, ε 100, βa/f 1., (3.3.43) R 1 1 (3.3.84)., (3.3.46)., (3.3.43) (3.3.44), (V ψ + V χ ) f + fd = 0 (3.3.85) 2 Φ fζ k f (V ψ + V χ ) = 0 (3.3.86).,., V = V ψ + V χ = f 1 k Φ (3.3.87),., (3.3.45), (3.3.46), (3.3.87)., V ( ) ( 4 ).,.,,., ( 7 ).

79 3.4,.,. Charney(1962), R o (balance system).,. + (V ψ + V χ ) (ζ + f) + ω p +(f + ζ)d + k ω V ψ p = 0 (3.4.88) (V ψ V ψ ) + 2 Φ fζ k f V ψ = 0 (3.4.89) Φ p + (V ψ + V χ ) Φ p. V ψ = k ψ, + ω p p V χ = χ [ p Φ p κφ ] = 0 (3.4.90) (3.4.91) ζ = 2 ψ, D = 2 χ (3.4.92).,.,. ψ Φ, (balance equation).,.,,.,.,., Ro 2.,., k f V ψ.,., (3.4.89),., f *6. f,. *6 f, f f 0.

80,.,.,.,.,,.,.