2.2 (a) = 1, M = 9, p i 1 = p i = p i+1 = 0 (b) = 1, M = 9, p i 1 = 0, p i = 1, p i+1 = 1 1: M 2 M 2 w i [j] w i [j] = 1 j= w i w i = (w i [ ],, w i [

Similar documents
スライド 1

IPSJ SIG Technical Report 1, Instrument Separation in Reverberant Environments Using Crystal Microphone Arrays Nobutaka ITO, 1, 2 Yu KITANO, 1

2. CABAC CABAC CABAC 1 1 CABAC Figure 1 Overview of CABAC 2 DCT 2 0/ /1 CABAC [3] 3. 2 値化部 コンテキスト計算部 2 値算術符号化部 CABAC CABAC

IPSJ SIG Technical Report Vol.2010-AVM-68 No /3/ High-Efficient 2-pass Video Coding Algorithm based on Macroblock Rate-Distortion Kazu

1 Kinect for Windows M = [X Y Z] T M = [X Y Z ] T f (u,v) w 3.2 [11] [7] u = f X +u Z 0 δ u (X,Y,Z ) (5) v = f Y Z +v 0 δ v (X,Y,Z ) (6) w = Z +

10_08.dvi

スライド タイトルなし

DEIM Forum 2017 E Netflix (Video on Demand) IP 4K [1] Video on D

パナソニック技報


a) Extraction of Similarities and Differences in Human Behavior Using Singular Value Decomposition Kenichi MISHIMA, Sayaka KANATA, Hiroaki NAKANISHI a

H(ω) = ( G H (ω)g(ω) ) 1 G H (ω) (6) 2 H 11 (ω) H 1N (ω) H(ω)= (2) H M1 (ω) H MN (ω) [ X(ω)= X 1 (ω) X 2 (ω) X N (ω) ] T (3)

IPSJ SIG Technical Report Vol.2017-MUS-116 No /8/24 MachineDancing: 1,a) 1,b) 3 MachineDancing MachineDancing MachineDancing 1 MachineDan

Microsoft Word - toyoshima-deim2011.doc


B HNS 7)8) HNS ( ( ) 7)8) (SOA) HNS HNS 4) HNS ( ) ( ) 1 TV power, channel, volume power true( ON) false( OFF) boolean channel volume int

sumi.indd

UWB a) Accuracy of Relative Distance Measurement with Ultra Wideband System Yuichiro SHIMIZU a) and Yukitoshi SANADA (Ultra Wideband; UWB) UWB GHz DLL

情報処理学会研究報告 IPSJ SIG Technical Report Vol.2011-MBL-57 No.27 Vol.2011-UBI-29 No /3/ A Consideration of Features for Fatigue Es

日歯雑誌(H19・5月号)済/P6‐16 クリニカル  柿木 5

Web Social Networking Service Virtual Private Network 84

Proceedings of the 61st Annual Conference of the Institute of Systems, Control and Information Engineers (ISCIE), Kyoto, May 23-25, 2017 The Visual Se

4. C i k = 2 k-means C 1 i, C 2 i 5. C i x i p [ f(θ i ; x) = (2π) p 2 Vi 1 2 exp (x µ ] i) t V 1 i (x µ i ) 2 BIC BIC = 2 log L( ˆθ i ; x i C i ) + q

図 2: 高周波成分を用いた超解像 解像度度画像とそれらを低解像度化して得られる 低解像度画像との差により低解像度の高周波成分 を得る 高解像度と低解像度の高周波成分から位 置関係を保ったままパッチ領域をそれぞれ切り出 し 高解像度パッチ画像と低解像度パッチ画像の ペアとしてデータベースに登録する

Input image Initialize variables Loop for period of oscillation Update height map Make shade image Change property of image Output image Change time L


I/F Memory Array Control Row/Column Decoder I/F Memory Array DRAM Voltage Generator

pp d 2 * Hz Hz 3 10 db Wind-induced noise, Noise reduction, Microphone array, Beamforming 1

2.R R R R Pan-Tompkins(PT) [8] R 2 SQRS[9] PT Q R WQRS[10] Quad Level Vector(QLV)[11] QRS R Continuous Wavelet Transform(CWT)[12] Mexican hat 4

2 Poisson Image Editing DC DC 2 Poisson Image Editing Agarwala 3 4 Agarwala Poisson Image Editing Poisson Image Editing f(u) u 2 u = (x

it-ken_open.key

2). 3) 4) 1.2 NICTNICT DCRA Dihedral Corner Reflector micro-arraysdcra DCRA DCRA DCRA 3D DCRA PC USB PC PC ON / OFF Velleman K8055 K8055 K8055


福岡大学人文論叢47-3

Fig. 2 Signal plane divided into cell of DWT Fig. 1 Schematic diagram for the monitoring system

untitled

12 DCT A Data-Driven Implementation of Shape Adaptive DCT

スライド 1

IPSJ SIG Technical Report Vol.2010-MPS-77 No /3/5 VR SIFT Virtual View Generation in Hallway of Cybercity Buildings from Video Sequen


2 3

4 4 2 RAW (PCA) RAW RAW [5] 4 RAW 4 Park [12] Park 2 RAW RAW 2 RAW y = Mx + n. (1) y RAW x RGB M CFA n.. R G B σr 2, σ2 G, σ2 B D n ( )

パナソニック技報

IEEE HDD RAID MPI MPU/CPU GPGPU GPU cm I m cm /g I I n/ cm 2 s X n/ cm s cm g/cm

CVaR

28 Horizontal angle correction using straight line detection in an equirectangular image

Optical Flow t t + δt 1 Motion Field 3 3 1) 2) 3) Lucas-Kanade 4) 1 t (x, y) I(x, y, t)

P361

h(n) x(n) s(n) S (ω) = H(ω)X(ω) (5 1) H(ω) H(ω) = F[h(n)] (5 2) F X(ω) x(n) X(ω) = F[x(n)] (5 3) S (ω) s(n) S (ω) = F[s(n)] (5

IPSJ SIG Technical Report 1,a) 1,b) 1,c) 1,d) 2,e) 2,f) 2,g) 1. [1] [2] 2 [3] Osaka Prefecture University 1 1, Gakuencho, Naka, Sakai,

xx/xx Vol. Jxx A No. xx 1 Fig. 1 PAL(Panoramic Annular Lens) PAL(Panoramic Annular Lens) PAL (2) PAL PAL 2 PAL 3 2 PAL 1 PAL 3 PAL PAL 2. 1 PAL

ohpmain.dvi

(3.6 ) (4.6 ) 2. [3], [6], [12] [7] [2], [5], [11] [14] [9] [8] [10] (1) Voodoo 3 : 3 Voodoo[1] 3 ( 3D ) (2) : Voodoo 3D (3) : 3D (Welc

Computer Security Symposium October ,a) 1,b) Microsoft Kinect Kinect, Takafumi Mori 1,a) Hiroaki Kikuchi 1,b) [1] 1 Meiji U

11) 13) 11),12) 13) Y c Z c Image plane Y m iy O m Z m Marker coordinate system T, d X m f O c X c Camera coordinate system 1 Coordinates and problem

SICE東北支部研究集会資料(2017年)

IPSJ SIG Technical Report iphone iphone,,., OpenGl ES 2.0 GLSL(OpenGL Shading Language), iphone GPGPU(General-Purpose Computing on Graphics Proc

Abstract This paper concerns with a method of dynamic image cognition. Our image cognition method has two distinguished features. One is that the imag

Publish/Subscribe KiZUNA P2P 2 Publish/Subscribe KiZUNA 2. KiZUNA 1 Skip Graph BF Skip Graph BF Skip Graph Skip Graph Skip Graph DDLL 2.1 Skip Graph S

量子力学 問題

(MIRU2008) HOG Histograms of Oriented Gradients (HOG)

特別寄稿.indd

Gaze Head Eye (a) deg (b) 45 deg (c) 9 deg 1: - 1(b) - [5], [6] [7] Stahl [8], [9] Fang [1], [11] Itti [12] Itti [13] [7] Fang [1],

(a) 1 (b) 3. Gilbert Pernicka[2] Treibitz Schechner[3] Narasimhan [4] Kim [5] Nayar [6] [7][8][9] 2. X X X [10] [11] L L t L s L = L t + L s

IPSJ SIG Technical Report Vol.2014-DBS-159 No.6 Vol.2014-IFAT-115 No /8/1 1,a) 1 1 1,, 1. ([1]) ([2], [3]) A B 1 ([4]) 1 Graduate School of Info

: : : : ) ) 1. d ij f i e i x i v j m a ij m f ij n x i =

main.dvi

Duplicate Near Duplicate Intact Partial Copy Original Image Near Partial Copy Near Partial Copy with a background (a) (b) 2 1 [6] SIFT SIFT SIF

Computational Semantics 1 category specificity Warrington (1975); Warrington & Shallice (1979, 1984) 2 basic level superiority 3 super-ordinate catego

Kalman ( ) 1) (Kalman filter) ( ) t y 0,, y t x ˆx 3) 10) t x Y [y 0,, y ] ) x ( > ) ˆx (prediction) ) x ( ) ˆx (filtering) )

I, II 1, A = A 4 : 6 = max{ A, } A A 10 10%

211 ‚æ2fiúŒÚ

Convolutional Neural Network A Graduation Thesis of College of Engineering, Chubu University Investigation of feature extraction by Convolution

LMS NLMS LMS Least Mean Square LMS Normalized LMS NLMS AD 3 1 h(n) y(n) d(n) FIR w(n) n = 0, 1,, N 1 N N =

2.2 6).,.,.,. Yang, 7).,,.,,. 2.3 SIFT SIFT (Scale-Invariant Feature Transform) 8).,. SIFT,,. SIFT, Mean-Shift 9)., SIFT,., SIFT,. 3.,.,,,,,.,,,., 1,

3 2 2 (1) (2) (3) (4) 4 4 AdaBoost 2. [11] Onishi&Yoda [8] Iwashita&Stoica [5] 4 [3] 3. 3 (1) (2) (3)

1(a) (b),(c) - [5], [6] Itti [12] [13] gaze eyeball head 2: [time] [7] Stahl [8], [9] Fang [1], [11] 3 -

DS0 0/9/ a b c d u t (a) (b) (c) (d) [].,., Del Barrio [], Pilato [], [].,,. [],.,.,,.,.,,.,, 0%,..,,, 0,.,.,. (variable-latency unit)., (a) ( DFG ).,

S: E: O: C: V : 5


Summary 3D cinemas are becoming real thanks to digital image processing technology. The most feasible and stable technology based on the binocular dis

report-MSPC.dvi


main.dvi

& Vol.5 No (Oct. 2015) TV 1,2,a) , Augmented TV TV AR Augmented Reality 3DCG TV Estimation of TV Screen Position and Ro

IPSJ SIG Technical Report Vol.2012-CVIM-182 No /5/ RGB [1], [2], [3], [4], [5] [6], [7], [8], [9] 1 (MSFA: Multi-Spectrum Filt

THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS TECHNICAL REPORT OF IEICE {s-kasihr, wakamiya,

,.,. NP,., ,.,,.,.,,, (PCA)...,,. Tipping and Bishop (1999) PCA. (PPCA)., (Ilin and Raiko, 2010). PPCA EM., , tatsukaw

2007/8 Vol. J90 D No. 8 Stauffer [7] 2 2 I 1 I 2 2 (I 1(x),I 2(x)) 2 [13] I 2 = CI 1 (C >0) (I 1,I 2) (I 1,I 2) Field Monitoring Server

258 5) GPS 1 GPS 6) GPS DP 7) 8) 10) GPS GPS ) GPS Global Positioning System

 

23 Fig. 2: hwmodulev2 3. Reconfigurable HPC 3.1 hw/sw hw/sw hw/sw FPGA PC FPGA PC FPGA HPC FPGA FPGA hw/sw hw/sw hw- Module FPGA hwmodule hw/sw FPGA h

DC-DC Control Circuit for Single Inductor Dual Output DC-DC Converter with Charge Pump (AKM AKM Kenji TAKAHASHI Hajime YOKOO Shunsuke MIWA Hiroyuki IW

GJG160842_O.QXD

GPGPU

2013 M

1 filename=mathformula tex 1 ax 2 + bx + c = 0, x = b ± b 2 4ac, (1.1) 2a x 1 + x 2 = b a, x 1x 2 = c a, (1.2) ax 2 + 2b x + c = 0, x = b ± b 2

untitled

IPSJ SIG Technical Report Vol.2012-MUS-96 No /8/10 MIDI Modeling Performance Indeterminacies for Polyphonic Midi Score Following and

IPSJ SIG Technical Report Vol.2014-DPS-158 No.27 Vol.2014-CSEC-64 No /3/6 1,a) 2,b) 3,c) 1,d) 3 Cappelli Bazen Cappelli Bazen Cappelli 1.,,.,.,

Transcription:

RI-002 Encoding-oriented video generation algorithm based on control with high temporal resolution Yukihiro BANDOH, Seishi TAKAMURA, Atsushi SHIMIZU 1 1T / CMOS [1] 4K (4096 2160 /) 900 Hz 50Hz,60Hz 240Hz 300Hz [2] FA [3] [4] [5] [6] [7] [8] [9] NTT 30Hz 1000Hz [10] 1 2 2.1 (2 +1) i ˆf(x, imδ t, w i, p i ) = w i [j]f(x, (im + M 2 +p i+j)δ t ) j= i δ t t = jδ t (j = 0, 1, ) f(x, t) t x (x = 0,, X 1) (1) 5

2.2 (a) = 1, M = 9, p i 1 = p i = p i+1 = 0 (b) = 1, M = 9, p i 1 = 0, p i = 1, p i+1 = 1 1: M 2 M 2 w i [j] w i [j] = 1 j= w i w i = (w i [ ],, w i [ ]) p i 0,, ±P M (1) Mδ t 2 + 2P + 1 M 1 M, p i 1,p i,p i+1 (a)(b) M = 9, = 1 (a) (b) p i 1 = 0, p i = 1, p i+1 = 1 N γ n = (γ n [ ],, γ n [ ]), (n = 0,, N 1) 2P + 1 N (2P + 1) N Γ N = (γ 0,, γ N 1 ) X K ˆf(x, imδ t, w i, p i ) X K B[k] (k = 0, 1,, K 1) ˆf(x, (i 1)Mδ t, w i 1, p i 1 ) B[k] (k = 0, 1,, K 1) ( d i = (d i [0],, d i [K 1]) e i (x, w i, w i 1, p i, p i 1 ) = ˆf(x, imδ t, w i, p i ) ˆf(x d i [k], (i 1)Mδ t, w i 1, p i 1 ) x (x = 0,, X 1) e i (x, w i, w i 1, p i, p i 1 ) e i (w i, w i 1, p i, p i 1 ) Ψ(w i, w i 1, p i, p i 1 ) = R h + R d (d i ) R e (e i (w i, w i 1, p i, p i 1 )) (2) R e (e i (w i, w i 1, p i, p i 1 )) R d (d i ) d i R h (2) Ψ() i w i p i i 1 w i 1 p i 1 Φ[w i, p i ] = M 1 k=0 X 1 {f(x, (im+k)δ t ) ˆf(x, imδ t, w i, p i )} 2 x=0 (3) im t < im + M i i Ξ[(w i, w i 1, p i, p i 1 ] = Ψ[w i, w i 1, p i, p i 1 ] + λφ[w i, p i ] (4) 6

i i+1 i+2 2: 2.3 S i (w i, p i ) S i (w i, p i ) = w 0,,w i 1 Γ N p 0,,p i 1 i Ξ[w j, w j 1, p i, p i 1 ] (6) j=1 S i (w i, p i ) i w i p i w i,p i Ξ[w i, w i 1, p i, p i 1 ] w i 1, p i 1 S i (w i, p i ) (4) J/M (w 0,, w J/M 1, p 0,, p J/M 1 ) = arg w 0,,w J/M 1 Γ N p 0,,p J/M 1 J/M 1 i=1 Ξ[w i, w i 1, p i, p i 1 ] (5) P = 0 N = 3 2 3 γ 0, γ 1, γ 2 γ 0, γ 1, γ 2 J/M 3 J/M N 2P + 1 {N (2P + 1)} J/M (w 0,, w J/M 1, p 0,, p J/M 1 ) Ξ[w i, w i 1, p i, p i 1 ] w i,p i w i 1, p i 1 (5) w i p i (i = 1,, J/M 1) N = 3 S i (w i, p i ) = w i 1 Γ N p i 1 {Ξ[w i, w i 1, p i, p i 1 ]+S i 1 (w i 1, p i 1 )} (7) S i 1 (w i 1, p i 1 ) S i (w i, p i ) (7) S i (w i, p i ) Ξ[w i, w i 1, p i, p i 1 ] + S i 1 (w i 1, p i 1 ) Γ N p i w i n i n i (7) ˆn i 1 (n i, p i ) ˆp i 1 (n i, p i ) (7) (5) w J/M 1 Γ N S J/M 1 (w J/M 1, p J/M 1 ) (8) p J/M 1 (7) (5) (w 0,, w J/M 1, p 0,, p J/M 1 ) {N (2P + 1)} 2 J/M J/M 1 i=1 Ψ[w i, w i 1, p i, p i 1 ] (w 0,, w J/M 1, p 0,, p J/M 1 ) (8) w J/M 1, p J/M 1 w J/M 1, p J/M 1 (w J/M 1, p J/M 1 ) = arg S J/M 1 (w J/M 1, p J/M 1 ) w J/M 1 Γ N p J/M 1 w J/M 1 n J/M 1 J/M 1 n J/M 1 p J/M 1 J/M 2 ˆn J/M 2 (n J/M 1, p J/M 1 ), ˆp J/M 2 (n J/M 1, p J/M 1 ) 7

J/M 2 w J/M 2 = γ ˆnJ/M 2 (n J/M 1,p J/M 1 ), p J/M 2 = ˆp J/M 2(n J/M 1, p J/M 1 ) w J/M 3 = γ ˆn J/M 3 (n J/M 2,p J/M 2 ), p J/M 3 = ˆp J/M 3 (n J/M 2, p J/M 2 ),, w 0 = γ ˆn0 (n 1,p 1 ), p 0 = ˆp 0 (n 1, p 1) 3 RGB (24 bits/pixel) YCbCr (8 bits/pixel) 1000 [Hz] 900 640 480 [ ] 2 ( Building A Building B ) ( Ship ) x264 lossless mode I P GOP M = 32 = 1 31.25 [Hz], 3 0, ±1, ±2 5 1 2 2.3 1 n = 0 (2 + 1)δ t [ ] 3.01% 3 (n = 0 ) 5 1: ( n ) n 0 (1/3,1/3,1/3) 1.000 1 (29/96,19/48,29/96) 0.991 2 (13/48,11/24,13/48) 0.967 3 (35/96,13/48,35/96) 0.991 4 (19/48,5/24,19/48) 0.967 5 3 (±2) 27.6 % ( Building A ), 20.7 % ( Building B ), 17.2 % ( Ship ) 1 Bulding B (n = 0) (n = 1, 3) Bulding B Bulding A n = 0, 1, 3 (n = 2, 4) Ship n = 4 4 8

2: [bits/pixel] [bits/pixel] [%] Building A 2.54 2.49 2.04 Building B 2.80 2.77 1.23 Ship 3.69 3.48 5.77 3: [%] (n ) (a) Building A 0 0.00 0.00 0.00 0.00 3.45 1 6.90 3.45 10.34 3.45 0.00 n 2 3.45 10.34 3.45 10.34 0.00 3 3.45 10.34 13.79 10.34 0.00 4 10.34 0.00 0.00 0.00 0.00 (b) Building B 0 0.00 6.90 3.45 3.45 0.00 1 10.34 24.14 6.90 3.45 0.00 n 2 0.00 0.00 3.45 3.45 0.00 3 6.90 20.69 3.45 3.45 3.45 4 0.00 0.00 0.00 0.00 0.00 (c) Ship 0 0.00 0.00 0.00 0.00 0.00 1 0.00 3.45 0.00 0.00 0.00 n 2 0.00 0.00 0.00 0.00 0.00 3 3.45 0.00 3.45 0.00 0.00 4 10.34 34.48 27.59 17.24 3.45 3.01% [1] K. Hanzawa, Y. Kato, R. Kuroda, H. Mutoh, R. Hirose, H. Toaga, K. Takubo, Y. Kondo, and S. Sugawa. A global-shutter CMOS image sensor with readout speed of 1Tpixel/s burst and 780Mpixel/s continuous. IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers, pp. 382 384, 2012. [2] Y. Kuroki, T. Nishi, S. Kobayashi, H. Oyaizu, and S. Yoshimura. A psychophysical study of improvements in motion-image quality by using high frame rates. Journal of the Society for Information Display, Vol. 15, No. 1, pp. 61 68, 2007. [3] Y. Chen, K. Rose, J. Han, and D. Mukherjee. A pre-filtering approach to exploit decoupled prediction and transform block structures in video coding. Proc. IEEE Int. Conf. Image Process., pp. 4137 4140, 2014. [4] L. J. Kerofsky, R. Vanam, and Y. A. Reznik. Improved adaptive video delivery system using a perceptual pre-processing filter. Proc. IEEE Global Conf. Signal & Inf. Process., 2014. [5] N. Tsapatsoulis, K. Rapantzikos, and C. Pattichis. An embedded saliency map estimator scheme: Application to video coding. Int. J. Neural Syst., Vol. 17, No. 4, pp. 289 304, 2007. [6] C. Dikici and H. I. Bozma. Attention-based video streag. EURASIP J. Signal Process.: Image Commun., 2010. [7] A. Ben Hamida, M. Koubaa, H. Nicolas, and C. Ben Amar. Spatio-temporal video filtering for video surveillance applications. IEEE Int. Conf. Multimedia and Expo Workshops, 2013. [8] J. Ohm. Advances in scalable video coding. Proc. IEEE, Vol. 93, No. 1, pp. 42 56, 2005. [9] A. Golwelkar and J. Woods. Motion-compensated temporal filtering and motion vector coding using biorthogonal filter. IEEE Trans. Circuits Syst. Video, Vol. CSVT-17, No. 4, 2007. [10],.. (A), Vol. J96-A, No. 8, pp. 562 571, 2013. 9